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ABSTRACT  

 
The torsion problem of a rectangular prismatic bar is solved using the Saint-Venant’s warping function 
method and analytic solutions to the twisting moment and the non-vanishing shear stresses are presented. 
Approximate solutions to the torsion problem are derived by curve-fitting the analytic solutions using a 
power fit model with the lengths of the rectangle sides as parameters. Errors observed did not exceed 0.6%. 
The study successfully presents a solution to the maximum non-vanishing shear stress at the narrow side of 
the rectangular section. Such a solution will be useful for the assessment of the critical points on a section 
that experiences combined bending and torsion loads. 
Keywords: torsion, rectangular section, Saint-Venant, warping function, twisting moment, shear stress 
 
 

1. INTRODUCTION 
 
The general theory of torsion is very well established in literature and remains a classic in the 
field of solid mechanics and elasticity. Most often, problems concerning torsion, particularly that 
of prismatic bars, have great variety of engineering applications which range from analyzing 
stresses to designing of machine members and structures. Mostly, established solutions to torsion 
problems are for most cases given analytically. Only in some applications where difficulties in 
obtaining exact solutions may arise, numerical methods of solutions are sought. These difficulties 
are often a result of complexities in geometry or perhaps, the boundary conditions of the 
governing partial differential equation of the machine member or structure being analyzed. The 
most common of torsion problems encountered in engineering is that of circular-section bars. 
Only less familiar  are  those  of   triangular, elliptical,  and   rectangular  sections.  Among   these  
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geometries, analysis of rectangular-section bars is the most involved and is the main concern of 
this study. Although already well established in literature, for instance the classic text by Goodier 
and Timoshenko ]1[ , it still remains a subject of interest for research. 

Generally, in torsion problems, two methods of analyses or approaches are known: )(i  the 
approach first introduced by Saint-Venant which uses displacement components and associated 
warping function; and )(ii  the approach first introduced by Prandtl which uses the concept of 
membrane analogy and associated stress function. These approaches lead to solving torsion 
problems in the form of partial differential equations of either Laplace or Poisson type. In 
particular, Saint-Venant’s approach yields Laplace’s equation while Prandtl’s approach yields 
Poisson’s equation. In other words, torsion problems are generally boundary value problems 
(BVPs) which can be solved either analytically or numerically. Analytical methods of solutions 
are only practical when the cross-section of the prismatic bar being analyzed is regular, otherwise 
numerical solutions must be sought. In the case of rectangular sections, the method of Prandtl is 
common such as the one used in ]1[ , because of its simplicity in boundary condition, i.e. of 
Dirichlet type. In contrast, the method of Saint-Venant is used in the text by Srinath ]2[ , wherein 
the resulting boundary conditions are of Neumann type, which are nonhomogeneous. 
Nonetheless, one thing is common to both approaches and that is the method of solving the 
torsion BVP for rectangular sections is accomplished by Fourier series. 

In a paper by Mindlin ]3[ , the Saint-Venant’s torsion problems are solved alternatively, by 
power series expansion, i.e. the Laplace equation is expressed as a double power series for which 
associated coefficients are obtained by simultaneous linear algebraic equations. For instance, in 
the case of rectangular sections, it is demonstrated in ]3[  that even if only four terms in the power 
series expansion are used, the obtained torsional rigidities have errors of less than 1.0 percent for 
square section to about 3.0 percent for a rectangle with ratio of 10:1 - which are already 
acceptable for practical purposes. Aside from the method of solution demonstrated in ]3[ , torsion 
problems can also be solved by other means which are numerical such as the finite element 
method (FEM) and boundary element method (BEM). In particular, a p -Version FEM is 
demonstrated in the paper by Smith ]4[  while a dual-BEM is demonstrated in the paper by Chen 
et al. ]5[ . These numerical methods have been proven to be reliable means of solving torsion 
BVPs with very acceptable accuracy. 

In torsion problems, results which are of main interest are expressions of the twisting moment 
and two non-vanishing shear stresses. In the case of rectangular sections, the expressions of the 
twisting moment and shear stresses are functions of rectangle ratio ab / , where a  and b  are 
half-lengths of the dimensions of narrow and wide sides of the rectangle, respectively. Of these 
two non-vanishing shear stresses, only the expression of the stress at the mid-wide sides of 
rectangular bars is commonly found in literature. In particular, ]1[  and ]2[  provide expression for 
this stress which are obtained from analytical solution, whereas Pytel and Singer ]6[  and 
Timoshenko ]11[  provide an approximate formula. This is because the stress at the mid-wide 
sides of rectangular bars is found to be the maximum torsional shear stress, which is therefore 
critical.   Rarely  provided  in   literature is the expression of  the  torsional shear stress at the mid- 
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narrow sides, practically because this stress is found to be lesser than the stress at mid-wide sides, 
and is therefore not critical. However, when dealing with problems involving rectangular sections 
under combined loading such as bending and torsion as well as two-plane bending with torsion, 
points which are critical may not be located at the points of maximum torsional shear stress. 
Other points which are potentially critical are at the mid-narrow sides of rectangular bars. Hence, 
with no solution to torsional shear stress but at the mid-wide sides, false conclusions may arise. 
This study is therefore primarily focused in finding the expression of the stress at the mid-narrow 
sides of rectangular bars. 

In this paper, the development of torsion BVP for rectangular sections is done by Saint-
Venant’s approach. In other words, the resulting torsion problem is governed by Laplace 
equation, which has analytic solution in the form of infinite series. As a consequence, derived 
expressions of the twisting moment and torsional shear stresses at mid-narrow and mid-wide 
sides of rectangular bars are also in the form of infinite series. However, because these 
expressions are functions of rectangle ratio, then they can be related in a −D2 parametric plot. In 
particular, the −x data axis contains a range of values of rectangle ratio and the −)(xy data axis 
as dimensionless twisting moment and shear stresses. Hence, instead of seeking for another 
method of solving the torsion BVP for rectangular sections such as in ]5,4,3[ , this study is then 
motivated in finding approximate models of the twisting moment and shear stresses out of their 
analytic model counterparts. In other words, the approximate models are best fitted curves of the 
desired parameters as functions of rectangle ratio. In this study, the MATLAB® Curve Fitting 
Toolbox is used in selecting and obtaining the appropriate approximate models of the desired 
parameters. In this paper, the resulting models will be presented for two specific ranges of 
rectangle ratio, i.e. ]10)/(1[ << ab  and ]100)/(10[ << ab ; wherein the models are continuous 
functions only for their corresponding range. In addition, comparison of models of the shear 
stress at the mid-wide sides of rectangular bars will be demonstrated. In particular, the resulting 
model obtained in this study and the one given in ]11,6[  will be compared, for each range of 
rectangle ratio, with the corresponding analytic model and relative errors will be presented. 
 
 

2. TORSION PROBLEM FORMULATION: 
SAINT-VENANT’S APPROACH 

 
Throughout this paper, the notation for the coordinate system used is indicial, i.e. ),,( 321 xxx . 
The development of torsion BVP for any cross-section by means of Saint-Venant’s approach, can 
be started by considering the stress tensor ][ ijσ ; for 3,2,1, =ji . From Mase ]7[ , this stress 
tensor is written as 
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where ijσ  for ji =  are known as the normal stress components while ijσ  for ji ≠  are known 
as shear stress components. In Figure 2.1, it should be observed that the first number of the 
indices denotes direction of axis normal to the plane where the stress component acts; while the 
second denotes direction of that stress. From conditions of equilibrium, the shear stress 
components are observed to be  equal, i.e. jiij σσ = . 

 

               
Fig. 2.1: Components of stress tensor at an arbitrary point of a continuum. 
The stresses are denoted in indicial notation.  

 
 
The most important assumption in torsion BVP formulation is that the materials to be considered 
are linearly elastic, i.e. they obey Hooke’s law. It is also assumed that the materials are 
homogeneous and isotropic, i.e. elastic properties are the same in all directions and in all parts of 
the body. From ]7[ , the stresses are written as 
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where the following material properties are: G  as average shear modulus, E  as Young’s 
modulus of elasticity, and ν  as Poisson’s ratio. The terms ijε  and kkε  are the linearly elastic 
shear and normal strains, respectively. These strains are written as 
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Suppose a prismatic bar, of arbitrary length in the −3x direction, is subjected to twisting moment 
M  coupled at both ends, then a rotation per unit length θ  about the origin of −),( 21 xx plane is 
produced. Figure 2.2 shows an arbitrary cross-section of a general prismatic bar which serves as 
the torsion problem domain ),( 21 xxΩ=Ω  bounded by Γ . The twisting moment couple causes a 
point ),( 21 xxP  to be displaced to some point ),( 21

* xxP  in Ω . Figure 2.3 shows the 
displacement of point ),( 21 xxP  to ),( 21

* xxP , in Ω  of a rectangular section. From ]3,2,1[ , the 
displacement components for any prismatic bar, are written as follows: 
 

323211 ),,( xxxxxu θ−=   

313212 ),,( xxxxxu θ=           )4.2(  
),(),,( 213213 xxxxxu θψ=        

 
where ),,( 3211 xxxu  and ),,( 3212 xxxu  are called in-plane displacements in Ω , while 

),,( 3213 xxxu  is the axial or out-of-plane displacement known as warping of cross-section and 
hence, ),( 21 xxψψ =  is called the associated warping function, which is not dependent on 3x . 
This assumption follows Saint-Venant’s hypothesis, i.e. the cross-sections are free to warp in the 

−3x direction but the warping is same for all cross-sections. But for circular sections, the 
−),( 21 xx plane remains plane and does not warp, i.e. there is no out-of-plane displacement 

component, and hence, only in-plane displacements are induced. 
 

 
Fig. 2.2: Torsion problem domain for an arbitrary cross-section. 
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It should be noted from this point that the axis of rotation, or center of twist, is taken at the origin 
of the cross-section along the −3x direction. This assumption should not be overlooked, since it 
could affect the formulation of the torsion BVPs, especially if the cross-section has less than two 
axes of symmetry wherein the location of the center of twist can be unknown. This conventional 
torsion BVP formulation is common in ]3,2,1[ . In contrast, the non-conventional torsion BVP 
formulation is taken into account in the papers by Stronge and Zhang ]8[  and Li ]9[ ; wherein 
instead of taking the origin of the −),( 21 xx coordinate system as the centroid of cross-section, as 
well the center of twist, an arbitrary reference coordinate system is considered. In particular, the 
coordinates of the center of twist are taken as offsets from the arbitrary coordinate system, i.e. 

),( 21 ηηC ; where 1η  and 2η  are the offset coordinates along −1x  and −2x directions, 
respectively. This means that the centroid of section may not coincide with the center of twist. 

                
 

Fig. 2.3: Torsion problem domain for a rectangular cross- 
section subjected to a couple of twisting moment. 

 
 
However, it is assumed in ]8[  that the center of twist ),( 21 ηηC  is coincident with the centroid, 
i.e. setting 021 ==ηη  is valid, if the cross-section has more than one axis of symmetry. Hence, 
for rectangular sections which have two axes of symmetry, it will be accepted, unless proven 
otherwise, that the center of twist is coincident with the centroid of section which can be taken at 
the origin of the −),( 21 xx coordinate system. It is also demonstrated in ]9[  that this should 
always be the case. In other words,  the  conventional torsion  BVP  formulation is safe to use and  
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will not affect the displacement components )4.2(  written previously. Figure 2.4 shows the 
center of twist at the centroid of a prismatic bar of rectangular cross-section. 
 

         
Fig. 2.4: Rectangular prismatic bar under coupled twisting  

moment at both ends. 
 
 
Hence, by applying all previously stated assumptions, the torsion BVP formulation can now be 
established. By inserting )3.2(  into )2.2(  and noting )4.2( , it is found that the non-vanishing 
shear stresses are  
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It should be noted that by using equations )2.2( ,  )3.2( , and )4.2( , it can also be shown that the 
normal stresses ijσ  for ji =  and shear stress 2112 σσ =  are zero. In other words, only shear 

stresses given by )5.2( a  and )5.2( b  are non-zero, which constitute a pure torsion problem. 
By inserting the non-vanishing shear stresses into the equations of equilibrium given in ]2,1[ , 

the Laplace equation for ),( 21 xxψ  is obtained as 
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where the boundary condition for )6.2(  is given as  
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Equations )6.2(  and )7.2(  constitute the torsion BVP for any cross-section of prismatic bars. 
For rectangular sections, the above BVP can be written as follows: 
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with boundary conditions  
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Figure 2.5 shows dimensions a2  and b2  of a rectangular section along the −1x  and 

−2x directions, respectively. 
 

                   
Fig. 2.5: Cross-section of rectangular prismatic bar showing dimensions. 
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It should be noted that Laplace equation )8.2(  is apparently difficult to satisfy because of the 

Neumann type, non-homogeneous boundary conditions )9.2( a  and )9.2( b . However, it can still 
be solved by introducing a new appropriate function which is dimensionally homogeneous as the 
warping function. 
 
 

3.  SOLUTION OF SAINT-VENANT’S TORSION BVP  
FOR RECTANGULAR SECTIONS 

 
The solution of the torsion BVP for rectangular sections can be accomplished by introducing a 
new function, say ),(~~

21 xxψψ =  that would satisfy Laplace equation )8.2( , i.e. by transforming 
the problem in terms of ),( 21 xxψ  into a new one in terms of ),(~

21 xxψ . The form of the solution 
associated with this transformation, as proposed in ]2[ , is written as follows: 
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such that )8.2(  can be transformed into the form 
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Aside from satisfying Laplace equation )8.2( , the transformation relationship )1.3(  is necessary 
such that when it is applied to boundary condition )9.2( a , a new boundary condition in terms of 

),(~
21 xxψ  is obtained. This transformed boundary condition is found to be homogeneous, i.e. 

zero on the boundary )](,[ 21 bxbax <<−±= , thus making the solution to )2.3(  possible. The 
transformed boundary conditions corresponding to )9.2( a  and )9.2( b , respectively, are then 
written in terms of ),(~

21 xxψ  as follows: 
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And by applying these transformed boundary conditions into )2.3( , the appropriate form of the 
new function ),(~

21 xxψ  is found to be 
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where  
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And therefore the warping function )1.3(  becomes  
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where, by following the method in the text by Zill ]10[ , the Fourier coefficients nc  are written as 
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and by solving )7.3( , nc  are obtained as follows: 
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Therefore, the final form of warping function ),( 21 xxψ  is found be 
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where )9.3(  is the solution to the torsion BVP for rectangular sections; and by inserting this 
function to expressions )5.2( a  and )5.2( b , the non-vanishing shear stresses are obtained as 
follows: 
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where 31σ  and 32σ  are the −1x  and −2x components of the resultant shear stress σ  in Ω , 
induced by the couple of twisting moment M . 
 
The twisting moment is given as 
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and by inserting )10.3( a  and )10.3( b  into )11.3( , M  is obtained as 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

+⎟
⎠
⎞

⎜
⎝
⎛−= ∑

∞

=1
55

3

)12(
tanh

2
tanh1921)2()2(

3
1

n

n

n
b

a
b

b
abaGM κπ

π
θ    )12.3(  

 
where ]2/)12[( ann πκ += , for ∞= ,...,3,2,1n ; and it should be noted that the first term of the 
infinite series, i.e. 0=n , is evaluated judiciously. For rectangular sections, we are interested in 
the expressions for the non-vanishing shear stresses on Γ , particularly at the mid-narrow 

),0( 21 bxx ±==  and mid-wide )0,( 21 =±= xax  sides. It should be observed that for ab > , the non-
vanishing shear stresses are 31* σσ ≡  on ),0( 21 bxx ±==  and 32max σσ ≡  on  )0,( 21 =±= xax ; 
where 
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It is important to emphasize that the magnitude of *σ  is lesser than maxσ , i.e. max* σσ < , 

since the negative sign of )13.3( a  only indicates direction. This is not difficult to prove because  
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the aGθ2  term of )13.3( b  governs the infinite series. The terms inside the brackets are observed 
to be functions only of the sides of the rectangular section. They can then be easily evaluated over  
the entire range of the rectangle ratio ab / . Figure 3.1 shows that at ab = , i.e. ( ) 1/ =ab , the 
shear stress factors for both mid-narrow and mid-wide sides are equal thus max* σσ = . 

In general, for rectangular bars in torsion, expressions for the twisting moment and the two 
non-vanishing shear stresses are functions of rectangle ratio ab / , with the assumption that 

ab > . Figure 3.1 shows the trend of the graph of dimensionless rigidity factor and shear stress 
factors as functions of ab / . It should be observed that these parameters are asymptotic for 
rectangle ratios practically greater than ten, i.e. ( ) 10/ ≥ab . This asymptotic property of the 
graph of functions can be asserted from the fact that expressions for M , *σ ,  and maxσ  have 
terms which are hyperbolic functions. 
 

           

                   
 

Fig. 3.1: Plot of rigidity factor and shear stress factors at mid-narrow and 
mid-wide sides as functions of rectangle ratio. 
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4.  ANALYTIC  MODELS 
 
From the expressions of twisting moment M and torsional shear stresses *σ  and maxσ  derived 
in the previous section, analytic models of dimensionless parameters for rectangular bars will 
now be developed. These analytic models are continuous functions for any rectangle ratio, i.e. 
valid for ( ) ]/1[ ∞<< ab . 
 
 
4.1  Twisting Moment 
 
For the twisting moment M , the corresponding dimensionless parameter is denoted as K , which 
can be called rigidity factor. Figure 4.1 shows the graph of this parameter for rectangle ratio 
range of ( ) ]100/1[ << ab , whereas Table 4.1 tabulates the values of K  for certain rectangle 
ratio within the range ( ) ]10/1[ << ab . The twisting moment is given by )12.3( , and is 
rewritten as 
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Fig. 4.1: Plot of rigidity factor as function of rectangle ratio. 
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Table 4.1: Rigidity factors for rectangular bars in torsion at different rectangle ratios. 
b/a 1.0 1.2 1.5 2.0 2.5 3.0 4.0 5.0 10.0 
K  0.1406 0.1661 0.1958 0.2287 0.2494 0.2633 0.2808 0.2913 0.3123

 
 
4.2  Shear Stresses 
 
4.2.1.  Mid-narrow Sides 
 
The shear stress at the mid-narrow sides of a rectangular bar in torsion is given by )13.3( a , and 
is rewritten as 
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Fig. 4.2a: Plot of shear stress factor at mid-narrow sides as  
function of rectangle ratio. 
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Table 4.2a: Shear stress factors at mid-narrow sides of rectangular bars 
in torsion at different rectangle ratios. 

b/a 1.0 1.2 1.5 2.0 2.5 3.0 4.0 5.0 10.0 
*
1K  0.6754 0.7060 0.7281 0.7395 0.7419 0.7424 0.7426 0.7426 0.7426 
*
2K  4.8046 4.2501 3.7195 3.2339 2.9753 2.8195 2.6443 2.5490 2.3775 

 
 
4.2.2.  Mid-wide Sides 
 
The shear stress at the mid-wide sides of a rectangular bar in torsion is given by )13.3( b , and is 
rewritten as  
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Fig. 4.2b: Plot of shear stress factor at mid-wide 
sides as function of rectangle ratio. 
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Table 4.2b: Shear stress factors at mid-wide sides of rectangular bars in torsion 
at different rectangle ratios. 

b/a 1.0 1.2 1.5 2.0 2.5 3.0 4.0 5.0 10.0 

1K  0.6753 0.7588 0.8476 0.9301 0.9681 0.9854 0.9970 0.9994 1.0000 

2K  4.8039 4.5676 4.3296 4.0671 3.8821 3.7424 3.5503 3.4305 3.2018 

 
 

5.  APPROXIMATE MODELS 
 
The approach of this study is to find models that will replace the complex expressions of the 
rigidity factor and the shear stress factors for the mid-narrow side and mid-wide side. A power fit 
model as well as polynomial models were tested and results show that the power fit model 
provides accuracy as well as practicality of use compared to the still complex and long 
polynomial fit. Other fits were tested but accuracy problems were encountered. The power fit 
models for the twisting moment and the two non-vanishing shear stresses *~σ  and max

~σ  all have 
2ℜ -value better than 0.99. 

 
 
5.1.  Twisting Moment 
 
The power fit model adopted for the twisting moment is as follows: 
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where 
   
 δβα ,,  are constants 
 

 
Table 5.1: Power fit constants of approximate model for 

twisting moment of rectangular bars in torsion. 

Rectangle Ratio 
Power Fit Constants 

α  β  δ  

( ) ]10/1[ << ab  2100.0−  9998.0−  3333.0  

( ) ]100/10[ << ab  2099.0−  9996.0−  3333.0  
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Fig. 5.1: Curve fit models of rigidity factor of rectangular bars in torsion; 
for rectangle ratio range of [1<(b/a)<10]. 

 
 
5.2.  Shear Stresses 
 
5.2.1.  Mid-Narrow Sides 
 
The power fit model adopted for the shear stresses at the mid-narrow sides is as follows:  
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where 
   
 δβα ,,  are constants 
 

Table 5.2a: Power fit constants of approximate model for 
shear stress at mid-narrow sides of rectangular bars in torsion. 

Rectangle Ratio 
Power Fit Constants 

α  β  δ  

( ) ]10/1[ << ab  539.2  413.1−  285.2  

( ) ]100/10[ << ab  667.1  051.1−  229.2  
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Fig. 5.2a: Curve fit models of shear stress factor at mid-narrow sides of 
rectangular bars in torsion; for rectangle ratio range of [1<(b/a)<10]. 

 
 
5.2.2. Mid-wide Sides 
 
The power fit model adopted for the shear stresses at the mid-wide sides is as follows: 
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where 
   
 δβα ,,  are constants 
 
 

Table 5.2b: Power fit constants of approximate model for shear stress at mid-wide 
sides of rectangular bars in torsion. 

Rectangle Ratio 
Power Fit Constants 

α  β  δ  

( ) ]10/1[ << ab  082.2  677.0−  745.2  

( ) ]100/10[ << ab  245.2  051.1−  001.3  
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Fig. 5.2b: Curve fit models of shear stress factor at mid-wide sides of 
rectangular bars in torsion; for rectangle ratio range of [1<(b/a)<10]. 

 
 

6.  DISCUSSION OF RESULTS 
 
The power fit model for the maximum shear stress factor is evaluated versus the analytic solution 
and it was observed that maximum errors did not exceed 0.6%. It is then compared to a well 
known published solution that resembles a power fit form. This well known solution is presented 
as early as 1930 when Timoshenko mentioned it in his book Strength of Materials, Part I. The 
solution, which we will call the Timoshenko model, takes the form ]11[ :  
 

⎟
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⎜
⎝
⎛ +=

b
a

ba
M 8.132maxτ          )1.6(  

 
where maxτ  is the maximum shear stress at the mid-wide sides of the rectangular bar, as denoted 
by max

~σ  in this paper. Upon examination of this well known solution, one should notice that 
indeed it is a power fit model with the following constants: 8.1=α , 1−=β , and 3=δ . The 
variables a  and b  are the lengths of the narrow and wide sides, respectively, and not half the 
lengths. When evaluated over the rectangle ratio range of 1 to 10, the maximum error that the 
solution gives is up to 4%. Beyond the rectangle ratio of 10, the Timoshenko model gives 
sufficiently accurate results.   A  comparison of the shear stress factors from the analytic solution,  
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Timoshenko model and the new solution, which we call the present model, over the rectangle ratio 
range of 1 to 10 and 10 to 100 is presented in Figs. 6.1 and 6.2, respectively. 
 

 

0 1 2 3 4 5 6 7 8 9 10 11
3

3.5

4

4.5

5

Rectangle Ratio [1<(b/a)<10]

D
im

e
n

si
o

n
le

ss
 S

h
e

a
r 

S
tr

e
ss

exact (analytic) model
Timoshenko model
present model

 
 

Fig. 6.1: Comparison of models of dimensionless shear stress at mid-wide sides of 
rectangular bars in torsion; for rectangle ratio range of [1<(b/a)<10]. 
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Fig.6.2: Comparison of models of dimensionless shear stress at mid-wide sides of 

rectangular bars in torsion; for rectangle ratio range of [10<(b/a)<100]. 
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7.  CONCLUSION 
 
One of the main problems that must be solved in the design of some load carrying elements 
subjected to torsion is to determine the shear stresses at critical points within a cross section and 
the angles of twist under a given torsional moment.  The approximate model and the 
mathematical formulation presented in this paper allow for conducting uniform torsion analysis of 
rectangular solid cross sections.  Easy and quickly calculable expressions of maximum shearing 
stresses for mid wide and mid narrow sides of the rectangular section have been derived.  The 
shearing stresses are compared to analytical values. The results have shown that the obtained 
formulas give very accurate values.  In conclusion, the model and the formulation presented in 
this paper are efficient and can help to solve the uniform torsion problem of a rectangular 
prismatic bar. 
       The value add of this study is the presentation of a solution to the unknown locally maximum 
torsional shear stress at the narrow side. With this available solution, more informed and educated 
assessment of the critical point in a particular section of a rectangular prismatic bar is possible. 
As mentioned previously, this is particularly important in combined loading problems where 
bending and torsion can induce maximum normal and/or shear stresses at a point other than the 
location of the maximum torsional shear stress. 
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