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ABSTRACT 
 

Thirty six years of historical streamflow records (1946 to 1985), before and after construction of the Angat 
Reservoir, were used to identify the time series model that can forecast the Angat Reservoir monthly 
inflows. After more than twenty (20) years when the autoregressive model of the Angat Reservoir inflows 
was identified in a previous study by this author, its effectiveness and practicality to forecast the monthly 
inflows to the Angat Multipurpose Reservoir  is validated by comparing the generated model outputs with 
recent observed measurements from 1986 to 2008. The paper presented the ARMA model selection process 
and showed the validity of the selected autoregressive model.. 
 

1. INTRODUCTION 
 
A collection of observations of a hydrologic process made sequentially in time constitutes a time 
series.  Modeling a hydrologic time series is generating a synthetic sequence that can be used in 
the design and operation of a water resource system such as the Angat Multipurpose Reservoir.  If 
properly calibrated, the time series model of the Angat Reservoir inflows can be used in the 
analysis, planning, and help in real-time operation by forecasting future reservoir inflows. The 
main requirement is that the generated flows should agree with the historical data with respect to 
their population means, variances, correlations, and other simple statistical properties. 

If a time series can be exactly computed using a mathematical model, such model is called a 
deterministic model. However, most time series are stochastic in that future values are only partly 
determined by past values. A time series model that is used to compute the probability of a future 
value lying between two specified limits is called a probability model or a stochastic model. 

In time series modeling, stochastic or time series models are fitted to a hydrologic time series 
such as sequences of streamflows and precipitation. The study shows the results of the stochastic 
modeling derived from 36 years of historical data of the Angat Reservoir inflows,  18 years (1946 
to 1963) before and 18 years (1968 to 1985) after construction of the reservoir.  
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After more than twenty (20) years when the autoregressive model of the Angat Reservoir 

inflows was determined, its effectiveness and practicality to forecast the monthly inflows to the 
Angat Multipurpose Reservoir  is validated by comparing the generated model outputs with 
recent observed measurements from 1986 to 2008.  The detailed ARMA model selection process 
is presented and the validity of the selected model is determined. 

 
2. ARMA(p,q) MODELS 

 
Consider the stationary time series xt, xt-1, xt-2 . . ., normally distributed with mean μ and variance 
σ2, observed at equally spaced times t, t-1, t-2, . . ..  The stationary time series has the property of 
remaining in equilibrium about a constant mean and variance, that is, shifting the time origin by 
an amount k does not affect the properties of the time series.  According to Box and Jenkins 
[1966], the series, in which observations are highly correlated, can be transformed to an 
independent series of random shocks at, at-1, ….  These uncorrelated normal shocks, with mean 
zero and variance σa

2 are called the white noise of the stochastic process.  The noise at is also 
called model residual or error. This transformation can be accomplished in two ways. 

First, the standardized observation, zt = (xt-μ)/σ, can be made linearly dependent on finite 
previous observations zt-1, zt-2, … and on the noise at. This is called an autoregressive model of 
order p, denoted by AR(p), and may be written as 

 
                                    zt = φ1zt-1 + φ2zt-2 + . . . + φpzt-p + at                                   (1) 
 
where φ1, . . .φp are the autoregression coefficients of the AR(p) model.  The order of the AR 
model tells how many lagged past values are included.  Defining a backward shift operator B, 
 
                                               Bzt = zt-1 and B2zt = BBzt = Bzt-1 = zt-2 
                                               or in general Bmzt = zt-m 

 
and  the AR(p) model using the backward shift operator B is, 
 

zt - φ1zt-1 - φ2zt-2 - . . . - φpzt-p = at 

(1 - φ1B - φ2B2 - . . . - φpBp) zt = at 

                                            φ(B)zt  = at             (2) 
 

The other way of transforming the time series zt is by letting the series be a linear 
combination of a finite number q of previous random shocks at’s.  This is called the moving-
average model of order q, MA(q). It can be written as 

 
                                       zt = at  − θ1at-1 - θ2at-2 - . . . - θqat-q           (3) 
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where θ1, . . .θq are the moving-average coefficients of the MA(q) model.  Using the operator B, 
 
                            zt = (1 - θ1B - θ2B2 - . . . - θqBq) at 

                        zt = θ(B)at                       (4) 

 
To select the best model for the stationary time series, sometimes it is necessary to have both 

autoregressive and moving-average terms in the model.  An autoregressive model AR(p) and a 
moving-average model MA(q) can be combined to obtain the autoregressive moving-average 
(ARMA) model of order (p,q). The ARMA(p,q) model is defined as  
 

                      zt = φ1zt-1 + φ2zt-2 + . . . + φpzt-p + at  −  

                θ1at-1 - θ2at-2 - . . . - θqat-q         (5) 
                          φ(B)zt  = θ(B)at                           (6) 
 
 

3.  STEPS IN MODELING 

The ARMA modeling process is generally an iterative, trial and error process. Thus, it is 
necessary to use the least possible number of parameters that will adequately produce forecasted 
values with similar statistics of  the historical data. Applying this principle of parsimony will 
result in a model with the smallest possible error.  

ARMA modeling proceeds by a series of well-defined steps. The modeling process is divided 
into four main steps; (1) model identification, (2) parameter estimation, (3) model verification or 
diagnostic checking, and (4) forecasting.  Identification consists of examining the data to see 
which model appears to be most appropriate, based on the comparison of the computed statistical 
properties of the original data and known theoretical behavior of often used ARMA(p,q) models.  
During the second phase, the coefficients of the candidate models identified in the initial phase 
are estimated. Under model verification, the candidate models are checked for possible 
inadequacies and lack of fit, selecting the most adequate and parsimonious model in the process. 
And in the final phase, after selecting the best model, the results of the  forecast functions are 
compared with the observed model verification data.    
 
 

4. THE ANGAT RESERVOIR  INFLOWS 

The Angat Hydroelectric plant is located in Sitio Bininit, San Lorenzo, Bulacan. The Angat 
watershed , with a drainage area of 568 km2, is bounded by the Umiray River Basin in the 
northeast, the Sierra Madre Mountain Range in the east, the Kanan River Basin in the southeast, 
and the Marikina River Basin in the south.  The Angat River project is basically a power project, 
but is multipurpose in concept. It was operational since 1967 and the plant is the first project 
intended to  fully  utilize the  resources  of the  Angat river for power generation, irrigation, water  
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supply, and flood control.  To meet the requirements of the various functional activities and at the 
same time maximizing the water releases from the Angat reservoir, the need to develop forecast 
models to predict the streamflows should be taken into full consideration. 
       Initially, a total of 36 years of monthly streamflows from the Angat river were gathered for 
the study.  The pre-construction inflows, from January 1946 to December 1963, were collected 
from the NPC main office, while the post-construction inflows, from January 1968 to December 
1985, were computed using the daily measurements of reservoir releases and elevations collected 
at the Angat Reservoir damsite.  The Angat Reservoir ARMA inflow model was developed using 
these monthly inflows and the computer programs that were developed by Jose D. Salas and 
Ricardo A. Smith of Colorado State University.  Some of the programs were modified and 
additional programs were developed by this author to suit the modeling procedure followed in the 
study. 

Eighteen years (1946-1963) of historical records before construction of the Angat Reservoir 
were used for model calibration.  During construction, there was no available data, hence, 18 
years of monthly streamflow data (1968-1985) were used for model verification.  

After more than twenty (20) years when the autoregressive model of the Angat Reservoir 
inflows was determined in 1987 by this author,  the selected forecast function is validated using 
the observed data from 1986 to 2008. The detailed ARMA model selection process and the results 
of a previous study by this author are presented.  

 
 

5. ARMA MODELING OF THE ANGAT RESERVOIR MONTHLY INFLOWS 
 

5.1  Step 1   Model Identification  
 

5.1.1  Preliminary Analysis  
Series of monthly streamflows and other hydrologic variables usually have periodic components 
equal to 12 months in both means and standard deviations.  When these periodic components are 
removed, the resulting component of the non-stationary series can be considered a stationary 
series. A time series can be modeled by the ARMA process only if the series is stationary and 
assumed to be normally distributed.  Normally distributed data should possess no significant 
skewness.  

One way of removing the non-stationarity of the series is by cyclic or seasonal 
standardization. This is accomplished by subtracting the seasonal mean on the series and dividing 
the result by the seasonal standard deviation. To normalize a time series, a suitable transformation 
of the series is sometimes needed.  A simple logarithmic or  power transformation is usually 
applied in ARMA modeling. 

An examination of the Angat monthly streamflows in megacubic meters (MCM) shows the 
two seasons prevailing in the country; the dry and wet season.  Streamflows for the months of 
February to May (dry season) are low compared to the months of July to December (wet season). 
To correct this, the common approach for modeling a seasonal time series is to first deseasonalize 
the series by standardization.  
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5.1.2  Autocorrelation Function (ACF) of Untransformed Series (1946-1963) 
The autocorrelation function, sometimes called the correlogram, measures the amount of linear 
dependence between observations in a time series that are separated by lag k. The ACF, which is 
a plot between the autocorrelation coefficient ρk as ordinate against lag k as abscissa, shows the 
general character of a time series.   

The autocorrelation function (ACF) of the original data, without transformation, was 
computed for a maximum lag of 24 and a confidence level of 95%.  An examination of the plot 
shown in Fig. 1 revealed that the ACF exhibited a wave pattern with peaks at lags 12 and 24 and 
lows at lags 6 and 18. The pattern was repeated for a period of 12 lags. The behavior of the ACF 
was due to the effects of the low inflows during the dry season and high inflows during the wet 
season.  

 

 
Fig. 1    Autocorrelation Function of Original Series 

 
 
5.1.3  Transforming and Standardizing the Series 
 To make the monthly time series approximately normal and stationary, the model calibration 
data was transformed logarithmically and cyclic standardization was applied with a period equal 
to 12. 
 

(1)  Logarithmic Transformation 
 
                             yt = log (xt)              (7) 
 
where yt is the transformed monthly inflow and xt is the original inflow in MCM 

 
(2)   Standardization : seasonal standardization 

 

 

(8) 
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where zt,w is the standardized inflow, μw is mean , and σw is standard deviation of month w 

 
Table 1 lists the monthly means and standard deviations for the logarithmically transformed 
series.  The log-transformed periodically standardized series had an overall mean of zero and 
standard deviation  of 0.974. A visual inspection of the graphs showed that the new series is 
relatively stationary and a check on the normality for a confidence level of 95% showed that the 
series is normal. 

 
Table 1   Mean μw  and Standard Deviation σw   

of Log-Transformed Series 

Month Mean Standard 
Deviation 

January 2.19 0.18 
February 1.89 0.17 
March 1.83 0.20 
April 1.64 0.25 
May 1.64 0.26 
June 1.92 0.26 
July 2.21 0.26 

August 2.45 0.26 
September 2.41 0.20 

October 2.41 0.33 
November 2.42 0.31 
December 2.39 0.31 

 
 

 Plots of ACF, PACF, IACF, and IPACF 
Salas and Obeysekera [1982] described the properties of the autocorrelation (ACF), partial 
autocorrelation (PACF), inverse autocorrelation (IACF), and the inverse partial autocorrelation 
(IPACF) functions for different cases of ARMA models. Plots of these functions help determine 
the number of autoregressive and moving-average parameters that are needed for the model. 
Schematic forms of these functions are shown in Fig. 2 . 
 
5.1.5 Visual Inspection of ACF, PACF, IACF, and IPACF of Standardized Series 
The autocorrelation (ACF), partial autocorrelation (PACF), inverse autocorrelation (IACF), and 
the inverse partial autocorrelation (IPACF) functions were calculated for lags 0 to 24 using a 95% 
confidence level to identify the candidate models to be entertained. The ACF, shown in Fig. 3,  
did not truncate but rather damps out, suggesting the presence of autoregressive (AR) terms. It 
was positively significant at lag 1 and had values at lags 2 and 3 that touched  the confidence 
limits.. These observations were also illustrated in the plot of IPACF.  The PACF and IACF (Fig. 
4) possessed significant values at lags 1 and 3. From these observations, it was appropriate to try 
the AR(1), AR(2), and AR(3) models. A closer look at the PACF showed  that the plot did not 
truncate as in the case of a pure AR(p) model, therefore, it appeared reasonable to include the 
ARMA(1,1) and ARMA(1,2) models. 
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 Step 2 Parameter Estimation  

 
5.2.1  Preliminary Estimates of Parameters 
Given a set of candidate models, parameters were first roughly estimated and then refined by 
using several iterative procedures. Using ρk as the ACF at lag k and σz

2 as the  
 
 
 
 

              
Autocorrelation Function (Correlogram) 

For a MA(q) process,  ρk cuts off and is not significantly different from zero after lag q.  For an AR(p) or 
an ARMA (p,q) process, ρk damps out with shapes depending on the values of p and q and the values of the 
parameters.  If ρk tails off and does not truncate, this suggest that AR terms are needed to model the time 
series. 
 

                
Partial Autocorrelation Function 

For an AR(p) process, φkk truncates and is not significantly zero after lag p.  If φkk tails off, this implies that 
MA terms are required. 
 

                   
Inverse Autocorrelation Function 

For an AR(p) process, ρik = 0 for k > p. .  For a MA(q) or an ARMA (p,q) process, ρik damps out, this 
suggest the presence of a MA component. 
 

FUNCTION   AR(p)       MA(q)        ARMA(p,q)
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Inverse Partial Autocorrelation Function 

For a MA(q) process, φikk = 0 for k > q.  If φikk dies off rather than cuts off, then AR terms are required. 
 

Fig. 2   Schematic Forms of the Functions: ACF, PACF, IACF, and IPACF for ARMA Models 
          [ Source: Salas and Obeysekera (1982)] 
 
 
 

         
          Fig. 3   ACF and IACF of Standardized                        Fig. 4   PACF and IPACF of Standardized  
                                   Series                                                                                      Series 

 

variance of sample, the preliminary estimates of model parameters  for simple ARMA models are 
as follows: 

 
AR(1) Model 
φ1 = ρ1                     (9) 
σz

2 = σa
2/(1-ρ1

2)                  (10) 
AR(2) Model 
φ1 = (ρ1 – ρ1ρ2)/(1-ρ1

2)                 (11) 
φ2 = (ρ2 – ρ1

2)/(1-ρ1
2)                 (12) 
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σz

2 = σa
2/(1-ρ1θ1-ρ2θ2)                  (13) 

AR(3) Model 
φ1 = (ρ1 – ρ1ρ2)/(1-ρ1

2)                  (14) 
φ2 = (ρ2 – ρ1

2)/(1-ρ1
2)                  (15) 

φ3 = 0.0                    (16) 
σz

2 = σa
2/(1-ρ1θ1-ρ2θ2)                  (17) 

ARMA(1,1) 
φ1 = ρ2/ρ1                   (18) 
ρ1 = [(1-θ1φ1)(φ1-θ1)]/(1+θ1

2-2φ1θ1)                (19) 
 σz

2 = σa
2(1-θ1

2-2φ1θ1)/(1-φ1
2)                 (20) 

 
Using equations (9) to (20), the preliminary estimates of the autoregressive φ and the moving-
average  θ coefficients, white noise or residual variance σa

2 of the five (5) candidate models were  
computed and shown in Table 2. 
 

Table 2   Preliminary Estimates of Parameters 
Model φ1 φ2 φ3 θ1 θ2 σa

2 
AR(1) 0.2395     0.8392 
AR(2) 0.2263 0.0551    0.8341 
AR(3) 0.2263 0.0551 0.0   0.8341 
ARMA(1,1) 0.4563   -0.230  0.5856 
ARMA(1,2) 0.3424   0.1117 -0.085 0.8878 

 
 
 
5.2.2 Maximum Likelihood Estimation of Parameters 
After obtaining the preliminary estimates of the p AR coefficients φ, q MA coefficients θ, and the 
white noise variance σa

2, the maximum likelihood estimates of the parameters were determined.  
These estimates will be used in forecasting, if the candidate models pass a series of tests under 
model verification. To get likelihood estimates, the residuals were computed from the difference 
equation of the ARMA(p,q) process as 
     at = zt – φ1zt-1 - . . . –φpzt-p + θ1at-1 + . . . + θqat-q                                                    (21) 
 
The sum of the squares of the residuals S(φ,θ)  was then computed for several sets of (φ,θ) and 
the sum S(φ,θ) was minimized using the modified steepest descent method. The resulting 
coefficients φ and θ are called the maximum likelihood estimates.  The computed parameters for 
the candidate models were as follows, 
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             Table 3   Autoregressive and Moving-Average Coefficients of Candidate Models 
 

AR(1) AR(2) AR(3) 
ARMA 

(1,1) 
ARMA 

(1,2) 
φ1 0.2401 0.2248 0.2337 0.3424 0.0967 
φ2  0.0586 0.0907   
φ3   -0.1671   
θ1    0.1086 -0.1408 
θ2     -0.1331 
σa

2 0.8838 0.8805 0.8561 0.8823 0.8722 
  

5.2.3 Visual Comparison of Sample and Population ACF and PACF 
The population ACF and PACF for the different candidate models were calculated and plotted. 
Based on the comparison between the sample and population ACFs and PACFs, shown in Fig. 5, 
the AR(3) model can best represent the sample. For lags 1 to 10, the plots of ACF and PACF of 
the AR(3) model followed the shapes the sample ACF and PACF.  
 

                                               Fig. 5   Population ACF and PACF of the AR(3) 
                                               [Source: Dizon (1987)] 
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5.3 Step 3 Model Checking 
 
In order to test the adequacy of the candidate models identified, the models underwent the 
following diagnostic checks; (1) Akaike Information Criterion (AIC) Test, (2)Test for stationarity 
of AR parameters, (3) Test for invertibility of MA parameters, (4) Whittle Overfitting Test, and 
(5) Test for independence and normality of residuals. 

 
5.3.1 Akaike Information Criterion Test 
It is very difficult to choose among candidate models on the basis of the sample data when the 
more than one model being tested fit the data equally well. A way of selecting between candidate 
models is by applying the principle of parsimony, which requires a model with the smallest 
number of parameters. A formula which considers this principle is the Akaike Information 
Criterion (AIC) of an ARMA(p,q) model and is defined as , 

      AIC(p,q) = N ln σa
2 + 2(p+q)                                        (22) 

     where N is the sample size  
 

 Ozaki [1977] presented another definition of the AIC that usually gives a positive value,  
     AIC(p,q) = N log σa

2 + 2(p+q+2) + N log 2π + N                                           (23) 
 

In order to pass the AIC test, the AIC of the candidate model ARMA(p,q) must have the 
lowest value compared to the AICs of ARMA(p+1,q) and ARMA(p,q+1). Using Eq. 23 defined 
by Ozaki, the following table summarized the results of the AIC test for the different candidate 
models, 
 
 

Table 4   AIC Test on Candidate Models 
Candidate Model ARMA(p,q) ARMA(p+1,q) ARMA(p,q+1) AIC Test 

Model AR(1) AR(2) ARMA(1,1) PASSED 
AIC 382.82  384.47  384.66  

Model AR(2) AR(3) ARMA(2,1) FAILED 
AIC 384.47  383.83  386.62  

Model AR(3) AR(4) ARMA(3,1) PASSED 
AIC 383.83  385.60  388.73  

Model ARMA(1,1) ARMA(2,1) ARMA(1,2) PASSED 
AIC 384.66  386.61  385.58  

Model ARMA(1,2) ARMA(2,2) ARMA(1,3) 
PASSED 

AIC 385.58  387.28  385.66  
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All candidate models, except AR(2), were adequate based on the AIC test. The AR(2) model 

was eliminated, reducing the candidate models to only four. Based on the values of the AIC, the 
AR(1) had the lowest followed by AR(3). 

 
5.3.2 Test for Stationarity of Autoregressive Parameters 
The AR(p) model using the backward shift operator B, 
                           (1 - φ1B - φ2B2 - . . . - φpBp) zt = at 

 
is stationary if the set of AR parameters  φ1, . . .φp satisfy the so called stationary conditions.  
These conditions are satisfied if the roots of the equation for variable B, 

              φ(B) = 1 - φ1B - φ2B2 - . . . - φpBp = 0                               (24) 
lie outside the unit circle. 

 
All four candidate models met the stationarity condition of the autoregressive parameters. 

 
5.3.3 Test for Invertibility of Moving-Average Parameters 
Box and Jenkins [1976] derived the conditions which the parameters θ1, . . ., θq must satisfy to 
ensure the invertibility of the MA(q) process, 

zt = (1 - θ1B - θ2B2 - . . . - θqBq) at . 

The invertibility condition is satisfied when the roots of the equation for B, 
            θ(B) = 1 - θ1B - θ2B2 - . . . - θqBq = 0                                                        (25) 

lie outside the unit circle. 
 
The two candidate models containing moving-average parameters, ARMA(1,1) and ARMA(1,2), 
met the invertibility condition of the parameters. 
 
5.3.4 Whittle Overfitting Test 
Once the stationarity and invertibility conditions of the parameters have been checked, the next 
step is to test the goodness of fit of the model selected.  One way of accomplishing this is by 
overfitting.  Overfitting involves fitting a more complicated model to see if adding more 
parameters improves the fit, that is, the added parameters are not significantly different from zero.  

A method of checking the model adequacy is by the Whittle Overfitting Test done by fitting a 
high-order AR model of order r.  Suppose the model being tested has k parameters where k=p+q 
and residual variance σa

2(k), Hipel et. al.[1977] stated that, 
 

          χ2(r-k) = N ln[σa
2(k)/ σa

2(r)]                                            (26) 
where N is the size of the series. 

 
If the value of χ2(r-k) is greater than χ2(r-k) from Chi-square tables at a chosen confidence 

level, then a model with more parameters is needed. 
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The selected high-order AR model that was overfitted to test the adequacy of the candidate 
models is of the order 10 (r = 10).  The computed value of the likelihood statistics given by Eq. 
26 was compared to the Chi-square value at 95% confidence level, and all candidate models 
passed the Whittle Overfitting Test.  
 
5.3.5 Residual Checks: Test for Independence and Normality 
Two tests are commonly applied to check the independence of model residuals. One procedure is 
to examine the residual autocorrelation function (RACF) and another is to apply the 
Portemanteau Lack of Fit test.   

If some of the values of the RACF are significantly different from zero or are outside the 
confidence limits, then the selected model is inadequate.  

A second but less sensitive procedure to test the independence of the residuals is to compute 
the portmanteau statistic Q and comparing its value with the Chi-square value Χ2(L-p-q) of a 
given confidence level. The portmanteau statistic Q is defined as, 
 

                                                                
where N is the sample size, L=N/4, rk

2(a) is the square of RACF.  If the statistic Q < χ2(L-p-q), 
the residuals are independent and the model is adequate. 
 
The RACF for the different models were plotted and shown in Figure 6. 

 

 
Fig. 6   Residual Autocorrelation Function 

of Candidate Models 
 

 
 

(27) 
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An inspection of the RACF of AR(1) and ARMA(1,1) showed that at lag 3, the RACF was 

outside the 95% confidence limits. For all other lags, the RACF of the models were within the 
confidence limits. For the AR(3) and ARMA(1,2), the RACF at all lags were inside the 
confidence limits. Based on these observations, the AR(3) was the best, followed by the 
ARMA(1,2). For the other two models, it can be concluded that residuals were independent since 
most of their RACF were within the confidence limits. Computing the portmanteau statistic Q for 
all models and comparing with χ2(L-p-q) resulted in, 

 
 AR(1) :   Q = 58.53  χ2(216/4 - 1) = 70.98   

                         residuals were independent 
AR(3) :    Q = 46.74  χ2(216/4 - 3)  = 68.66   
                               residuals were independent 
ARMA(1,1) :   Q = 57.18  χ2(216/4 -1- 1) = 69.82  
                         residuals were independent 
ARMA(1,2) :   Q = 51.99  χ2(216/4 -1- 2) = 68.66  
                           residuals were independent 

 
     The normality of the residuals was checked using the skewness coefficient test.  For a 
confidence level of 95%, the computed skewness coefficients of the residuals for AR(1), AR(3), 
ARMA(1,1), and ARMA(1,2) are 0.100, 0.103, 0.102, 0.110 respectively. Salas et. al. [1980] 
compared the skewness coefficient to a tabulated value      G1-α/2(N).  If the skewness coefficient 
G < G1-α/2(N), the hypothesis of normality is accepted.  The tabulated G0.95 is 0.389,  the model 
residuals for all candidate models were normal. 
 
 
5.3.6 ARMA Candidate Models 
The following  candidate models passed all diagnostic checks and proceeded to the next phase 
which was forecasting: 
 

AR(1) Model :         zt = 0.2401 zt-1 + at 
 AR(3) Model :          zt = 0.2337 zt-1 + 0.0907 zt-2 –  

0.1671 zt-3 + at 
 ARMA(1,1) Model :     zt = 0.3424 zt-1  -  0.1086 at-1 + at 

ARMA(1,2) Model :     zt = 0.0967 zt-1 + 0.1408 at-1 +  
    0.1331 at-2 + at 

 
5.4 Step 4 Forecasting 
 
After the three phases of model construction – model identification, parameter estimation, and 
diagnostic checks – the identified candidate models were used to make  minimum mean square 
error forecasts for any lead time L.  The one-step-ahead forecast (L=1) at time t, zt(1) is 
 

                 zt(1) = φ1zt + φ2zt-1 + . . . + φpzt+1-p –  

θ1at – θ2at-1 - . . . – θqat+1-q                                         (28) 



VALIDATING THE AUTOREGRESSIVE MODEL 

 
Copyright © 2007 Philippine Engineering Journal                                                               Phil. Engg. J. 2007; 28: 65-83 
 

79

 
  where at-j = zt-j –zt-j-1(1)  j = 0,1,2, . . . 

 
The following were the 1-step-ahead forecast (lead-1) functions: 
 

AR(1) Model :       zt(1) = 0.2401 zt 
AR(3) Model :       zt(1) = 0.2337 zt + 0.0907 zt-1 –  
        0.1671 zt-2  
ARMA(1,1) Model :    zt(1) = 0.3424 zt  -   

   0.1086 [zt - zt-1(1)] 
ARMA(1,2) Model :   zt(1) = 0.0967 zt  + 0.1408 [zt – zt-1(1)] + 
                                               0.1331 [zt-1 - zt-2(1)] 

 
The verification data from January 1968 to December 1985 was periodically standardized 

using the monthly means and standard deviations of  Table 1 .  For the one-step-ahead(lead-1) 
forecast, the start of forecast was February 1946 (t=2) and ended on December 1963 (t=216) for 
the calibration data. For the verification data, the start of forecast was January 1968 (t=217) and 
ended on December 1985 (t=432).   

After forecasting, the zt series was converted into the unstandardized yt series, then to the 
original untransformed xt series.  The results of the forecasts of the different candidate models 
were compared based on statistical properties: mean, standard deviation, correlation coefficient, 
root mean square error, and peak forecast error. 

Analyzing the overall monthly statistics (Table 5), it can be seen that the AR(3) model had 
the closest value to the measurement with respect to the mean and standard deviation.   Basically 
in all categories, the AR(3) model is the most appropriate model.  It  had the smallest root mean 
square error, peak forecast error and the highest correlation coefficient between forecasted and 
measured values.  

Table 5 Overall Comparison of Candidate Models 
Inflows : 1946 - 1985  
Parameter Model Forecast 

(Measured Value) AR(1) AR(3) ARMA(1,1) ARMA(1,2) 
Mean  (175.50 MCM) 160.37 162.82 160.03 160.20 
Error of Forecast (%) 8.62% 7.23% 8.82% 8.72% 
Standard Deviation  
(163.87 MCM) 96.68 100.19 96.62 98.18 
Error of Forecast 41.00% 38.86% 41.04% 40.08% 
Root Mean 
 Square Error (MCM) 129.49 128.61 129.47 129.19 
Correlation Coefficient 0.6192 0.6234 0.6198 0.6215 
Mean of Peak 
 Forecast Error (%) 47.24% 45.96% 47.62% 47.99% 

  
Therefore, judging from the comparative statistics and the results of the diagnostic checks, it 

can be concluded that the AR(3) model is the best among the candidate models to forecast the 
Angat Reservoir monthly inflows. 
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6.  VALIDATING THE AR(3) MODEL OF THE ANGAT RESERVOIR INFLOWS 
 
The adequacy of the AR(3) model to predict the monthly inflows of the Angat Reservoir is 
validated by testing the goodness of fit of the selected forecast model to the new series of 
monthly inflows from January 1986 to April 2008. Table 6 gives the overall monthly comparison 
between the old and new series. As seen in Table 6, there was a marked decrease in the overall 
mean of 158.58 MCM  from 1986 to  2008 compared to the mean of  175.50 MCM from 1946 to 
1985. This may be due to the effects of climate change, in particular,  the episodes of the El Niño 
phenomenon that occurred during this period.  
 

Table  6  Overall Monthly Comparison 
  Inflows : 1946 - 1985 
Parameter  AR(3) Error 
Mean (MCM) 175.50 162.82 7.23% 
Standard Deviation (MCM) 163.87 100.19 38.86% 
Root Mean Square Error (MCM)   128.61   
Correlation Coefficient   0.6234   
Peak Forecast Error (%)   45.96%   
  Inflows : 1986 - 2008 
Parameter  AR(3) Error 
Mean (MCM) 158.48 159.53 0.66% 
Standard Deviation (MCM) 137.88 97.71 29.13% 
Root Mean Square Error (MCM)   106.47   
Correlation Coefficient   0.6376   
Peak Forecast Error (%)   45.70%   

 
 

Similar to the model verification data, the new series was logarithmically transformed and 
periodically standardized using means and standard deviations of Table 1 and equations (7) and 
(8).  Using the one-step-ahead forecast function of the AR(3) model, the forecast was extended 
starting with the initial inflow of the new series (Jan. 1986, t=433) up to the last measured inflow 
of April 2008 (t=700).  The results were summarized and shown in Table 6.   

For the new series, the overall mean of the forecast and measured inflows were almost 
identical resulting in a 0.66% error. There is also a decrease in the root mean square error and an 
increase in the correlation coefficient between forecasts and measured inflows for the new series. 

Based on the monthly statistics between the forecasts and measured inflows of the old and 
new series , it can be deduced that the performance of the AR(3) model was relatively the same in 
all comparative statistics for both sets. The  monthly errors ranged from 0.78% to 29.64% for the 
old series and 1.28% to 32.63% for the new series. The monthly root mean square errors (RMSE) 
for the new series were slightly smaller as shown in Fig. 7.   A sample plot of the AR(3) forecasts  



VALIDATING THE AUTOREGRESSIVE MODEL 

 
Copyright © 2007 Philippine Engineering Journal                                                               Phil. Engg. J. 2007; 28: 65-83 
 

81

 
 
 

against the measured inflows for 1998 to 2008 are shown in Fig. 8. The overall shape of AR(3) 
inflows were acceptable, except for the predicted peak flows.  

The overall peak forecast error of 47% for both series showed  the inability of the model to 
predict peak flows. This inability to forecast maximum flows is a poor property of  ARMA 
models.  But looking at the monthly means of the observed and forecasted inflows of Fig. 9, it 
was evident that the AR(3) model predicted recession flows or the inflows during the dry season.  

 

Fig. 7   Monthly Root Mean Square Error  
 

Fig. 8   AR(3) Monthly Inflows for New Series of AR(3) Model 
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Fig. 9 Monthly Mean of Model and Measured Inflows 

 
For both sets of monthly inflows, the forecast model could predict the inflows for the months 

of December to May, while the forecast for June to September for the old series and the months 
of June and July for the new series were acceptable.   

Based on the analysis of the results, the autoregressive model AR(3) is valid and adequate to 
forecast the monthly inflows of the Angat Reservoir. 

 
 

7.  CONCLUSION 
 

The major problem usually encountered in the operation of  the Angat Reservoir is to predict the 
inflows  during the dry season. It was clearly shown that the AR(3) model, for the monthly 
inflows from 1946 to 2008, was adequate and predicted low flows. A reliable forecast model is 
needed in the operation of the Angat Reservoir to help decision-makers evaluate different 
alternatives.  The optimal management of the scarce water resource during the dry season would 
benefit users for water supply, irrigation, and power generation.  

When water is abundant, the resulting excess storage is just released to the river system 
giving minimal benefits to the various stakeholders or users of the water resource. The overall 
peak forecast error of 47%  showed the inability of the model to predict peak flows. This inability 
to forecast maximum flows is a poor property of  ARMA models.  Peak flows are usually due to 
extreme storm events and are difficult to predict.  
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In general, ARMA models are only capable of predicting low flows satisfactorily as seen from the 
results of the AR(3) forecast model fitted to the Angat monthly inflows.  Possible refinements of 
the ARMA model can be achieved by including rainfall as an additional input following the 
ARMAX formulation. However, benefits from predicting the low inflows of the Angat Reservoir 
clearly outweighed the weakness of the AR(3) to predict peak flows.  
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