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ABSTRACT 

   Solute transport in the unsaturated zone in nonisothermal conditions has its 
important applications in the field of agriculture and groundwater quality modeling.  
In this research, the phenomena of simultaneous transport of moisture, heat and 
solute in the unsaturated porous media are formulated by three partial differential 
conservation equations.  Numerical simulation and experimental study on salt 
migration is carried out in a closed unsaturated fine sand (Toyourra sand in Japan) 
column. Numerical discretization and solution are performed on the experimental 
domain with appropriate boundary conditions by iterative Picard technique Galerkin 
Finite Element Method. Results show that salt, in initial uniform water content and 
solute concentration, accumulates at the bottom due to heat source by salt 
precipitation and moisture convection.  The characterization of the identified 
hydraulic parameters with temperature is also discussed. 

I.   Introduction 

 Several authors have studied the salt migration in the unsaturated zone. 
Most studies formulated mathematical models on simultaneous transport of 
water, heat and solute. Temperature gradients and presence of solute has a 
salient effect in the moisture transport. Thus Richard’s equation together with 
convection-dispersion of solute transport must be modified.  Nassar and 
Horton [1989 a, b] discussed the effect of temperature and solute content in 
the water flux in steady state conditions by computing liquid and vapor 
diffusivities due to water content, temperature and solute concentration 
gradients. The theoretical aspect based on Philip and de Vries mechanistic 
approach on simultaneous transport on unsaturated nonisothermal salty soil 
has been investigated by Nassar and Horton [1992a] using liquid water (θl) 
based formulation of the water transport equation and verified by Nassar, 
Horton and Globus [1992b] column experiments. Bear and Gilman [1995] 
studied the migration of salts near a hot boundary in the unsaturated zone and 
predicted the increase in salts near the heating source.  Simunek and Suarez 
[1994] discussed the transport of reactive salts in isothermal conditions with 
upstream residual technique for convection-dispersion equation.  
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  Bear, Bensabat and Nir [1991] discussed the different initial water 
content conditions that may lead to different water content distributions at 
steady state.  When the initial water content is lower than a certain critical 
value, considerable drying occurs in the hot boundary.  Milly [1982] 
formulated a matric potential (ψm) based model of heat and moisture transport 
that takes into account the hysteresis effect and inhomogeneity of the porous 
media. Modifications are made in the model of Milly [1982] to include the 
non-reactive solute transport from Nassar and Horton [1992a]. Yakirevich, et. 
al. [1997] studied completely the transport of  water, heat  and reactive salt 
solution with adsorption and ion exchange and its effect in evaporation and 
solved the transport equations using finite difference method. The present 
study aims at modeling the migration of solutes of non-reactive salts in the 
unsaturated porous media with a proposed modified mathematical model. 

  The research is focused on how temperature and solute content affect 
water flow and as a consequence how much salt is transported.  Assumption 
on non-reactive solute, neglecting adsorption and ion exchange, results to 
simplified conservation equations. No effect of solute concentration on 
unsaturated hydraulic conductivity and matric potential is further assumed.  
The resulting partial differential equations are discretized, and finite element 
formulation of the equations is employed to generate the numerical solution of 
salt migration under temperature gradients in the unsaturated porous media.   

II.   Mathematical Model 

  The moisture transport equation is formulated by applying continuity 
equation on the Representative Elementary Volume (REV) and evaluating flux 
equations by separately analyzing liquid and vapor phases (Milly [1982]).  The 
vapor flux is modified Fickian diffusion law and the liquid flux is from 
unsaturated Darcy’s law.  The moisture transport equation is 
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  The primary variables are matric potential (ψm), temperature (T) and 
solute concentration (C). θl is the liquid water content, ρl is the liquid water 
density, θa is the air filled porosity, ρv is the absolute humidity and K is the 
unsaturated hydraulic conductivity. The coordinate z-axis is positive upwards. 
The diffusivities expressed into liquid and vapor components denoted by 
subscripts L and V respectively. Dψm=Dψmv+Dψml is the diffusivity due to 
matric potential gradient, DT = DTV is the diffusivity due to temperature 
gradient, DC =DCV+DCL is diffusivity due to solute concentration gradient. The 
diffusivities are given by the following equations 
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Datm = 2.29x10-5(Tk/273)1.75  is the molecular diffusivity of water vapor in 
air in m2/s, Ω = θa2/3  is the tortuousity factor of the air-filled pores, φ = 0.93 
is osmotic coefficient for NaCl, σ is the osmotic efficiency, Rv is the gas 
constant for water vapor, g is gravitational acceleration and Tk is the absolute 
temperature. 
 
  The thermal enhancement factor (f´) is  
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in which θk  is the liquid water content at which flow becomes negligible, that 
is the order of vapor diffusivity (Dψm) magnitude is greater than that of 
unsaturated hydraulic conductivity K, and n is the porosity of the medium.  
The parameter ξ is the ratio of the average temperature gradient in the air, 
(∇T)a, with the overall average (macroscopic) temperature gradient (∇T), 
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The thermodynamic relationship of water vapor density (ρv) with 

matric potential (ψm), osmotic potential (ψo) and absolute temperature (Tk) is 
given by Philip and de Vries [1957] on the assumption of thermodynamic 
equilibrium between liquid and vapor phases. 
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The saturation vapor density, ρo, is the density at saturation vapor pressure at 
which a change of phase can occur at a constant temperature. The saturated 
vapor density can be obtained ρo = 10-3(19.84 –4975.9/Tk) kg/m3 (Kimball et. 
al. [1976], Nassar and Horton [1989b]). 
 

  The unsaturated hydraulic conductivity relationship with volumetric 
liquid water content is also corrected by temperature and is expressed by 
K=KskrkT where Ks is the saturated hydraulic conductivity, kr is the relative 
hydraulic conductivity at reference temperature and kT = µT/µTo is the 
temperature factor given by the ratio of the dynamic viscosity at reference 
temperature T0 with the dynamic viscosity at temperature T. The solute effect 
on unsaturated hydraulic conductivity is neglected. The unsaturated hydraulic 
conductivity, K(θl), and soil water retention curve, ψm(θl), used in the 
numerical model are from the van Genuchten [1980] model. 
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  θe is the effective water content defined by the equation (7). θr and θs 
are the residual water content and the saturated water content respectively.  α, 
m and n are identified coefficients from the experimental data. 
   

  According to Milly [1982], the thermal vapor diffusivity is sensitive to 
temperature and insensitive to the liquid water content except at dry condition. 
 The heat flow is formulated from de Vries [1958] and solute effect on heat 
flow is incorporated and is expressed by 
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  L is the latent heat of vaporization, Lo is the latent heat at reference 
temperature To, W is the heat of wetting, cl is specific heat of water, cp is 
specific heat of vapor at constant pressure, λ is the soil effective thermal 
conductivity and qm is the moisture flux. 
  
  The volumetric heat capacity of the porous medium is defined by Cv  
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where θi and Ci are the volumetric fraction and volumetric heat capacity of the 
ith soil constituent (de Vries [1958]).   
 

  The effective thermal conductivity (λ) of the porous media is a 
function of liquid water content, matric potential and temperature, and is given 
as a weighted average, 
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where ki is the ratio of the average temperature gradient  in the ith constituent 
to the average temperature gradient of the bulk medium given as  
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where the liquid phase is considered continuous and gi is the “shape factor” of 
the ith constituent.  No value is given to g1 since the coefficient is zero. The 
value of g2 is considered a function of water content as follows (Kimball et. al. 
[1976], Milly [1984] ). 
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  The effective thermal conductivity of the air-filled pores, enhanced by 
vapor distillation is (de Vries [1958])  
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 λa is the thermal conductivity of dry air. 
 
  Finally, the solute transport is given by  

( ) ( )m

l
l l sh T

C
Cq D C D T

t
∂

= −∇ ⋅ − ∇ − ∇
∂
θ

θ                                        (14) 

which is the conventional convection dispersion equation with the effect of 
temperature on molecular diffusion taken into consideration. Dsh is 
hydrodynamic dispersion, DTm is the enhancement of molecular diffusion due 
to temperature gradient and ql is the volumetric liquid flux. 
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Figure 1.  Schematic diagram of experimental apparatus 

III.   Experimental Study 

  The experiments on simultaneous water, heat and solute transport are 
done on a closed soil column in controlled laboratory environment. The 
experimental set-up mainly consists of a fine sand column of 80-cm height and 
20-cm diameter, thermocouple sensors, and a heater (Figure 1). Fine sand 
(Toyourra sand in Japan), used as the porous medium, has soil properties of 
porosity, 0.445, and saturated hydraulic conductivity, 2x10-4 m/s.  The fine 
sand is cleaned to remove organic matter, washed for several times and soaked 
overnight before performing the experiment until the similar electrical 
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conductivity value before and after washing is reached.  A sodium chloride 
salt solution is prepared to obtain specified initial water content with salt 
concentration for each case. The salt solution is mixed with fine sand 
thoroughly. The soil is packed inside the steel column and mounted on a 
heater to generate temperature difference at the ends of the column. The 
bottom end is at 50oC while the other end at 22oC constant ambient 
temperature in a regulated room. Thermocouples gauge the local temperature 
installed at 5-cm intervals along the soil column. At steady state (after three 
days), the soil sample is cut into 5-cm sections. Water content is 
gravimetrically computed, and salt concentrations are measured at each 
section by electric conductivity meter. Two supporting experiments 
(replicates) are also prepared to check the precision of the results. 

IV. Numerical Solution 

4.1 Finite Element Formulation 

 A numerical simulation is carried out, and the results are compared 
with the experimental output. The SPLaSHWaTr (Scanlon and Milly [1994]) 
using Galerkin finite element method coded in Fortran is modified for the 
inclusion of solute transport computation. The governing equations for the 
simultaneous transport of water, heat and solute are described by the equations 
(1), (8) and (14). The form of the each transport equation can be written as 
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where the parameters sw1 to sw7 are defined implicitly by equation (15) and 
each transport equation. The solution is interpolated by using linear basis 
function Ne

j over the entire domain (Figure 2) by the trial functions 
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where δij is the kronecker delta. Substitution of the trial functions into the 
equation (17) yields a set of nonlinear algebraic equations.  
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Figure 2.  Discretization of the domain and coordinate system for the Finite 
Element Model 

 

  The finite element formulation in matrix form (indicial notation) is 
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where the coefficients of the finite element formulation is given  
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  The parameters sw1 to sw7 are assumed to vary continuously only inside 
the elements, and discontinuity is only restricted at nodal points. The integrals 
may be approximated by assuming that the parameters sw1 to sw7 vary linearly 
inside the element (Milly [1982]) 
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  Temporal derivatives are estimated by finite difference using fully 
implicit backward difference scheme.  At the old time level k, the nodal values 
of ψmj

k (primary variables) are known and that over the time increment ∆t 
defined by the old and the current time levels, k and k+1, the nodal values 
vary linearly. It follows that the nodal values at time level k+ϕ are computed 
by 
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where ϕ is a time weighing factor. 
   

  In this study, fully implicit scheme is used for temporal analysis.  This 
scheme is obtained when ϕ has a value of one. The fully implicit scheme is 
unconditionally stable. Thus, time acceleration factor can be introduced 
 Whenever the solution is consistent, time acceleration can be utilized when 
the difference between the maximal changes in the primary variables and the 
specified targets is less than a tolerance error. The tentative increase/decrease 
factor for the change in time step ∆t can be calculated on basis of maximum 
changes of state.  This factor is limited by not allowing an excessively large 
increase in ∆t. However, if a large decrease in ∆t is required, this is indicative 
of an excessive change of state during the most recent time step.  This time 
step is repeated using the smaller ∆t. In this study, space discretization the 
specific target for the change in primary variables is 10 cm, 10C, 0.002 and 
0.0005 g/cm3 for matric potential, temperature, volumetric liquid water 
content and solute concentration respectively. 
  
  Due to strong nonlinearity of the coefficients, Picard iteration 
technique is used, and Thomas algorithm for resulting linear systems is 
utilized per iteration (Huyankorn and Pinder [1983]).  Similar formulation can 
be obtained for heat transport. The solute transport equation as expressed in 
the conservative form is reformulated by applying the continuity equation 
resulting to   
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  For this type of advection-dispersion equation, it is recommended to 
adopt the method of upstream weighted residual technique to eliminate the 
effect of numerical dispersion in a convection dominated solute flow.  

4.2 Method of Weighted Upstream Residual 

  It is well known that the advective-dispersive transport equation is 
more difficult to solve numerically than flow equation. The problem is 
particularly severe when advection dominates over dispersion. In this 
situation, the Galerkin Finite Element Method exhibits numerical oscillations 
(overshoot and undershoot) near the concentration front. These oscillations 
can be eliminated numerical oscillations by upstream residual technique. This 
application is made in such a manner that the spatial and the temporal 
derivatives in the equation are both weighted using asymmetric weighing 
functions. These are obtained by adding quadratic functions to the linear basis 
functions. 
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4.3   Boundary Conditions and Computational Flowchart 

 The boundary conditions for the closed system, which is the conducted 
experiment, are of no flux for water flow and solute flow whereas the 
temperatures at the boundaries are specified constants.  The computational 
flowchart is shown in Figure 3. The solution to the transport equation follows 
the finite element procedure of generating the coefficient matrix, finite 
difference approximation of the temporal derivatives, assembling the global 
matrix, imposing the boundary conditions and solving the resulting tridiagonal 
matrix by Thomas algorithm.  

  The water transport equation is first solved holding the previous values 
of temperature and solute concentration. The matric potential is hence 
computed from the water transport equation which other primary variables are 
held to be known.  The heat transport equation is solved next with the recent 
computed value of matric potential but still using the previous value of the 
solute concentration variable.  Finally, solute transport is solved with recent 
computed values of matric potential and temperature.  
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Figure 3. Computational flowchart and algorithm 

V. Results 

5.1 Comparison of experimental data with numerical simulated results for 
10% initial water content, 3% solute concentration and nonisothermal 

 
 Figures 4, 5 and 6 illustrate the variation of the water content, 
temperature, solute concentration profiles along fine sand column for the 
experimental case of 10% initial water content, 3% initial solute concentration 
and nonisothermal conditions (28 C0 temperature gradient). Three replicates 
are conducted and the comparison shows good agreement among the measured 
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values. The differences in measured values could be attributed to average 
sampling of soil at 5-cm sections and slight differences in the initial 
conditions. The results, however, are generally acceptable.   

  Figure 4 illustrates the degree of saturation profile showing increasing 
water content to the bottom of the closed column.   Computation of the total 
water contained in the soil column by comparing the area of the initial water 
content with the area made by the water content profile for the mass balance 
reveals 6.6% loss of total water in the column. The loss is from the vapor 
unaccounted in gravimetric water measurements in exposing the sample to 
ambient conditions while sampling.   Figure 5 shows a nonlinear distribution 
of temperature from cold end increasing to the heated end. This is attributed to 
the variable moisture content since thermal conductivity and volumetric heat 
capacity are also dependent on soil water content as explained in the 
calculation of soil thermal properties by Philip and de Vries [1957] model.  
Temperature gradients, consequently, affects moisture flow since vapor 
transport is an important aspect of moisture flow phenomena while the vapor 
phase is often neglected in the isothermal models using the traditional 
Richards’ equation.  Though it is much smaller than the effect of liquid 
diffusivity (matric potential gradient) in liquid flow, the effect becomes 
appreciable for very dry soil layer with low water content. The deviation of the 
experimental measured temperatures with the computed values from 
numerical simulation is attributed from the heat loss to the periphery of the 
experiment. 
  

 The solute concentration profile is shown in Figure 6.  There is much 
scattering or variation among the measured values, however the trend is 
similar. The factors affecting the deviation of the values are the sensitivity of 
the electric conductivity meter for salt concentration measurement, the average 
sampling of the soil column into 5-cm sections, and the inexact replication of 
the initial conditions for the preparation of the soil sample.  However, 
comparison of the average of the three replicates with the simulated results 
shows slight difference. Solute concentration balance gives 1.33% loss by 
comparing the area to the left and right of the solute initial concentration. 

5.2 Physical mechanism of transport 

 Figure 7 shows the schematic diagram of the phenomena of liquid and 
vapor flow in the soil sample.  Vapor and liquid phases are analyzed 
separately, however these transport of vapor and liquid phases are occurring 
simultaneously.  Initially, the water content variation in the soil column is 
uniform. Gravity effect dominates and liquid water percolates to the bottom.  
The soil water content profile shows that the water content increases to the 
bottom though it is a heated end. Temperature gradients inducing phase 
change enhance vapor flow, where from the almost saturated heated end, 
evaporation occurs. The vapor traverses the air-filled pores (vapor flux), and 
condenses in the upper region of lower temperature. Temperature gradients 
can cause the water to move in the vapor phase from a hot site to condense at 
the cold site.  Flow is reestablished whenever sufficient matric potential 
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gradient and osmotic potential gradient is achieved.  After vapor condensation, 
a total pressure head gradient can drive water from the cold end to the hot site.  
Solute is carried by flowing liquid (liquid flux) and transported to the bottom 
of the column (advective salt flux).  This contributes basically to the 
conveyance of solute toward the lower end. Due to the solute gradient, 
diffusive salt flux occurs in the direction away from the heat source.  The 
solute effect on water flow is caused by the osmotic potential that is created 
from the differences in solute concentration. This effect, however, is only 
comparable with the effect of temperature on liquid flow.  The heat flux for 
the system is, of course, towards the cold end.  The main feature of thermally 
induced water movement in the unsaturated zone is that it involves also 
evaporation, condensation and movement of water vapor.  These affect the 
efficiency of heat transfer and cause soil moisture redistribution (Bear, 
Bensabat and Nir [1991]). 
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Figure 4.  Degree of saturation profile of the column with initial water content 
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m3/m3, 280C temperature gradient at ends and 3% solute concentration by 

weight 
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Figure 6.   Salt concentration profile of the column with initial water content 
of 0.1 m3/m3, 280C temperature gradient at ends and 3% solute concentration 

by weight 
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Figure 7. Schematic diagram of the physical mechanism of flow water content 
analysis (adopted from the figure of Bear and Gilman [1995]) 

 

5.3 Solute concentration analysis 

 The transport mechanism for solute is through convection by liquid 
flow and diffusion due to the solute concentration gradient. Nassar and 
Horton [1997] also found a reduction in water transfer toward the cold end of 
the salty soil material. Water vapor pressure is a function of temperature and 
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solute concentration. Figure 8 and 9 show the variation of solute concentration 
for different initial water content in isothermal and nonisothermal conditions.  
Solute is carried to the bottom through convection in relatively wet initial 
conditions (25% initial water content).   Figure 8 shows the numerical output 
of solute concentration profile from different initial water content in 
isothermal cases with 3% initial salt concentration.  The profiles show almost 
similar trend of increasing solute content to the bottom of the column. The 
isothermal conditions did not change the water content profile in a relatively 
dry initial conditions that minimal convection and diffusion of salt to the 
bottom of the column takes place.  Simulated results with initial water content 
of 20% and 25% show high concentration at the bottom. 
  

 Comparing with Figure 9, which is the nonisothermal case, the same 
trend can be observed though there is a slight increase in value for relatively 
wet conditions (20% and 25%).  Except for the dry case of 5% initial water 
content, a considerable increase in the amount of solute can be found near the 
heat source. The convected solute to the bottom becomes precipitate due to 
phase change of water from liquid to vapor phase, which makes the salt 
solution not capable of dissolving salts, and hence precipitation occurs.  
  

 Figure 10 and 11 show the outcome of the numerical simulated solute 
concentration profiles for 5% and 10/% initial water content.   It can be 
inferred from the figure that solute concentration is conserved in the sand 
column based on the area to the left and right of the initial solute 
concentration. A vertical hump can be observed for wet initial conditions 
(Figure 11). The increase in solute can be attributed to the increased water 
flow due to evaporation and condensation cycle in the mechanism of flow.      
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Figure 8. Numerical results of solute concentration profiles for isothermal 
cases of 5 to 25% initial volumetric water content. The initial solute 

concentration is 3% by weight. 
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Figure 9. Numerical results of solute concentration profiles for nonisothermal 
cases of 5 to 25% initial volumetric water content. The initial solute 

concentration is 3% by weight. 
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Figure 10. Solute concentration profiles with 5% initial volumetric water 
content (numerical simulation results) 
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Figure 11. Solute concentration profiles with 10% initial volumetric water 
content (numerical results) 

 
 

5.4    Characterization of identified parameters 

Figure 12 shows the change in matric potential and thermal conductivity 
due to the effect of temperature. For constant volumetric water content, 
temperature decreases the value of matric potential. It is evident from the 
figure the sudden decrease in matric potential at very low water contents (less 
than 0.01) and near saturation (greater than 0.4). This is indicative of a rapid 
release of water from the pores or drainage. Between these extreme regions, 
the soil moisture retention curve has a gentle slope in the semi-log scale. The 
thermal conductivity increases with increasing water content and temperature. 
At low water content, the value of thermal conductivity is greatly affected by 
the temperature. This is due to the increase in diffusion coefficient in high air-
filled space (that is low water content) with high temperature. Nassar and 
Horton [1997] concluded that the model of de Vries can be used for accurately 
predicting the apparent thermal conductivity for low solute concentration, an 
intermediate water content and temperature range of 200C to 500C.  The 
thermal conductivity of the porous medium in unsaturated zone is sensitive to 
temperature.  Figure 13 to 15 illustrate the effect of temperature and 
volumetric water content on liquid and vapor diffusivities for temperatures 
200C-500C and concentration of 3 percent by weight. The unsaturated 
hydraulic conductivity increases with water content. The change due to 
temperature is less than with the increase due to water content. For vapor 
diffusivities, temperature change can bring great differences in value in very 
low water content. For a temperature change of 300C, the vapor diffusivity is 
magnified five times. For high temperature, the transport of latent heat by 
vapor distillation is positively affected by temperature and negatively affected 
by water content.   
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Figure 12. Variation of matric potential and thermal conductivity with 
temperature and liquid water content 

 

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

0 0.1 0.2 0.3 0.4

water content θl (m
3/m3)

un
sa

tu
ra

te
d 

hy
dr

au
lic

 
co

nd
uc

tiv
ity

 K
 (c

m
/s

)

T = 20 C

T = 50 C

0

1000

2000

3000

4000

5000

0 0.2 0.4

Water content θl (m
3/m3)

Is
ot

he
rm

al
 v

ap
or

 d
iff

us
iv

ity
 

D
ψ

vx
10

-1
5 
cm

/s

T = 20 C

T = 50 C

  

Figure 13. Variation of unsaturated hydraulic conductivity and isothermal 
vapor diffusivity with temperature and liquid water content 
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Figure 14. Variation of thermal vapor diffusivity with temperature and liquid 
water content 
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Figure 15. Variation of vapor diffusivity due to solute concentration gradient 
with temperature and liquid water content 

VI.  Conclusions 

 The theoretical model consists of three partial differential equations 
describing water, heat and solute transport in unsaturated porous media. 
Galerkin Finite Element Method solves these equations with upstream residual 
technique applied to the convection dispersion equation. Results show that 
temperature and solute content plays a major role in the movement of water. 
The following points can be observed from this research.   Water generally 
flows to the bottom of the column due to the enhancement of vapor flux by 
temperature. The vapor condenses at the colder region establishing a sufficient 
matric potential gradient for liquid flux to occur. Water content increases near 
the heat source in relatively wet nonisothermal condition. However for the 
case of relatively dry initial water content, existence of dry layer can be 
observed near the heat source. The temperature gradients bring great changes 
in thermal conductivity due to high thermal diffusion coefficient, which 
increases vapor distillation.  Although the temperature effect in the liquid 
region is not significant, the temperature effect on vapor phase has appreciable 
impact in dry or barren areas where evaporation is a major consideration for 
moisture budget in soil atmosphere interaction.  The heat source acts as a 
magnet for the solute.  Within the boundary of the heat source, significant 
drying occurs where liquid water evaporates into vapor.  The amount of salt 
convected to the bottom is already considerable that the solubility of salt 
decreases rapidly. The salt solution becomes “saturated” and precipitation 
occurs.  Water changing into vapor phase in the hot domain leaves solute 
residuals behind, therefore as a consequence accumulation of salts occurs. 
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