
 11

Philippine Engineering Journal (2002) XXII1 (2): 11-18

MODELING OF DELAY-INSENSITIVE CIRCUIT BUILDING-
BLOCKS USING THE HAMBURG DESIGN SYSTEM

Jesse M. Sacayanan and Joel R. Noche
Department of Electrical and Electronics Engineering

College of Engineering, University of the Philippines, Diliman

ABSTRACT

The operation of delay-insensitive circuits, a class of asynchronous logic circuits, is difficult to
visualize. Models of delay-insensitive circuit building-blocks are created using the Hamburg Design
System (HADES), a pure-Java framework for object-oriented component-based simulation. These models
help designers and students visualize the operation of delay-insensitive circuits.

I. Introduction

Asynchronous circuits, digital logic circuits that do not use a global clock signal,
have attracted attention this past decade due to their potential advantages over
synchronous circuits [1, 2, 3]. Some asynchronous circuits have been shown to consume
less power and have less electromagnetic emission than their synchronous counterparts
[2]. However, asynchronous circuits are more difficult to design and test, which is one
reason most current designs are synchronous.

One class of asynchronous circuits is particularly difficult to design. Delay-

insensitive (DI) circuits make no timing assumptions on gate and wire delays [1]. DI
circuits are made by connecting DI circuit building blocks. As long as the internal timing
assumptions of these blocks are satisfied, the behaviors of circuits composed of these
blocks are independent of the speed of operation of the blocks and of the delays in the
wires connecting them. DI circuits are thus more robust than other asynchronous circuits,
showing the same behaviors regardless of the technology used to implement them and of
other physical factors like temperature.

The DI circuits in this work use dual-rail encoding with transition signaling. That

is, two wires are used to represent each data signal: a voltage transition on one wire
indicates the arrival of a zero, a transition on the other the arrival of a one. The voltage
levels on the wires are of no significance, but are in most cases initially assumed to be
zero.

Although software is available to verify if a certain circuit composed of DI

building blocks has the desired behaviors [4, 5], deciding which building blocks to use
and how to connect them to obtain a desired behavior is a challenge. In this paper we
present models of DI circuit building blocks created using the Hamburg Design System
(HADES) [6, 7], a pure-Java framework for object-oriented component-based simulation.

 12

These models help designers and students visualize the operation of delay-insensitive
circuits. The source code for the models and additional details are in [8].

II. Materials and Methods

2.1 Trace Theory

One popular way of representing DI behaviors is through trace theory [1]. A
behavior is an interleaving of input and output events [9]. A specification is the set of all
admissible and required interface behaviors of a system. The specification models a
circuit module by help of a theory: a formal language (syntax) and a formal
interpretation (semantics).

In trace theory, lower-case letters serve as symbolic names for communication

events at similarly named communication ports. An event is an occurrence of the
corresponding action (for example, a voltage transition). There is one-to-one mapping
between actions and ports of a module. Sets of input and output actions in a specification
are implicit and disjoint: ? or ! is appended to a symbol name to denote that the name
stands for an input or an output action, respectively. These suffixes may be left out for
internal signals or when no confusion may arise. [9]

Specifications are written by using the symbol names and applying the operations

described in Table 1.

For example, for the specification pref*[a;(b|c)], some valid traces are a,

ab, ac, aba, and acab, while some invalid traces are abc, aa, b, and acaa. For the
specification pref*[(a||b);c], some valid traces are b, ab, abc, bac, abcba, and
bacabc, while some invalid traces are c, ac, and bb.

VERDECT [4, 5], a program designed to compare circuit specifications with an

implementation, uses trace theory.

2.2 DI Building Blocks

A universal and minimal set of building blocks for DI circuits is presented in [9,

10]. Circuits using these building blocks include bit serial adders and multipliers [11].
Although these building blocks can be implemented in CMOS (complementary metal
oxide semiconductor) technology [9, 10], these implementations are inefficient and
impractical [12]. Event-based technologies are better suited for these building blocks
than voltage-level based technologies. Building blocks implemented in RSFQ (rapid
single flux quantum) superconductor technology [12] have been shown to compare
favorably with standard RSFQ implementations of Boolean logic gates and have been
used to design self-timed pipelined parallel adders [13].

Table 2 shows delay-insensitive circuit building-blocks from [9]. The third

column shows the formal specification of these building-blocks written in trace theory
[1].

 13

The Fork, in general, is not isochronic, that is, a transition at the input port does
not necessarily arrive at the two output ports at the same time. The output that transitions
first is arbitrary.

The Merge ensures the orderly arrival of transitions coming from two input ports

to an output port.

The Tria produces a transition on one of three output ports when it receives

transitions from two corresponding input ports.

The Sequencer is for arbitration or mutual-exclusion. Two requests, r0? and r1?,

are accepted but only one of them, either g0! or g1!, is granted at any time. The requester
is expected to acknowledge through c? before another request is granted.

The Toggle produces an output transition for each input transition, with the output

transitions distributed between its two output ports alternately, beginning at the port
marked with a circle.

The 2×1 Join allows transitions on either b0? or b1? (but not both) to cause

transitions on c0! or c1!, respectively, through a transition on a?.

Note that the Ljoin is not the same as the Tria; the output ports have different

corresponding input ports.

The Fork, Merge, Sequencer, and Tria form a minimal set [9, p. 13], that is, any

DI circuit can be created using just these blocks.

2.3 HADES Implementation

The models of the blocks are written and compiled as Java classes. The behavior
of these models is governed by a series of conditions using the method hasEvent()
from the class PortStdlogic1164 included in HADES. The method hasEvent()
returns true if there is a change of state on the port it is pointing to.

HADES always starts the simulation with all the wires in an ‘unknown’ state. The

models then start to give outputs making the wires go from the ‘unknown’ state to
another state, 0 or 1. Since method hasEvent() recognizes these transitions, these
transitions must be ignored by the models since these transitions are not valid inputs. A
problem arises when the number of transitions ignored is not equal to the number of
inputs required by a particular model to produce an output, and that model requires two
or more inputs. For example, in the 2×1 Join, assume that the first two transitions are
“unknown to 0” transitions on b0? and a?, then a transition of “unknown to 0” on b1?
occurs. If the first valid transition is on a?, then the model will produce a transition on
c1!, which is a violation of its specification.

 14

To address the problem, these models are implemented such that they will ignore
the first n transitions at the start of the simulation (at time t=0 s), where n is the number
of inputs for a certain component. Also, the outputs of the models are set to 0 at the start
of the simulation. (This is arbitrary; initial outputs of 1 may also be used.)

Aside from the building-blocks shown in Table 2, two additional models were

created: the initialized wire [1] and the delay node (see Figure 1). The delay node is
used to model wire delays while the initialized wire has the trace theory specification
pref*[b!;a?]. The inclusion of the initialized wire simplifies many designs.

At first it may seem that a delay node is unnecessary because wire delays can be

modeled as delays in the inputs and the fork and gate outputs. But it is shown in Section
3 how the initial ‘unknown’ state used by HADES can lead to incorrect behavior of
circuits if no delay nodes are used.

The models were compiled under the package dibb. Java Runtime Environment

version 1.4.1 was used to run and update HADES. The jar executable with update
option was used to integrate the models with HADES.

III. Discussion of Results

The correct operation of the models were verified by implementing some case
circuits in [9] (all of them using Forks): two decompositions of the 2×2 Join (one using
Ljoins, the other using Trias and Merges), a decomposition of the 2-way Resource Arbiter
(using a Sequencer, a 2×1 Join, and Merges), a 1-bit wide 4-place Elastic Fifo (composed
of 2×1 Joins and Merges) and Modulo-2, -3, -4, and -5 Counters (using 2×1 Joins,
Toggles, and Merges). Correct operation was observed for different component and wire
delays. The test cases are in [8].

As an example, consider the Modulo-N Counter having the trace theory

specification pref*[(a?;a!)N-1a?;b!;b?;a!], where (a?;a!)N-1 denotes a
sequence of N − 1 instances of (a?;a!). Thus, a Modulo-2 Counter has the
specification pref*[a?;a!;a?;b!;b?;a!]. Figure 2 shows a screen snapshot of
the HADES Editor showing a Modulo-2 Counter with probes on all signals. Figure 3
shows the HADES Waveform Viewer showing some test waveforms for the Modulo-2
Counter, with all delays set to 0.2 second for illustration purposes. Note that the outputs
of the blocks are initially in an ‘unknown’ state, but later go to a logic 0 or 1 because
none of their inputs are in an ‘unknown’ state.

This initial ‘unknown’ state leads to problems in some circuits such as the

Modulo-3 Counter shown in Figure 4. Shown is a graphical representation of the
circuit’s logic levels after the trace a?. The input a? is at a logic 1 and b? is at a logic 0,
which is consistent with the specification. But output a! remains at a logic 0 because one
of its inputs (the one leaving the Fork) is in an ‘unknown’ state. Because the 2×1 Join
and the Forks are connected in a feedback loop, the signals of some of their inputs and
outputs remain in an ‘unknown’ state. The behaviors of this HADES model do not agree

 15

with the specification.

This problem is avoided by inserting delay nodes into the feedback loops. Figure

5 shows the modified circuit’s logic levels after the trace a?;a!. Figure 6 shows
waveforms verifying its correct behavior. (All delays here were set to 0.1 second for
illustration purposes.)

IV. Conclusions and Recommendations

A set of delay-insensitive circuit building-block models for HADES that can be
used to design delay-insensitive circuits was created. Additional behaviors (ignoring the
initial input transitions from ‘unknown’ states) were included in these models and
additional blocks (the initialized wire and the delay node) were created so that HADES
could simulate delay-insensitive circuits correctly. The capability of the HADES
simulation framework to allow design and simulation of delay-insensitive circuits was
also demonstrated.

Aside from aiding designers visualize DI circuit behavior, the models can also be

used as an educational tool to help promote research in delay-insensitive circuits and
asynchronous circuits in general. Since HADES is designed with ease of use as one
feature, this software may become appealing to students and may raise their interests in
digital circuits in general.

References

1. S. Hauck, “Asynchronous design methodologies: An overview,” Proceedings of the
IEEE 83 (1), 69–93 (1995).

2. C. van Berkel, M. Josephs, and S. Nowick, “Applications of asynchronous circuits,”
Proceedings of the IEEE 87 (2), 223–233 (1999).

3. I. Sutherland and J. Ebergen, “Computers without clocks,” Scientific American 287 (8),
46–53 (2002).

4. J. Bergen and R. Berks, “VERDECT: A verifier for asynchronous circuits,” IEEE
Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter,
Special Issue on Asynchronous Computer Architecture (1995).

5. VERDECT, http://edis.win.tue.nl/verdect/ (Accessed 2002).
6. N. Hendrich, HADES Tutorial ver 0.9 (2002).
7. HADES simulation framework homepage, http://tech-www.informatik.uni-

hamburg.de/applets/hades/html/ (Accessed 2002).
8. J. Sacayanan, “Modeling and simulation of delay-insensitive circuit building-blocks

using HADES simulation framework,” Undergraduate student project, University of the
Philippines, Diliman (2003).

9. P. Patra and D. Fussell, “Building-blocks for designing DI circuits,” Technical Report
TR93–23, Department of Computer Sciences, University of Texas at Austin (1993).

10. P. Patra and D. Fussell, “Efficient building blocks for delay insensitive circuits,” in the
Proceedings of the International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pp. 196–205 (1994).

 16

11. P. Patra and. Fussell, “Fully asynchronous, robust, high-throughput arithmetic
structures,” in the International Conference on VLSI Design (1995).

12. P. Patra, S. Polonsky, and D. Fussell, “Delay insensitive logic for RSFQ superconductor
technology,” in the Proceedings of the International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pp. 42–53 (1997).

13. Y. Kameda, S. Polonsky, M. Maezawa, and T. Nanya, “Self-timed parallel adders based
on DI RSFQ primitives,” IEEE Transactions on Applied Superconductivity 9, 4040–4045
(1999).

Table 1
Trace theory commands [1]

Name Syntax Meaning Example
Concate-
nation

<cmd1>;<cmd2> <cmd2> follows <cmd1> a;b = {ab}

Union <cmd1>|<cmd2> Either <cmd1> or <cmd2> a|b = {a,b}
Repetition *[<cmd>] Zero or more concate-nations of

<cmd>
*[a] =
{ε,a,aa,…}

Prefix-
Closure

pref <cmd> Any prefix of <cmd> pref(ab) =
{ε,a,ab}

Projection <cmd>↓<alph> Remove all symbols from <cmd>
not contained in <alph>

abc ↓ {a,c} =
{ac}

Weave <cmd1> || <cmd2> Shuffling of <cmd1> and
<cmd2>, with shared symbols
occurring simultaneously

abc || acd =
{abcd,acbd}

Table 2
Delay-insensitive building-blocks [9]

Name Schematic Specification
Fork

pref*[a?;(b!||c!)]

Merge

pref*[(a?|b?);c!]
Tria

pref*[((a?||b?);p!)|
 ((a?||c?);q!)|
 ((b?||c?);r!)]

Sequencer

pref[*(r0?;g0!)||
 *(r1?;g1!)||
 *((g0!|g1!);c?)]

Toggle

pref*[a?;c!;a?;d!]
2×1 Join

pref*[((a?||b0?);c0!)|
 ((a?||b1?);c1!)]

Ljoin

pref*[((a0?||b0?);p!)|
 ((a0?||b1?);q!)|
 ((a1?||b0?);r!)]

 17

(a) initialized wire (b) delay node

Figure 1. Initialized wire and delay node symbols

Figure 2. Screen snapshot of the HADES Editor and a Modulo-2 Counter

Figure 3. The HADES Waveform Viewer and test waveforms
for the Modulo-2 Counter

 18

Figure 4. A Modulo-3 Counter showing incorrect behavior

Figure 5. A Modulo-3 Counter showing correct behavior

Figure 6. Waveforms showing correct behavior of the circuit in Figure 5

