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ABSTRACT

A fault-tolerant manipulator can be expected to perform a desired task even if a joint actuator fails.
When a manipulator experiences a joint actuator failure, it can be considered as an underactuated
mechanical system. An underactuated serial-link manipulator can be controlled by using the coupling
effects between links. The control goal to be studied in this paper is to move the end-effector from a
given initial pose to a specified final pose, after a single joint failure has occurred, where the given
robot has at least two degrees of redundancy. The proposed controller is designed based on a reduced-
order model. The control scheme first moves the actuated joints to the desired positions. An iterative
control input is then applied to an actuated joint so that the unactuated joint is asymptotically driven
to the desired joint position. The control approach is illustrated by simulating a PUMA 600 Arm.
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1. INTRODUCTION

A serial-link manipulator can be termed underactuated if the number of actuators is less than
the number of joints. Thus, an underactuated manipulator system has a fewer number of
control inputs than the number of joint position variables.

The dynamic model of an underactuated robotic manipulator can be decomposed to the
motion equations with input and those without input. The latter equations represent second-
order nonholonomic constraints [9], which make it difficult to directly reduce the number of
the generalized coordinates.

The nonlinear manipulator dynamical model can be written in the form ẋ = f(x) + g(x)u,
where x is the system state, and u the input to the system. The differentiable functions f(x)
and g(x) are the drift term and the control matrix, respectively. Furthermore, one of the
basic properties of the overall system model, the controllability, cannot be guaranteed [6]. The
accessibility of the overall system can be shown using Lie algebra [8]. When the system model
contains a drift term, the accessibility does not imply controllability [13]. As a consequence
[2], the underactuated manipulator system is not asymptotically stabilizable to an equilibrium
point using a time-invariant continuous state feedback.
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The controller design of an underactuated manipulator system indeed poses a challenge : even
though a manipulator has one or more of the joints unoperational, i.e., it is underactuated, the
robotic manipulator should be able to perform a specified task. Several approaches to control
an underactuated manipulator have been proposed [6, 15, 7, 1]. These approaches include
energy based schemes [15], the use of nonlinear control models [7], nilpotent approximations
[6, 1], and kinematics with path planning [14].

An energy based approach uses saturation functions and energy shaping; it is applied to
the control of a two-link Acrobot and a three-link Gymnast robot in [15]. The presence of
gravity terms in the Acrobot and the Gymnast robot models make the linearizations of the
system dynamical model around their equilibrium points locally controllable. On the other
hand, in the absence of the gravity term, the linearization of the system dynamics around
an equilibrium point contains uncontrollable modes, and the system cannot be asymptotically
stabilized by a constant gain linear state feedback [9]. However, an iterative control can be
applied to achieve convergence to the desired state [6]. To design iterative control schemes,
nonlinear approximations of an underactuated manipulator model can be used : an example of
this approach is a nilpotent approximation used in the design of a control for a planar two-link
revolute robot whose model contains a drift term [6]. In [6], the control scheme is designed for
a two-link manipulator. The approach described in this paper uses a reduced-order model to
achieve the control of an n-link manipulator.

When a redundant manipulator has an unactuated joint due to an actuator failure, it can be
operated as a locked-joint arm or as a free-swinging arm. It still should be able to accomplish
its task, and thus be fault-tolerant. One approach to fault-tolerance is based on planning
a fault-tolerant trajectory for the manipulator [10]. A fault-tolerant trajectory is defined as
a trajectory q(t) such that there exists an alternate trajectory q∗(t) for every time instant
t. An algorithm can be constructed that iteratively searches for a fault-tolerant trajectory
among all the acceptable postures at each time instant; an acceptable fault-tolerant trajectory
is generated. For a slow-moving manipulator, an approach to a fault-tolerant operation of a
manipulator can be based on the kinematics of the redundant manipulators; In this framework,
a fault-tolerant configuration is determined in [3], but the dynamics of the manipulator are
not taken into account.

This paper will discuss the dynamic control for a serial n-link underactuated manipulator.
The underactuated operation can result from the failure of a joint actuator. The dynamics of
the underactuated manipulator will be described by means of a reduced-order model [5, 12].
This model is used to design a controller, which moves the end-effector from a given initial
pose to a specified final pose.

The paper is organized as follows. The reduced-order model for an n-link underactuated
manipulator is first described. The control problem and the proposed two-phase control scheme
are outlined. The motion of a general n-link manipulator after a certain time is constrained
on a horizontal plane. The conditions on such a manipulator motion are discussed. Simulation
results for a PUMA 600 manipulator illustrate the proposed control approach.

2. REDUCED-ORDER DYNAMICAL MODEL

The dynamical model of an n-link manipulator can be expressed as
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τ = D(q)q̈ + C(q, q̇)q̇ + G(q)

where the ith component qi of the n-vector q is the position of joint i, and τ = [τ1, ..., τn]T

the (generalized) input torque. If joint i is unactuated, the equations of the model can be
rearranged so that the last component of the n-vector q̄ is qi. Then, the model is

τ̄ = D̄(q̄)¨̄q + C̄(q̄, ˙̄q) ˙̄q + Ḡ(q̄) (1)

where the n-vectors τ̄ and Ḡ(q̄), and matrices D̄(q̄) and C̄(q̄, ˙̄q) result from τ , G(q), D(q) and
C(q, q̇), respectively, after the rearrangement of the equations. To simplify notations, define the
set SA = {i | joint i is actuated} and SB = {i | joint i is unactuated}. It is now convenient
to write q̄ = [qT

A qB ]T and τ̄ = [τT
A τB ]T , where qA, τA are (n − 1)-dimensional vectors

associated with the actuated joints, and qB , τB are scalar variables of the unactuated joint.
Thus, the model in equation (1) for a manipulator with a free-swinging arm can be expressed
as [

τA

0

]
=

[
DAA DAB

DBA DBB

] [
q̈A

q̈B

]
+

[
CAA CAB

CBA CBB

] [
q̇A

q̇B

]
+

[
GA

GB

]
(2)

The submatrices DAA, DAB , DBA and DBB of D̄(q̄) have dimensions (n − 1)x(n − 1),
(n − 1)x1, 1x(n − 1) and 1x1, respectively. Similarly, the submatrices CAA, CAB , CBA and
CBB of C̄(q̄, ˙̄q) have dimensions (n−1)x(n−1), (n−1)x1, 1x(n−1) and 1x1, respectively. The
(n− 1)-vector GA, and the scalar GB represent the gravity effects on the links corresponding
to the actuated joints and the unactuated joint, respectively.

The n-dimensional vector ˙̄q(t) can be transformed to an (n− 1)-dimensional pseudovelocity
vector ν(t) by means of the transformation matrix Π = [ΠT

A ΠT
B ]T , where ΠA and ΠB are

(n− 1)x(n− 1) and 1x(n− 1) submatrices of Π, respectively. Thus,[
q̇A

q̇B

]
=

[
ΠA

ΠB

]
ν (3)

The reduced-order model for the n-link underactuated manipulator can then be expressed
as

τν = Dν ν̇ + Cνν + Gν (4)

where τν = ΠT τ̄ , Dν = ΠT D̄Π, Cν = ΠT (D̄Π̇ + C̄Π) and Gν = ΠT Ḡ. Equation (4) is
the set of m ordinary differential equations representing the reduced-order dynamical model
of an underactuated serial-link manipulator in which the joint i actuator is not functioning.

The number of links n is equal as the DOF of the joint space of the manipulator. The m
variable can be regarded as the DOF of the task space. As such, m varies according to the
task to be performed. In this paper, m is not necessarily restricted to the DOF of the entire
task but may be set depeding on the definition of a particular subtask.

3. STATEMENT OF THE CONTROL PROBLEM

The end-effector pose of a manipulator will be denoted by the vector p ∈ Rm, where m is the
degree of freedom (DOF) of the task, i.e. m is the number of variables specifying the task. The
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DOF of a manipulator n is the number of joint position variables. A manipulator is redundant
for a specified task if n, the DOF of the manipulator, is greater than m, the DOF of the task.
The degree of redundancy (DOR) is defined as r = n − m.

The control problem is as follows : the end-effector of a redundant manipulator with DOR
r is to be moved from an initial pose p(0) to a specified final pose pd(tf ), where tf is a
specified time signifying the end of the motion. The redundancy allows the manipulator to
perform the desired task even if it is underactuated due a joint actuator failure. The initial
pose p(0) determines the initial joint position q(0). Assuming a solution exists to the kinematic
equations, the final pose pd(tf ) specifies the final joint position qd(tf ).

4. CONTROL STRUCTURE

For a two-link planar revolute manipulator moving on a horizontal plane and having an
unactuated (second) joint, the second link can be driven to the desired joint position by an
appropriate iterative control input applied to the actuated first joint [6]. In order to constrain
the motion of the unactuated link to a horizontal plane in an n-link underactuated manipulator,
certain conditions must be satisfied. These conditions represent constraint equations. The
manipulator forward kinematic equation, in general, can be written as

p = f(q) (5)

where the function f : q → p relates the joint position q to the end-effector pose p. Thus,
the desired manipulator configuration qd(tf ) must satisfy the forward kinematic equations
pd(tf ) = f(qd). The additional constraint equation will first be determined in the form
h(q) = 02x1 . Assuming a solution exists, then the desired configuration qd(tf ) satisfying the
kinematic and the constraint equations can be calculated.

The control scheme will be constructed in two parts [6]; namely, phase 1 and phase 2. The
approach is hinged on the dynamical control of the manipulator. Furthermore, the failed joint
will be free-swinging as opposed to being locked [14].

During phase 1, the actuated joints are moved to the desired joint position qd
A(tf ). At the

end of phase 1 at time t = T1, qA(T1) = qd
A(tf ), q̇A(T1) = 0(n−1)x1, where T1 is a

specified duration of phase 1, and 0(n−1)x1 denotes the (n − 1)x1 zero matrix. In general
qB(T1) 6= qd

B(tf ) and q̇B(T1) 6= 0.
In phase 2, the control is chosen to be cyclic. The motion of the actuated joint (link) is

such that at times t = T1 + T, T1 + 2T, . . ., signifying the end of the cycles, vector qA(t)
has the value of qd

A(tf ) and q̇A(t) = 0(n−1)x1, where T is the length of a cycle. The chosen
control drives the unactuated joint (link) is cyclically by the coupling effect so that qB(t) moves
towards qd

B(tf ) and q̇B(t) to zero, for t > T1.
The constraint equations necessary to achieve fault-tolerance for an n-link redundant

manipulator will be derived next. Then, the details of the two-phase control algorithm will be
presented.

4.1. Constraint Equations

The constraint equations on the motion of a serial n-link underactuated manipulator will be
derived by considering that the unactuated link will be constrained to move on a horizontal
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plane z = pd
z(tf ) for t ≥ T1, where pd

z(tf ) is the desired z-coordinate of the end-effector
position.

In a two-link underactuated manipulator, an appropriate input to the actuated joint (joint
one) can drive the unactuated second joint iteratively to the desired position. In order to
apply a similar approach to an n-link underactuated serial-link manipulator (n ≥ 3), the
underactuated link , after time T1, should be moved in the horizontal plane z = pd

z(tf ). It is
accomplished by satisfying two conditions on the motion during phase 2.

Condition (i) : Only one actuated joint and the unactuated revolute joint of the manipulator
are moved during phase 2; the other joints are maintained at zero velocities with the
appropriate joint torque inputs.

Condition (ii) : The axes of the motion of the two joints with nonzero velocities must be in
the vertical direction. The second condition guarantees that motion of the unactuated link is
constrained in the horizontal plane. The constraint equation for condition (ii) is derived next.

In Figure 1, the axes of the world coordinate frame are the x0-axis, y0-axis and z0-axis, and
the axes of the (i − 1)th coordinate frame are the xi−1-axis, yi−1-axis and zi−1-axis, where
joint i is the unactuated joint.

Figure 1. Selected Points on the zi−1-axis

The rotation of link i is about the zi−1-axis. Assuming the z0-axis is oriented in the vertical
direction, the axis of motion of the unactuated joint will be in the vertical direction if the
z0-axis and zi−1-axis are parallel. The zi−1-axis will be parallel to the z0-axis if two distinct
points pi−1

0 and pi−1
1 on the zi−1-axis have the same x-coordinates and the same y-coordinates

in the world coordinate frame. First, two points on the zi−1-axis are selected:
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pi−1
0 = [0 0 0 1]T , pi−1

1 = [0 0 1 1]T (6)

It is noted that the superscript (i − 1) signifies the reference coordinate frame. Then, pi−1
0

is the origin, and pi−1
1 is a point on the zi−1-axis in the (i− 1)th coordinate frame.

The transformation matrix Ai
j(q) converts the coordinates of a point expressed in the ith

coordinate frame to the coordinates of the same point in the jth coordinate frame [4]. Points
pi−1
0 and pi−1

1 can be expressed in the world coordinate frame (i.e., in the zeroth coordinate
frame) as follows:

pw
0 = Ai−1

0 (q)pi−1
0 , pw

1 = Ai−1
0 (q)pi−1

1 (7)

where the superscript w denotes the world coordinate frame. If pw
0 = [xw

0 yw
0 zw

0 1]T and
pw
1 = [xw

1 yw
1 zw

1 1]T , then the zi−1-axis is oriented vertically when

xw
1 − xw

0 = 0, yw
1 − yw

0 = 0 (8)

From equation (6), pi−1
1 − pi−1

0 = [0 0 1 0]T . Using equation (7) gives

pw
1 − pw

0 = Ai−1
0 (q)

[
pi−1
1 − pi−1

0

]
(9)

In order to satisfy the equations in (8), the x and y components of (pw
1 − pw

0 ) are set to
the zero. Thus, equation (9) yields[

0
0

]
=

[
1 0 0 0
0 1 0 0

]
Ai−1

0 (q)
[
pi−1
1 − pi−1

0

]
(10)

Equation (10) represents the motion constraint that forces the zi−1-axis to be in the vertical
direction. Alternatively, the constraint equation (10) can be written as

h(q) =
[

h1(q)
h2(q)

]
= 02x1 (11)

where 02x1 denotes the zero vector, h1(q) and h2(q) represent the (1, 3) and (2, 3) elements,
respectively, of matrix Ai−1

0 (q).
Since the task is specified by the m-vector p, and the manipulator motion must satisy

two additional constraint equations, determining the joint position q from p = f(q) and
h(q) = 02x1 requires solving (m + 2) equations. In order to have a well-posed problem, the
DOF n of the manipulator must be n ≥ m + 2. Therfore, the DOR should then be r ≥ 2 .

Assuming that DOR r ≥ 2, solving the manipulator kinematic equation (5) subject to
the constraint equation (11) will yield the desired manipulator configuration that forces the
unactuated link to move on a horizontal plane. Thus, the solution to pd(tf ) = f [qd(tf )] and
h[qd(tf )] = 02x1 gives the desired joint position qd(tf ).

The control problem of moving the end-effector to the desired pose pd(tf ) will be solved in
two phases. The next sections will describe phase 1 and phase 2 of the control scheme. During
phase 1, the actuated joints are moved to the desired joint positions qd

A(T1). In phase 2, the
unactuated link is driven to the desired joint position qd

B(tf ) by means of the coupling effects.
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4.2. Control in Phase 1

The motion during phase 1 consists of moving the actuated joints from position qA(0) to
the desired position qA(T1) = qd

A(tf ) in time T1. The initial and the final joint velocities are
q̇A(0) = 0(n−1)x1 and q̇d

A(T1) = 0(n−1)x1, respectively. The value of qB(T1) will be arbitrarily
in the allowable range.

The control steps in phase 1 are :

1. The joint velocity profile q̇d
A(t) is first chosen for the actuated joints.

2. Let the ν-space velocity represent the joint velocity of the actuated joints, i.e.,
ν(t) = q̇A(t).

3. ΠA(t) in matrix Π = [ΠT
A ΠT

B ]T is calculated by the first n− 1 rows in equation (3).
4. ΠB(t) is determined using equation (3) and the last row of equation (2).
5. τν is computed from the inverse dynamics by means of the reduced-order model in

equation (4).
6. Using ΠT τ = τν , the joint torque τ is calculated; τ must then be generated by the joint

actuators.

The details of the phase 1 method will now be discussed.
For the specified motion of the actuated joints, the desired velocity profile q̇d

i (t) for joint i is
chosen as shown in Figure 2, where hi = [qd

i − qi(0)]/(0.8T1), i ∈ SA. The corresponding
desired joint acceleration profile q̈d

i (t) for i ∈ SA is then also specified.

Figure 2. Desired Joint i Velocity for Phase 1, i ∈ SA

Since the immediate concern during phase 1 is the motion of link i, ∀ i ∈ SA, the dimension
of the task space in phase 1 is the number of actuated joints, i.e., the DOF of the task space
is m = n − 1. Therefore, the order of the dynamical model can be reduced for the controller
design. The resulting reduced-order model will then be used to design the control for the
manipulator motion.

The (n−1)-dimensional vector ν(t) is chosen so that ν(t) = q̇A(t). Hence, the corresponding
desired velocitities satisfy

νd(t) = q̇d
A(t) (12)
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The desired pseudospace acceleration ν̇d(t) and position µd(t) can be computed by
differentiating νd(t) and integrating νd(t), respectively.

Matrix ΠA(t) is determined from equation (3). Consequently, ΠA(t) = I(n−1)x(n−1), where
I(n−1)x(n−1) denotes the (n−1)x(n−1) identity matrix. The next step is to specify submatrix
ΠB(t).

Using equation (3), q̈A(t) and q̈B(t) can be expressed as,

q̈A(t) =
d

dt
[ΠA(t)ν(t)], q̈B(t) =

d

dt
[ΠB(t)ν(t)] (13)

The last row of equation (2) gives

0 = DBA
d

dt
[ΠA(t)ν(t)] + DBB

d

dt
[ΠB(t)ν(t)] + CBAΠA(t)ν(t) + GB (14)

Assuming that DBA, DBB , CBA, and GB do not change much within a sampling interval,
they may be considered constant in this interval. Then, by integrating equation (14) with
respect to time, and solving for ΠB , one obtains for t within the sampling interval

ΠB(t) =
[νd(t)]T

[νd(t)]T νd(t)

∫ t

0

[
DBAΠAν̇d(σ) + CBAΠAνd(σ) + GB

−DBB

]
dσ (15)

Having specified ΠA(t) = I(n−1)x(n−1) and ΠB(t) by equation (15), the reduced-order model
in equation (4) can now be used to compute pseudospace torque τν (the inverse dynamics).
The joint torque τ for an underactuated manipulator is then obtained from τν = ΠT τ :[

τA

τB

]
=

[
Π−T

A τν

0

]
(16)

where Π−T
A denotes the inverse of ΠT

A. The calculated τA is then applied to the actuated joints
of the manipulator to realize the tracking of the desired motion.

At the final time T1 of phase 1, qA(T1) = qd
A(tf ), q̇A(T1) = 0(n−1)x1, qB(T1) 6= qd

B(tf )
and q̇B(T1) 6= 0. The determination of the control for the underactuated manipulator during
phase 2 will next be described.

4.3. Control in Phase 2

In order to produce a motion which is similar to the motion of the two-link planar
underactuated manipulator, the n-link manipulator motion must satisfy the conditions outlined
in Section 4.1. Therefore, one of the actuated joints and the unactuated joint have nonzero
joint velocities during phase 2; the rest of the joints are maintained at zero velocities by
appropriate joint torque inputs. It is noted, however, that the joints with zero velocities are still
considered in the algorithm, since these joints require a generalized input torque to maintain
the corresponding velocities at zero.

During phase 2, the actuated joint is driven by a cyclic input which causes the unactuated
joint to move towards the desired joint position qd

B(tf ) by the mutual coupling effect between
the two joints. Let the subscript nz denote the variables corresponding to the actuated link
with a nonzero joint velocity; thus, for the actuated joint inz, velocity q̇nz(t) 6= 0, where
inz ∈ SA.
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The motion during phase 2 consists of moving the joint (link) inz iteratively in a cyclic
manner so that after each cycle, qB [T1 +kT ] is closer to qd

B(tf ) and q̇B [T1 +kT ] approaches to
zero, while satisfying qA[T1 + kT ] = qd

A(tf ) and q̇A[T1 + kT ] = 0(n−1)x1, for k = 0, 1, 2, . . ..
The control steps in phase 2 are :

1. The velocity profile q̇d
nz(t) is chosen for the actuated joint inz.

2. The desired ν-space velocity νd(t) is calculated.
3. ΠA(t) in matrix Π = [ΠT

A ΠT
B ]T is determined by the first n− 1 rows in equation (3).

4. ΠB(t) is computed by equation (3) and the last row of equation (2).
5. By the inverse dynamics in reduced-order space, τν is calculated.
6. Using ΠT τ = τν , the joint torque τ obtained; τ is then generated by the joint actuators

to track the desired trajectory.

The details of the phase 2 method will now be discussed.
Let t = T start

phase2 be the time at the beginning of phase 2; then, qA(T start
phase2) = qd

A(tf )
and q̇A(T start

phase2) = 0(n−1)x1. The velocity q̇d
A(t) during phase 2 is chosen such that at

the end of each iteration, the joint position qA(T start
phase2 + kT ) = qd

A(tf ) and velocity
q̇A(T start

phase2 + kT ) = 0(n−1)x1. The velocity q̇d
nz(t) for the actuated joint inz is shown in

Figure 3, where q̇max
nz is the maximum velocity of joint inz. Since only one of the actuated

joints have a nonzero velocity, the joint position qi(t) = qd
i (tf ) and the velocity q̇i(t) = 0,

T start
phase2 ≤ t < tf for every i ∈ SA, i 6= inz. For convenience, the notation T start

phase 2 will
be dropped in the sequel.

Figure 3. Desired Joint inz Velocity for Phase 2

The velocity of the unactuated joint of a two-link manipulator is derived in Appendix I when
the joint one velocity is that shown in Figure 3. The relationship between the velocity of joint
two at the beginning and at the end of an iteration cycle is given in equation (32). Since the
conditions presented in Section 4.1 are satisfied, the n-link underactuated manipulator during
phase 2 can be treated as a two-link underactuated manipulator. Equation (32) is rewritten
here as

q̇B [(k + 1)T ] = q̇B(kT ) + ∆q̇B(kT ) (17)

∆q̇B(kT ) =
ā2

4ā3
sin[q̄B(kT )](q̇max

nz )2T
[
ā2

ā3
cos[q̄B(kT )] − 1

3

]
(18)
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where k = 0, 1, . . ., and constants ā2 and ā3 are determined by the link properties and qd
A(tf ).

It is noted that for a two-link manipulator the joint two position q2 is the angle between the
axes of links one and two. Furthermore, the links between joint inz and the unactuated joint
of an n-link manipulator can be treated as one virtual link analogous to the link one of the
two-link manipulator. Now, q̄B(t) can be defined as

q̄B(t) = qB(t) + qoffset
B (19)

where qoffset
B is a constant dependent on the link properties and qd

A(tf ). The requirement
that qB(kT ) approaches qd

B(tf ) is equivalent to the requirement that q̄B(kT ) approaches
q̄d
B(tf ) = qd

B(tf ) + qoffset
B . In order to make q̄B(kT ) approach q̄d

B(tf ) and q̇B(kT ) approach
zero at the end of each iteration, the following penalty function approach can be used. If
x(t) = [q̄B(t) q̇B(t)]T and xd(tf ) = [q̄d

B(tf ) q̇d
B(tf )]T , then one can define a criterion (a

penalty function C) which is to be minimized with respect to x(kT ).

C[x(kT )] =
1
2
[xd(tf )− x(kT )]T W [xd(tf )− x(kT )] (20)

where k = 1, . . ., W = diag(W1,W2), and W1, W2 are nonnegative weighting factors.
Forming the first-order differential of equation (20) using ∆x = [∆q̄B ∆q̇B ]T , one obtains

C̃ =
∂C
∂x

∣∣∣∣
x(kT )

∆x(kT ) +
1
2
∆xT (kT )

∂2C
∂x2

∣∣∣∣
x(kT )

∆x(kT ) (21)

Since ∆q̄B(kT ) = q̄B [(k + 1)T ] − q̄B(kT ), one can write an approximation as

∆q̄B(kT ) = q̇B(kT )T +
1
2
∆q̇B(kT )T 2 (22)

Using equation (22) iin equation (21), and minimizing C̃ with respect to ∆q̇B(kT ) results in

∆q̇B(kT ) = − βk

2αk
(23)

where βk = − 1
2W1[q̄d

B(tf ) − q̄B(kT )]T 2 − W2[q̇d
B(tf ) − q̇B(kT )] + 1

2W1q̇B(kT )T 3 and
αk = 1

2

(
1
4W1T

4 + W2

)
.

After ∆q̇B(kT ) is computed by equation (23), q̇max
nz can be calculated from equation (18).

Since the sign of ∆q̇B(kT ) in equation (18) depends on the angle q̄B(kT ), the minimizing
value of ∆q̇B(kT ) in equation (23) may not be feasible due to the sign constraint in
equation (18). In this case, q̇max

nz is selected as zero. It follows that ∆q̇B(kT ) = 0. Thus,
q̇B [(k + 1)T ] = q̇B(kT ) 6= 0 which allows the unactuated joint to move to a different
position. The value q̇max

nz is maintained at zero until the unactuated joint moves to a position,
where ∆q̇B(kT ) by equation (23) is compatible with equation (18).

After q̇max
nz has been calculated, the velocity profile q̇d

nz(t) in Figure 3 is now specified.
Furthermore, the desired velocity for joint i, i ∈ SA, i 6= inz is chosen as qd

i (t) = 0.
The next step following the determination q̇d

A(t) is to specify the pseudospace velocity
νd(t). Since only one actuated joint has a nonzero velocity, νd

i (t) = q̇d
i (t) = 0 for every

i ∈ SA, i 6= inz. However, from equation (3), in order to have q̇d
nz(t) 6= 0, the desired ν-space

velocity νd(t) must be nonzero. It can be chosen as a straight line satisfying νd
nz(kT ) = q̇B(kT )
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at the start of the iteration, and νd
nz[(k + 1)T ] = εq̇B(kT ) at the end of the iteration, where

ε is a small positive number. After q̇d
A(t) and νd(t) have been specified, submatrix ΠA(t)

can be determined to satisfy equation (3). Since the inverse transpose of ΠA(t) is needed
in equation (16), matrix ΠA(t) must be nonsingular. ΠA(t) can be selected as a diagonal
matrix with nonzero diagonal elements satisfying equation (3). Based on q̇d

nz(t) and νd
nz(t),

and νd
i (t) = q̇d

i (t) for every i ∈ SA, i 6= inz,

ΠA = diag(d1, d2, . . . , dn−1)

di =
{

q̇d
nz(t)/νd

nz(t) i = inz

1 i = 1, . . . , (n− 1), i 6= inz

(24)

ΠB(t) is then computed by equation (14) during phase 2. It is noted that ΠA(t) varies with
time. Assuming that DBA, DBB , CBA, and GB are approximately constant within a sampling
interval, integrating equation (14) with respect to time and then solving for ΠB gives for t
within the sampling interval,

ΠB(t) =
[νd(t)]T

[νd(t)]T νd(t)

∫ t

0

[
DBAΠAν̇d(σ) + DBAΠ̇Aνd(σ) + CBAΠAνd(σ) + GB

−DBB

]
dσ

(25)
After Π(t) has been specified, the ν-space torque τν can be computed using the reduced-order

model in equation (4). The underactuated manipulator torque τ is computed using equation
(16). Then, the calculated value of τA is applied to the manipulator.

The application of the proposed two-phase method to the control of a PUMA 600
manipulator will next be described.

5. PUMA 600 ARM SIMULATIONS

The proposed two-phase approach will be applied to the motion control of the PUMA 600
manipulator. The control problem is as follows : the end-effector position p = [px py pz]T of
a PUMA 600 Arm is to be moved from an initial position p(0) = [0.125 − 0.235 0.806]T m
to a desired position pd(tf ) = [0.594 0.288 − 0.393]T m, in time tf = 35 s. At the
start of the motion, three kinematic equations relating the end-effector position to the joint
position are considered when solving for the joint variables. The initial joint position q(0) is
calculated from the inverse kinematics; thus, q(0) = [−1.57 − 1.05 1.05 0.20 3.00 0.52]T rad.
The initial joint velocity q̇(0) = 06x1 rad/s. Before the failure, the joints are driven to the
desired position q̃(tf ), where q̃(tf ) satisfies the kinematic equation p(tf ) = f [q̃(tf )]. Then,
q̃d(tf ) = [0.19 1.07 0.44 1.11 1.64 0.70]T rad. At time t1 = 2.5 s, the fifth joint actuator fails
(i.e. it stops producing a torque), while the other joints are actuated during the entire duration
of the motion. After the failure of the joint five actuator (t ≥ t1), the conditions of Section 4.1
must be taken into account in order to design a controller for the specified task. Specifically,
qd(tf ) is computed such that the unactuated link five moves in the horizontal plane z = pd

z(tf ).
The six components of the desired joint position qd(tf ) is calculated using the three kinematic
equations pd(tf ) = f [qd(tf )] and the two constraint equations h[qd(tf )] = 02x1 in equation
(11). Thus, qd(tf ) = [0.26 1.05 0.52 1.57 1.96 0.78]T rad.
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The application of the proposed control algorithm is illustrated by simulations on a PUMA
600 manipulator. The numerical values of the link parameters of the model used in the
simulations are given in [11]. A sampling period of 10 ms is used in the simulation runs,
and T1 = 5 s and T = 1 s. The weighting factors are W1 = 2, W2 = 1, and ε = 10−3.
Furthermore, ā2/ā3 = 1.0869 and qoffset

B = − 0.1910 rad from Appendix II.
At the start of the manipulator motion, all joints are operational. The joints are driven to

the desired position q̃(tf ). However, at time t1, the joint five actuator fails; thus τ5(t) = 0
for t ≥ t1 s. For phase 1, before the joint actuator failure, the graphs of the joint positions,
velocities and torques for joints one and five are shown in Figure 4. From the graphs of q̇1(t)
and q̇5(t) for t ∈ [0, t1) s, it can be seen that joint velocities track the desired trajectory shown
in Figure 2. However, for time t ≥ t1 s, τ5(t) = 0; then, the fifth link is a free-swinging arm.
The objective is to design a controller that allows the manipulator to perform the specified
motion in spite of the failure.

Since the p ∈ R3, the DOF of the specfied task is m = 3. The DOF of the manipulator
is n = 6; thus, the DOR r = 3. Therefore, the manipulator should be able to perform
the desired task even though the actuator on joint five is nonfunctional. It is accomplished by
using the two-phase controller described.

In this case, qA = [q1 q2 q3 q4 q6]T , qB = q5, and τA = [τ1 τ2 τ3 τ4 τ6]T . The submatrices
in equation (2) are specified accordingly.

After the failure, the actuated joints are moved in phase 1 to the desired position
qd
A(T1) = qd

A(tf ) using the method described in Section 4.2. Figure 4 graphs q1(t), q̇1(t)
and τ1(t) for phase 1. It can be seen that the position and velocity of joint one at the end
of phase 1 are q1(T1) = qd

1(tf ) and q̇1(T1) = 0, respectively. The graphs of the positions,
velocities and torques for joints two, three, four and six are similar to those obtained for joint
one. The graphs of q5(t), q̇5(t) and τ5(t) for the unactuated joint five are shown in Figure 5.

During phase 2, the joint one has a nonzero joint velocity, while the other actuated joints
have zero velocities. Using the method described in Section 4.3, joint five is driven towards
the desired position qd

B(tf ) in phase 2. The joint positions, velocities, and torques for joints
one and two are graphed in Figures 6 and 7, respectively. It can be observed from Figure 6
that q1(5) = q1(6) = qd

1(tf ) and q̇1(5) = q̇1(6) = 0. Figure 7 displays the torque τ2(t)
required to keep the velocity q5(t) = 0 for phase 2. Graphs similar to those in Figure 7 are
obtained for the positions, velocities and torques of joints three, four and six. Figure 8 graphs
q5(t), q̇5(t) and τ5(t); it shows the motion of the unactuated joint due to the coupling effect.

Figures 9 and 10 display the joint position q(t) and velocity q̇(t), respectively, over the
duration of the motion . They show that the unactuated joint position q5(t) approaches to
qd
5(tf ) and q̇5(t) to zero, while the actuated joints are at the desired positions qd

A(tf ), and the
velocities are zero, at the end of each iteration.

6. DISCUSSION

The control of the underactuated redundant n-link serial manipulator is accomplished by using
a two-phase method (assuming there are no brakes on the joints). The redundancy permits
the manipulator to perform the desired task even if a free-swinging joint faiulure occurs during
the motion. A constraint equation is derived which forces the unactuated link to move in a
horizontal plane. Then, the desired joint position qd(tf ) is solved from the kinematic equation
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Figure 4. Graph of q1(t), q̇1(t), τ1(t) vs. time for Phase 1

Figure 5. Graph of q5(t), q̇5(t), τ5(t) vs. time for Phase 1

and the constraint equation. Furthermore, the redundancy allows the derivation of a low-order
dynamical model (reduced-order model) for the manipulator.

Using a two-phase control scheme, the actuated joints and the unactuated joint are driven
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Figure 6. Graph of q1(t), q̇1(t), τ1(t) vs. time for Phase 2

Figure 7. Graph of q2(t), q̇2(t), τ2(t) vs. time for Phase 1

to the desired positions in two independent stages. The separate control of the actuated joints
and unactuated joint simplifies the overall control approach. In the control of the actuated
joints in phase 1, the motion of the unactuated joint is not considered. When controlling the
unactuated joint in phase 2, the control problem for the n-link underactuated manipulator is
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Figure 8. Graph of q5(t), q̇5(t), τ5(t) vs. time for Phase 2

Figure 9. Graph of qi(kT ), i = 1, . . . , 6

approached from the perspective of a two-link manipulator.
In phase 1, the actuated joints are moved to the desired position qd

A(tf ). During phase 2,
the unactuated link is driven to the desired position qd

B(tf ) by the coupling effect. The phase
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1 and phase 2 methods use the reduced-order model of a manipulator to determine the control
inputs to the actuated joints. The transformation matrix Π is determined from the desired
joint and reduced-order space velocities, and the nonholonomic dynamic constraint imposed
by the unactuated joint. In the previous reports [6, 13] on the control of underactuated planar
manipulators, partial feedback linearization is used as an initial step in the analysis of the
systems. Although this is a straightforward approach, the derivation of the partial feedback
linearized system often requires non-trivial symbolic manipulations of the dynamic equations.
The use of the reduced-order model avoids the need for partial feedback linearization. Also,
the reduced-order model simplifies the extension of the algorithm to the six-link manipulator
case.

Furthermore, the expression for ∆q̇2 in equation (32) is derived based on the dynamics
with q̇1 treated as the input. In [6], a similar expression for ∆q̇2 is derived using nilpotent
approximation. However, to obtain a nilpotent approximation for a system, a set of
priviledge coordinates must be constructed to transform the original system to the nilpotent
approximation form. The construction of a set of priviledge coordinates for a system without
drift is outlined in [1] and applied to mobile robots. It is felt that the approach presented
here is easier to use. Thus, the control algorithm presented offers an advantage in controlling
an underactuated manipulator and it is an attractive method to achieve a dynamically fault-
tolerant operation.

Figure 10. Graph of q̇i(kT ), i = 1, . . . , 6
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7. SUMMARY AND CONCLUSION

The control objective is to move the end-effector from an initial pose to specified final pose. The
redundant manipulator is required to accomplish the desired task even if a joint failure occurs
during the motion. The dynamics of an underactuated manipulator is described using the
reduced-order model. The conditions and degree of redundancy necessary for the manipulator
to achieve fault tolerance are discussed. The reduced-order model is then used to design
controllers for an underactuated n-link serial manipulator. The manipulator end-effector is
driven to the desired pose in two control phases. During phase 1, the actuated joints are
moved to their desired joint positions. In phase 2, a cyclic control input is applied to one of
the actuated joints; the coupling effect iteratively drives the unactuated link to the desired
joint position. The proposed two-phase method allows the manipulator to achieve the desired
goal in the case that an actuator of a redundant manipulator fails. The control method is
illustrated by simulations of a PUMA 600 manipulator.
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APPENDIX

I. Derivation of Equation 9

The dynamical model of the two-link underactuated manipulator moving horizontally is given
as [

τ1

0

]
=

[
D11 D12

D21 D22

] [
q̈1

q̈2

]
+

[
C11 C12

C21 C22

] [
q̇1

q̇2

]
(26)

where

D11 = a1 + 2a2 cos(q2)
D12 = a3 + a2 cos(q2)
D21 = D12

D22 = a3

C11 = − 2a2 sin(q2)q̇2

C12 = − a2 sin(q2)q̇2

C21 = a2 sin(q2)q̇1

C22 = 0

a1 = m1l
2
1/4 + m2(l21 + l22/4) + I1 + I2

a2 = m2l1l2/2
a3 = m2l

2
2/4 + I2

The joint position variable is defined as q = [q1 q2]T and the torque applied to the first
joint is represented by τ1. The constants mi, li and Ii are link parameters with i = 1, 2.
The accessibility property of the system represented in equation (26) can be checked using Lie
algebra [8].

The derivation of ∆q̇2 is based on the second equation of the dynamical model in equation
(26). Writing out the terms and solving for q̈2 gives

q̈2(t) = − a3 + a2 cos(q2(t)
a3

q̈1(t) − a2 sin[q2(t)]
a3

q̇2
1(t) (27)

Using the joint one velocity profile in Figure 3, q̈1(t) = ± q̇max
1 /(T/8). To simplify the

integration of equation (27), the joint one velocity profile is divided into eight time segments
of length T/8. The contribution of each segment is computed as follows. Integrating equation
(27) for one time segment gives,

q̇2[(n + 1)T/8] = q̇2(nT/8) − a3 + a2 cos[q2(nT/8)]
a3

(±q̇max
1 )

−a2 sin[q2(nT/8)]
a3

(q̇max
1 )2

3
T

8
(28)

Integrating again yields

q2[(n + 1)T/8] = q2(nT/8) + q̇2(nT/8)
T

8

−a3 + a2 cos[q2(nT/8)]
a3

(±q̇max
1 )
2

T

8

−a2 sin[q2(nT/8)]
a3

(q̇max
1 )2

12

(
T

8

)2

(29)
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To simplify notation let qn
2 = q2(nT/8), qn+1

2 = q2[(n + 1)T/8], q̇n
2 = q̇2(nT/8),

q̇n+1
2 = q̇2[(n + 1)T/8]. Dropping the higher order term in equation (29) and rewritting the

equations,

q̇n+1
2 = q̇n

2 − a3 + a2 cos(qn
2 )

a3
(±q̇max

1 ) − a2 sin(qn
2 )

a3

(q̇max
1 )2

3
T

8
(30)

qn+1
2 = qn

2 + q̇n
2

T

8
− a3 + a2 cos(qn

2 )
a3

(±q̇max
1 )
2

T

8
(31)

Approximately, cos(θ + ∆θ) = cos(θ) − sin(θ)∆θ and sin(θ + ∆θ) = sin(θ) + cos(θ)∆θ.
Using equations (30) and (31) iteratively for each time segment yields the following expression

q̇8
2 = q̇0

2 +
a2

4a3
sin(q0

2)(q̇max
1 )2T

[
a2

a3
cos(q0

2) − 1
3

]
(32)

where q0
2 and q̇0

2 correspond to initial joint two position and initial joint two velocity at the
start of the phase II iteration, respectively. The variable q̇8

2 corresponds to the final joint two
velocity at the end of each phase II iteration.
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II. Constants : ā2, ā3 and qoffset
B

In order to implement the phase 2 control scheme, the constants ā2, ā3 and qoffset
B in equations

(18) and (19) are computed. These equations determine the motion of the unactuated link when
a cyclic input is applied to an actuated joint. Before proceeding, the following notations will
be used to simplify the discussion.

1. The rotation of link inz is about the ze-axis, where e = inz − 1.
2. The variables associated with the unactuated joint are denoted with the subscript ua;

then, qua(t) = qB(t) is the position of the unactuated joint iua at time t. The rotation
of link iua is about the zf -axis, where f = iua − 1.

The constant ā2 in equation (18) will be determined based on the definition of a2 in equation
(26). Thus,

ā2 = lA l̄B

n∑
j = iua

mj (33)

where mj is the mass of link j.
Constant lA in equation (33) is the perpendicular distance between the ze-axis and the

zf -axis, with r < s, as shown in Figure 11.

Figure 11. Coordinate Frames Used for Determiningā2 and ā3

Then, expressing the origin of the fth coordinate frame Of in eth coordinate frame as
pe(Of ),

pe(Of ) =
[
pe

x(Of ) pe
y(Of ) pe

z(Of ) 1
]T = Af

e (q) [0 0 0 1]T (34)

Now the length lA can be calculated as lA =
√

[pe
x(Of )]2 + [pe

y(Of )]2.
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Constant l̄B in equation (33) is the perpendicular distance from the zf -axis to the
composite center of gravity of the links between the unactuated joint and the end-effector.
Let c̄i = [x̄i ȳi z̄i]T be the center of gravity (CG) of the ith link in ith coordinate frame for
iua ≤ i ≤ n. Using the transformation matrix Ai

f (q) to express c̄i in the fth coordinate
frame yields for iua ≤ i ≤ n, [

c̄f
i

1

]
= Ai

f (q)
[

c̄i

1

]
(35)

where c̄f
i is the CG of the ith link in the fth coordinate frame. Then, the composite center of

gravity c̄f
B = [x̄f

B ȳf
B z̄f

B ]T is given by

c̄f
B =

1
mB

n∑
iua

c̄f
i

Thus, l̄B in equation (33) is calculated as l̄B =
√

(x̄f
B)2 + (ȳf

B)2.
After calculating the constants lA and l̄B , ā2 in equation (33) can now be obtained.
Constant ā3 in equation (18) will be determined based on the definition of a3 in equation

(26). Thus, ā3 = Dii, i = iua,
where Dii is the (i, i) element of the pseudo-inertia matrix D(q).
Constant qoffset

B used in equation (19) will next be derived. In a two-link planar manipulator,
The joint two position q2 is the angle between the axes of links one and two in a two-link planar
manipulator. Thus, q̄B in equation (18) is the angle between the line OeOf and the axis of
link iua as shown in Figure 12. Then,

q̄B = θf + qua − θoffset (36)

where θoffset is the angle between the xi-axis, i = iua, and the axis of link iua. Furthermore,
θf is the angle between the line OeOf and the xf -axis. It is noted that θoffset is dependent
on how the coordinate axes are defined for a specific manipulator. A comparison of q̄B in
equations (19) and (36), and noting that qB = qua, gives

qoffset
B = θf − θoffset (37)

To determine θf , a point x̂f = [1 0 01]T on the xf -axis is expressed in the eth coordinate
frame. Thus, [

pe
x(x̂f ) pe

y(x̂f ) pe
z(x̂f ) 1

]T = Af
e (q)x̂f (38)

Then, θf can be computed as

θf = tan−1

[
pe

y(x̂f ) − pe
y(Of )

pe
x(x̂f ) − pe

x(Of )

]
− tan−1

[
pe

y(Of )
pe

x(Of )

]
(39)

where pe
x(Of ) and pe

y(Of ) are specified in equation (34).
This section determines the general expressions for the constants ā2, ā3 and qoffset

B used
in equations (18) and (19). During implementation, the coordinate transformation matrices
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Figure 12. Coordinate Frames Used for Determining qoffset
B

Aj
i (q) appearing in the derivations in this section are evaluated the using the desired joint

position qd(tf ); then, ā2, ā3 and qoffset
B are calculated.
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