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ABSTRACT

One of the marks of Kapampangan art and culture is the
Giant Christmas Lantern. Every Christmas season, giant lanterns
designed by Pampanga’s artists are displayed during the Giant
Lantern Festival, known locally as “Ligligan Parul”. In the
Kapampangan vernacular, “parul” and “ligligan” mean lantern and
competition respectively. In essence, the term “Ligligan Parul,”
embodies the contest among different barangays of creating the best
giant lantern in the province. The colorful and symmetric designs of
these giant lanterns have an entrancing effect and have become
more and more intricate through the years.

This contribution explores the giant lantern as math art.
The underlying uncolored designs of giant lanterns are simple
symmetrical patterns whose mathematical structures are well
known. There are various mathematical methods for coming up with
the symmetric colorings of such patterns. We investigate the color
symmetry of existing giant parol designs by matching them with
color symmetry algorithms that make use of the subgroup structure
of the symmetry group of a pattern. Finally, we demonstrate how to
obtain symmetric colorings of the giant lantern that do not match
any of the existing designs.

Keywords: Pampanga giant lantern, parol, symmetry, color
symmetry, coset coloring

(1) INTRODUCTION AND OUTLINE
“There is geometry in the humming of the strings. There is

music in the spacing of the spheres,” Pythagoras once said. For this
ancient philosopher and mathematician, the elegance of
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mathematics was evident in the beauty and harmony in art.
However, this link between math and art remains obscure to many,
even though math has always appeared in various art forms. For
instance, math appears in classical art’s emphasis on symmetry and
proportion, in the way the Asian art of origami adheres to the rules
of geometry, and in the use of algorithms to generate 215t century
digital art.

The relationship between math and art is reciprocal: art
serves math, and math serves art. Scientists use art to explore and
express their ideas. Art can demonstrate the elegance of
mathematical theory and provides mathematicians a way to make
the subject more accessible. Students are more receptive when they
are able to visualize abstract concepts, especially if this is achieved
through beautiful artworks.

Conversely, math is a servant of the arts. A formal analysis
of art through math reveals shifts in schools of thought (Makovicky,
1986). Practice-based artists also use math to develop their
techniques (Happerset, 2020). One of the most renowned of such
artists is M.C. Escher, a 20th-century Dutch artist whose fascination
with the Moorish patterns in the Alhambra led him to dive deep into
complex math concepts. This allowed him to eventually create some
of the most mind-bending images of 20% century art (Taschen,
2016). Susan Happersett, an artist whose love for math and art has
led to her mission of changing the minds of those adverse to math
through her art, creates rule-based art using mathematical
algorithms (Happersett, 2020). In fact, we are seeing a new
generation of artists who grew up with technology and are utilizing
algorithmic processing to create digital art. As we also move towards
a society where interdisciplinary studies are emphasized, math in
art enables educators from different art fields to inject STEAM into
their lessons (Happersett, 2020).

Collaboration between artists and mathematicians over the
years reflects the reciprocal relationship between math and art.
Many universities organize conferences where mathematicians and
artists come together to explore the math and art connection. The
most popular among these is the Bridges Conference, where
mathematicians and artists from around the world meet every year
to exchange ideas on the latest trends in math art. The Journal of
Mathematics and the Arts is another result of the collaboration
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between artists and mathematicians. This peer-reviewed journal
was established in 2007 to provide mathematicians and artists a
venue to publish work related to math art. It is designed to be “a
place for those engaged in using mathematics in the creation of
works of art, who seem to understand art arising from math or
scientific endeavors, who strive to explore the mathematical
implications of artistic works” (Journal of Mathematics and the Arts,
n.d.).

Unfortunately, math art has hardly been explored in the
Philippines. One possible reason is that many, especially those
engaged in the arts, still view math as a dreaded subject to be
avoided at all costs. Furthermore, only a handful of Filipino
mathematicians are doing formal research in this area. Most of these
mathematicians can trace their academic genealogy back to
Professor René P. Felix, who pioneered the study of symmetry and
color symmetry in the country. One of his students led a group that
analyzed crystallographic patterns in Philippine Indigenous textiles
(De Las Penas et al., 2018). But apart from a few such studies, it is
rare for artists and mathematicians to collaborate in the Philippines.

Through this contribution, we wish to promote the study of
math art in the Philippines. In particular, our goals are: (1) to
promote the study of math as it appears in Philippine art, (2) to
introduce the formal study of color symmetry to the mathematicians
of Central Luzon, (3) to encourage the use of art in instruction,
especially in the teaching of abstract algebra to math majors, (4) to
present to artists, especially those engaged in graphic and digital art,
the possibility of using math to generate art, and (5) to motivate
mathematicians and artists to collaborate in studying and producing
math art.

To achieve these goals, we demonstrate color symmetry
methods by applying them to Pampanga’s giant lanterns. We hope
that by choosing to apply color symmetry to a source of pride deeply
rooted in the cultural heritage of Central Luzon, we are able to
capture the interest of our target audience.

The designs of the giant lanterns are always symmetric.
This is not surprising since symmetry, being pleasing to the eye,
appears in many art forms (Conway et al., 2008). Even though the
designs of the giant lanterns have become increasingly elaborate
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over the years, the designs largely remain centered on the five-
pointed star. Thus, the giant lanterns are simple symmetrical
patterns whose mathematical structures are well-known.
Furthermore, there are established mathematical methods for
coloring such structures.

This article is organized as follows. Section 2 describes the
methodology used to arrive at the results. We give a brief history of
the art of parol making in Section 3. Section 4 discusses the design
of the parol from the point of view of the artists and craftsmen.
Meanwhile, Section 5 provides a theoretical discussion on the
structure of the Pampanga giant lantern from the perspective of
mathematical symmetry. In Section 6, we present a coloring method
using the left and right cosets of a subgroup of the symmetry group
of a pattern. We illustrate the algorithm by applying it to some
designs of the Pampanga giant lantern. We end in Section 7 by
summarizing the analysis and suggesting some areas for further
research.

We have written this article in a way that makes it
accessible to the various segments of our target audience. We use
the language of mathematicians since we wish to demonstrate how
art can be used in formal math instruction. However, we define
concepts in a way that even those with only a basic knowledge of
math may follow the discussion. We also give illustrations of the
various math concepts and methods using a simple pointed star
before applying them to the giant lantern. Given the goals of this
contribution, we do not focus on justifying and proving the theory
supporting these colorings. Those interested may consult the
references for a deeper insight into the theory of color symmetry,
specifically left coset colorings. A theoretical discussion of right
coset colorings will be published elsewhere.

(2) METHODOLOGY

We analyzed the color symmetry of the giant lantern using
standard techniques in the study of symmetry. We began by
determining the mathematical structure of the uncolored giant
lantern. We inspected recent designs of giant lanterns exhibited in
various Giant Lantern Festivals. We also examined the designs in the
Parul Sampernandu Coloring Book (City of San Fernando Pampanga
Tourism Office, 2015), a collection of uncolored giant lantern
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designs by some of Pampanga’s most acclaimed parol artists. Once
the mathematical structure of the uncolored pattern was
established, we proceeded to analyze the colored designs. We
matched the colored patterns with some color symmetry algorithm
that would give rise to the colored pattern. Finally, we attempted to
come up with symmetric colorings of the giant lantern not similar to
existing designs. We did this by altering the parameters of the color
symmetry algorithm that matched existing designs, or by applying a
color symmetry algorithm that did not match the existing designs.
To supplement our analysis, we also interviewed some of the giant
parol artists to gain insight into how they come up with their
designs.

(3) HISTORY OF THE ART OF PAROL MAKING

The lantern making tradition in San Fernando, Pampanga
traces back its origins to Spanish colonists in Bacolor, the old capital
of Pampanga, who urged people to hold lantern processions
honoring the Virgin Mary, “Our Lady of La Naval” (dela Cruz, 2013).
These religious processions are considered the forerunners of the
“Lubenas,” the street processions that are held for nine straight
nights during the Misa de Gallo. In these events, white paper
lanterns were shaped into various images like crosses, stars, fish,
angels and sheep, and used to illuminate the images of patron saints
(Orejas, 2012).

The art of parol making is credited to Francisco Estanislao,
who in 1908 was said to have made the first parol utilizing a five-
point star design. In Estanislao’s time, electricity had not yet come
to Bacolor (Tapnio, 2018). Townsfolk used parols to light their path
going to the traditional dawn masses or Misa de Gallo. In making the
parol, Estanislao employed bamboo sticks for the frame and papel
de japon for the finishing. Carbide, locally known as kalburo, was
used to illuminate the lantern (Cultural Center of the Philippines,
2017).

According to De la Cruz (2013), the first parol festival
occurred in 1930. The term “Ligligan Parul” or lantern showdown
was an exhibition of how electricity, which was new at that time,
could power the light bulbs of the parols for the entire night.
Sometime in the 1950’s, parol makers started to leave behind the
classic five-pointed star made with bamboo and papel de japon and
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began employing various designs such as psychedelic kaleidoscopes,
stained glass windows, prismatic pinwheels, oversized snowflakes,
and batik textiles. Then in the 1960’s, parol makers ventured into
the commercialization of their lanterns and a cottage industry was
born (De la Cruz, 2013).

Through the years technological advances have enabled
parol makers to create more complex designs and lighting
sequences. Pampanga lanterns have become a staple of exhibitions,
and Kapampangan lantern makers are regularly commissioned to
create special lanterns to commemorate events not only in the
Philippines but in different parts of the world (Arvin B. Quiwa,
personal communication, August 15, 2015).

(4) DESIGN OF THE PAROL

The traditional design of a parol is a star-shaped framework
constructed with bamboo sticks. To complete the parol, crepe paper
or other decorative material like cellophane is pasted over the
structure after which two tails made of strips of crepe paper are
attached to two points of the star. According to Rolando S.
Quiambao, a noted lantern designer and maker in Pampanga, the
traditional lantern has four main parts. The “tambor,” a term
derived from the Filipino word tambol or drum, is the center of the
lantern. Around the tambor is the “siku- siku” or the main star. Siku
is the Kapampangan word for elbow. The “palimbon” or procession
surrounds the “siku-siku.” Finally, there is the outer layer or the
“puntetas” which is derived from the word punta or edge (personal
communication, August 15, 2020). Figure 1 shows Quiambao with
one of his designs.
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Figure 1
Ronald S. Quiambao, noted lantern designer and maker in Pampanga,
with one of his designs.

In the early days of giant lantern making, artisans welded
steel frames to set up the framework of the parol design. Cardboard
was used to line the frame, and then thousands of incandescent light
bulbs were installed and wired. In those years, individual switches
were used to control the lights, and these were turned on and off in
time with the music. Colored paper was then used instead of papel
de japon or crepe paper. Later on, rotors, large steel barrels powered
by electricity, replaced the hand-controlled switches in producing
the desired effect of dancing lights. This was made possible by
putting masking tape on the rotor to establish the lighting sequence.
The light bulbs were connected to the rotor through hairpins that
were attached to the ends of the wires (City of San Fernando,
Pampanga, n.d.). Rotors are made of aluminum sheets rolled into a
barrel shape which varies in size from 3 inches to 5 meters long
depending on the desired light patterns. Operators turn a steering
wheel thatis welded to the rotor to make half or full turns to achieve
the flashing of lights in the course of a performance. After long years
of using the rotors and incandescent bulbs, LED electronic lights
became the norm, and to produce the dancing light effect, some

Mathematics in Art: Color Symmetries of Pampanga’s Giant Christmas Lanterns 41



lantern makers have resorted to the use of sequencers. Designed by
Alyosha Ezra Mallari and his team of engineers, sequencers
automate the lighting system and eliminate the need for a rotor
operator. The desired sequence of lights is written in a program and
uploaded to the sequencer which is a machine the size of the CPU of
a computer. However, lantern makers still prefer the use of rotors
for artistic purposes and to uphold tradition (Orejas, 2017).

Evidently, the making of giant parols is a complex process.
However, Quiambao revealed that lantern designers do not actually
undergo formal training. Instead, they become apprentices and
learn from practice. The current crop of lantern designers in
Pampanga started their career in the giant lantern making industry
and then ventured into the commercial production of lanterns
(personal communication, August 15, 2015).

The beautiful giant lanterns of Pampanga are also the
byproduct of the competitive and collaborative spirit of lantern
makers from the barangays and towns participating in the lantern
festival called “Ligligan Parul” or Giant Lantern Festival held every
December of each year. One of the major competitors in this
competition, Arvin B. Quiwa, detailed the intricate and modern
process of producing a giant lantern. In the recent past, the first step
for lantern makers was the design conceptualization where current
trends were researched and used as references. Then, a plywood
prototype was created for the layout of the frame which was either
a 5- or 10-point star. Today, this process has been replaced with the
use of photo editing and drafting software that generates a tarpaulin
printout which serves as the pattern for creating the welded metal
framework. Afterwards, the LED lighting is installed. Alvin Quiwa
added that contemporary parols now use a white finishing instead
of a colored one, and it is the sequence of LED lighting effects which
produces the parol design. He further mentioned that in color
selection, contrasting colors are utilized to make the geometric
shapes in the pattern distinct from each other and that as many as
15,000 bulbs are sometimes used to realize a particular design
(personal communication, August 15, 2020). Figure 2 shows photos
of Arvin B. Quiwa and his brother, Eric B. Quiwa, also a giant lantern
artist, with lanterns they designed.
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Figure 2
Renowned Parol Artists from Pampanga

Note: (A) Arvin B. Quiwa and (B) Eric B. Quiwa (rightmost in photo)
come from a family of renowned giant lantern artists. The giant
lantern in the photo of Eric B. Quiwa will be displayed in Lapulapu
City as part of its quincentennial commemoration.

(5) SYMMETRIES OF THE PAMPANGA PAROL

To investigate the symmetries of the Pampanga parol, we
consider it as a two-dimensional pattern. We alter patterns by
applying transformations. Figure 3 shows how a star pattern is
transformed by applying certain transformations: a rotation, a
reflection, a contraction (resizing), and a stretch. We call the
transformed pattern the original pattern’s image under the
transformation.
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Figure 3
A two-dimensional star pattern and its images under certain

transformations

B
ZIN

Note: The various transformations of a two-dimensional star pattern
are shown above. (A) the original star pattern and its images after
(B) a 36-degree rotation about the center of the pattern, (C) a
reflection along a vertical line passing through the center of the
pattern, (D) a contraction by 75%, and (E) a horizontal stretch.
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In the study of symmetry, we are interested in a special type
of transformation called isometries. Isometries preserve lengths, and
consequently, do not alter the shape and size of an object. This
means that the image of a pattern under an isometry is congruent to
the original pattern. Rotations and reflections are isometries, while
contractions and stretches are not, as seen in Figure 3. An isometry
that does not alter a pattern is said to be a symmetry of the pattern.
Since the image of a pattern under a symmetry is the same as the
original pattern, we also say that a symmetry of a pattern fixes the
pattern. Among the five transformations shown in Figure 3(b)-(e),
we see that only the reflection in Figure 3(c) is a symmetry of the
star pattern.

Mathematical symmetry classifies an uncolored parol
pattern as a discrete finite pattern (Griinbaum & Shephard, 1987).
Such patterns can only have rotation and reflection symmetries
(Conway et al., 2008). We denote a rotation by Rot (0, 8), where O is
the center of the rotation and 6 is the measure of its angle of rotation.
By convention, a positive 6 is measured in the counterclockwise
direction. We further assume for convenience that 6 is in degrees
and 0 € [0,360). (If 8 ¢ [0,360), we convert it to r, where r = 0 —
|6/360] - 360 and |-] denotes the floor or greatest integer function.)
Meanwhile, a reflection is identified with its axis of reflection ¢, so
we write a reflection as Ref (1). Given a finite pattern centered at O,
all its rotation symmetries are of the form Rot (0, ), with 6 rational,
while all its reflection symmetries are of the form Ref (1) where ¢
passes through O (Conway et al., 2008). Refer to the star pattern
shown in Figure 4. It has five rotation symmetries: Rot(0,0),
Rot(0,72), Rot(0,144), Rot(0,216) and Rot(0,288). It also has
five reflection symmetries which are Ref(l;), Ref(l,), Ref(l3),
Ref(l,) and Ref(ls), where [, I,, I3, l, and lc are lines passing
through O and inclined at 18°, 54°,90°, 126°, and 162°, respectively,
from the right side of the horizontal line passing through O.

We define the product t;t, of two transformations t; and ¢,
as the transformation obtained when we apply t, followed by t;.
Products of transformations are not commutative since t,t, is not
always the same as t,t,. Table 1 gives the products of rotations and
reflections that are of interest to us.
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Figure 4
Symmetries of a discrete, finite star pattern

’
N

The identity transformation, denoted by e, is the
transformation that fixes any pattern. We identify e with Rot(0, 0)
since a rotation by 0° does not alter any pattern. In this sense, we say
Rot(0,0°) is the trivial rotation. Observe that if t is any
transformation, te = et = t. The order of a transformation t is the
smallest positive integer n such that t™ = e, if it exists. It is easy to
see that e is of order 1, while a reflection is of order 2. On the other
hand, if 8 = p/q, where p and q are both nonzero integers such that
gcd(p,q) = 1, the order of Rot(0,0) is lcm(p,360q)/p. If t is a
transformation, its inverse t~! is the transformation that satisfies
tt™ ' =t 1t =-e. If t is a rotation of order n, then t~! = ¢" 1,
Meanwhile, if t is a reflection, then t~! = t. Furthermore, it is easy
to show that if t; = Rot(0, 0) and t, = Ref (1) such that O is on ¥,
then t,t; = t;'t,.
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Table 1
Products of some rotations and reflections

tq iy 1%
Rot(0,6)  Ror(0,8)  NONOy Tl R broduct
Ref (m), where m passes
Ref (1), £ passes through O and the angle
through O between £ and m, measured
fromftomis68/2
Rot (0, 26), where 6 is the
angle between [ and m,
measured in the direction
from m to 4.

Rot(0,0)

Ref (m), where
Ref (D) [and m
intersect at O

In general, given the set of symmetries of a pattern, the
product of two symmetries is also a symmetry, the identity
transformation is a symmetry, and the inverse of a symmetry is also
a symmetry. Thus, the set of symmetries of a pattern has the
structure of a mathematical group, and we call this set the symmetry
group of the pattern. If G is the symmetry group of a finite discrete
pattern, then G is either a finite cyclic group C,, or a finite dihedral
group D, (Grinbaum & Shephard, 1987). In the first case, G =
{e,a,a?,..,a™ '}, while in the latter case, G =
{e,a,a?,..,a" 1,b,ab,a?b,..,a” 1b}, where a is a rotation of order
n with the smallest angle of rotation, and b is any reflection in G.
Since every element of G can be written as a product of a power of a
and/or b, we say that a and/or b generate/s G. We write this as G =
(a) when G = C,, and as G = (a, b) when G = D,,.

Consider the symmetries of the star pattern centered at O
as shown in Figure 4. Then, G = (a, b), where a = Rot(0,72) and
b = Ref (l3).(We can use any of the reflections to generate G, but we
use the vertical line passing through O for convenience). Since a is
of order n = 5, we have G = Ds.

Since the uncolored Pampanga parol is normally centered
on a five-pointed star, its symmetry group is usually C,, or D,,, where
n is some multiple of 5 (City of San Fernando Pampanga Tourism
Office, 2015; “Amazing Giant Parol Festival in Pampanga”, n.d.).
Though this seems to be the rule, there are exceptions such as the
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uncolored parol in Figure 2(B), whose symmetry group is Cg. Hence,
we see that a few of the newer generation parol artists are beginning
to move away from the tradition of basing their designs on the five-
pointed star.

The Pampanga parol is composed of different shapes with
specific positions in two-dimensional space. We think of these
shapes, together with their position in space, as the tiles that make
up the pattern. In Figure 5(a), the non-overlapping triangles are the
tiles of the pattern. Now suppose X is the set of tiles of some
uncolored finite discrete pattern with symmetry group G.If g € G
and x is a tile in X, we denote by gx the image of x under the
symmetry g. Since g is in the symmetry group of X, gx is also a tile
inX.Infact, G(X) ={gx | g € G,x € X} = X.Hence, G acts on X. The
stabilizer of x in G, denoted Stab;x, is the set of all elements in G
that fix x, or Stab;(x) = {gx = x}. The orbit of a tile x under the
action of G, written Gx, is the set of all images of x under all
symmetries in G, or Gx = {gx | g € G}. If x; and x, are tiles in X,
then Gx; and Gx, are either equal or disjoint. Furthermore, the
union of all the orbits is X. Hence, the collection of unique orbits is a
partition of X. We observe this in Figure 5(a). Let X be the set of tiles
in the star pattern and let x; and x, be as shown in the figure. We see
that X has two orbits X; = Gx, and X, = Gx, under the action of ¢
and X; U X, = X.

We say that two sets have a one-to-one correspondence if we
can define a function between the two sets such that each element
of one set is associated with one and only one element of the other
set. It is easy to see that two finite sets have a one-to-one
correspondence if and only if they have the same number of
elements. Hence, if the symmetry group G is finite, then G and the
orbit Gx of x under the action of G have a one-to-one correspondence
if G and Gx have the same number of elements. The two-star patterns
in Figure 5 have the same symmetry group G. Each orbit of the star
pattern in Figure 5(a) has a one-to-one correspondence with G.
However, this is not the case for the star pattern in Figure 5(b) since
G has 10 elements while Gx, has only 5 elements.
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Figure 5
Two-star Patterns with the Same Symmetry Group

Note: (A) A star pattern with two orbits under its symmetry group.
The white tiles belong to the first orbit, while the grey tiles belong to
the second orbit. Each orbit has a one-to-one correspondence with
the pattern’s symmetry group (B) A star pattern with two orbits
under its symmetry group. The first orbit consists of the ten white
tiles and has a one-to-one correspondence with the pattern’s
symmetry group. The second orbit consists of the five gray tiles; it
does not have a one-to-one correspondence with the pattern’s
symmetry group.

(6) COLOR SYMMETRIES OF THE PAMPANGA PAROL

Consider the problem of coloring the Pampanga parol so that the
colored pattern also exhibits some form of symmetry. We call the
colored version of an uncolored pattern X a coloring of X. Coset
coloring is a mathematical method used to obtain symmetric
colorings of a pattern (Felix, 2011).

To understand coset coloring, we need some additional
concepts from abstract algebra. Let G be the symmetry group of X. A
subgroup H of G is a subset of G thatalso has a group structure. Recall
that the symmetry group of a discrete finite pattern is G = (a) = C,
or G ={(a,b)=D,, where a is a rotation of order n and b is a
reflection. If G = (a) = C,,, the subgroups of G are of the form H =
(a") = Cy/r, where r is a divisor of n. If G =(a,b) = D,, the
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subgroups of G are either H = (a") = C,,, or H = (a’,a’b) = Dy,
where ris a divisorof nand s € {0,1,2, ...,r — 1}.

A left coset of a subgroup H of G is a set gH = {h € H},
where g is some element of G. Meanwhile, a right coset of His Hg =
{ h € H}, where g is some element of G. It is possible for g;H = g,H
or Hg; = Hg, evenif g; # g,. Given a subgroup H of G, the number
of unique left cosets of H is equal to the number of unique right
cosets. This number is known as the index of H in G, and we denote
this by [G: H]. When G is finite, [G: H] = |G|/|H|, where || indicates
the number of elements in the group. Generally, the left cosets of H
are different from its right cosets. In case they coincide, we say that
H is a normal subgroup of G. If G = (a) = C,, then all subgroups of H
are normal. If G =(a,b) = D,, then H =(a") = (,,;, is always
normal in G. However, H =(a",a’b) = D,/ is normal in ¢ if and
only if H is one of the following subgroups: H = G, H = {e} or H =
(a?, a®b). Clearly, the last case can happen only if n is even.

The set of left or right cosets of H is a partition of G. Under
certain conditions, this partition of G gives rise to a partition of X. In
general, we obtain coset colorings by associating a color to each set
in the partition of X. However, the properties of colorings using left
cosets are different from those of colorings using right cosets. For
example, colorings using left cosets are said to be perfect in the sense
that all elements of G induce a permutation of colors. That is, if g €
G and C is the set of all tiles of a particular color, then all the tiles in
gC have the same color. In fact, a coloring is perfect if and only if the
coloring is a left coset coloring (Evidente, 2012; Loquias & Frettloh,
2017; Junio & Walo, 2019). Colorings using right cosets have less
symmetry, which sometimes lead to less typical and more
interesting designs. The framework for coloring using left cosets
when X has only one orbit under the action of G is discussed by Felix
(2011). His students and their collaborators have extended this
coloring framework to accommodate multiple orbits (Loquias &
Frettloh, 2017; Junio & Walo, 2019). We apply the extended
framework since the set of tiles of a Pampanga parol pattern has
multiple orbits under the action of its symmetry group. We also
attribute to Felix the fundamentals for the right coset coloring
method presented in this paper, which he discussed in numerous
lectures. We are not aware of any published work using right cosets
to obtain symmetric colorings.
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(6.1) Left Coset Colorings

Fix x € X.If gH is a left coset of H, then gHx = { h € H} is the set of
images of x under the elements of gH. The next theorem gives the
basis for left coset colorings. We do not discuss the proof here, but
the interested reader may refer to (Evidente, 2012) and (Loquias &
Frettloh, 2017).

Theorem 1. Suppose X is the set of tiles in an uncolored finite
discrete pattern with symmetry group G such that X has m orbits

X, Xy, ..

(i)

(ii)

., X, under the action of G. Fix any x; € X;.

Coloring Method 1: Let H; be a subgroup of G such that
H; contains Stab;x;. Then Uj%, {g € G} is a partition of
X, and we can color X symmetrically by assigning a color
to each set in the partition.

Coloring Method 2: Let H be a subgroup of G such that
H contains Stab;x; foralli € {1,2, ..., m}. Then {g € G}
is a partition of X, and we can color X symmetrically by

assigning a unique color to each set in the partition.

We apply Theorem 1 to obtain a left coset coloring of a pattern by
following this procedure:

1.
2.

Determine the symmetry group G of the pattern.

Let X be the set of tiles in the pattern. Find the orbits

X1, X5, ..., X,, of X under the action of G. Choose an element

x; from each orbit X;, i € {1,2, ..., m}

For Coloring Method 1: For each i € {1,2, ..., m}

a. Selectasubgroup H; such that H; contains the stabilizer
of x;.

b. Determine the left cosets of H;.

c. Foreach left coset gH; of H;, get the set of images gH,x;
and assign the same color to the tiles in this set.

For Coloring Method 2:

a. Selectasubgroup H that contains the stabilizer of x; for
alli € {1,2,...,m}.

b. Determine the left cosets of H.

c. Foreach left coset gH

i. Foreachi € {1,2,...,m}, getthe set of images gHx;.
ii. Assign the same color to the tiles in the set
UZ; gHx; .
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Example. Let us color the star pattern in Figure 5(a) using left coset-
method 2 following the steps outlined above. The symmetry group
of the star is G = (a, b) = Ds, where a = Rot(0,72), b = Ref (), O
is the center of the star and [ is the vertical line passing through O.
Let X be the set of tiles in the star pattern and select x; and x, as
shown in Figure 5(a). Now X has two orbits X; = Gx; and X, = Gx,
under the action of G. The subgroups of G are of the form H = (a") =
Cs; or H=(a",a’h) = Dy, where r € {1,5} and s € {0,1,2, ...,7 —
1}. Table 2 lists all subgroups H of G.

Table 2

Subgroups of the symmetry group G = {(a, b) = Dx

H Elements |H| Ind Nor

ex mal

H = (e) e 1 10 Yes

H = (a) e,a,a a3 a* 5 2 Yes

H = (a’b), e,a’hb 2 5 No
s € {0,1,2,3,4}

H = (a,b) e,a,a® a3 a* b,ab,a’b,a®b,a 10 1 Yes

Note: Subgroups of the symmetry group G = (a, b) = D5 of the star pattern,
where a = Rot(0,72),b = Ref(l), O is the center of the star and [ is the
vertical line passing through O.

Note that Stab;x; = Stab;x, = {e}. Hence, we can select
any subgroup H listed in Table 2. Let us choose H = (a). The left
cosets of H are H = {e,a,a? a3 a*}and bH = {b,ab, a’b, a®b, a*b}.
We compute the images of x; and x, under the elements of H and
obtain Hx, = {xq,ax,,a%x,,a3x;,a*x} and Hx, =
{x,,ax,, a’x,,a®x,, a*x,}. Meanwhile, the images of x; and x, under
the elements of bH are bHx, = {bx,, abx,,a’bx,,a®bx;,a*bx,} and
bHx, = {bx,, abx,,a®bx,,a*bx,}, respectively. We assign the color
white to Hx; U Hx, and the color blue to bHx; U bHx, and obtain
the coloring of the star pattern shown in Figure 6(a). Since this is a
left coset coloring, observe that the generators of G permute the
colors of the coloring: a sends white to white and blue to blue, while
b sends white to blue and blue to white. Since the generators of G
permute the colors, it follows that all elements of G also permute the
colors.
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(6.2) Right Coset Colorings

Fix x € X. If Hg is a right coset of H, then Hgx = { h € H} is the set
of images of x under the elements of Hg. We obtain right coset
colorings by applying the next theorem. Again, we do not prove the
theorem here, but it is easy to show using basic definitions and
theorems from abstract algebra.

Theorem 2. Suppose X is an uncolored pattern with symmetry
group G such that X has m orbits X;, X, ..., X;;, under the action of G
and each orbit has a one-to-one correspondence with the elements
of G.Fix x; € X;.

(i)  Coloring Method 1: Let H; be a subgroup of G. Then
UZ, {g € G} is a partition of X, and we can color X
symmetrically by assigning a unique color to each set in
the partition.

(ii)  Coloring Method 2: Let H be a subgroup of G. Then {g € G}
is a partition of X, and we can color X symmetrically by
assigning a unique color to each set in the partition.

We make some observations about right coset colorings. If all
subgroups of G are normal, then the right cosets of any subgroup
coincide with its left cosets. Hence, opting for right coset coloring
only makes sense when G has at least one subgroup that is not
normal. Furthermore, right coset coloring assumes that all orbits of
X have a one-to-one correspondence with G. To work around this
limitation, we only use method 1 when not all orbits have a one-to-
one correspondence with G. For orbits that do not have a one-to-one
correspondence with G, we use a normal subgroup of G containing
the stabilizer of an element in that orbit to color that orbit. (In effect,
we are using left coset coloring for that orbit.)

Thus, we can obtain a right coset coloring of a pattern by
applying Theorem 2 using the following procedure:
1. Determine the symmetry group G of the pattern.
2. Let X be the set of tiles in the pattern. Find the orbits
X1, X5, ..., Xy of X under the action of G. Choose an element
x; from each orbit X;,i € {1,2, ..., m}.
3. For Coloring Method 1: Foreach i € {1,2, ..., m}.
a. Select a subgroup H;. If X; does not have a one-to-one
correspondence with G, choose a normal subgroup
containing the stabilizer of x;.
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b. Determine the right cosets of H;.

c. For each right coset H;g of H;, get the set of images
H;gx; and assign the same color to the tiles in this set.

4. For Coloring Method 2:

a. Selecta subgroup H.

b. Determine the right cosets of H.

c. Foreachright coset Hg

i. Foreachi € {1,2,...,m}, get the set ofimages Hgx;.
ii. Assign the same color to the tiles in the set
U, Hgx; .

Example. We color the star pattern in Figure 5(b) using the
procedure above. The symmetry group of the star pattern is G =
(a,b) = Ds, where a = Rot(0,72),b = Ref(l), O is the center of the
star, and [ is the vertical line passing through 0. If X is the set of tiles
in the star pattern, then the orbits of X under the action of G are
given by X; = Gx; and X, = Gx,. Notice that X; has a one-to-one
correspondence with G, but X, does not. Thus, we can only use
method 1. We can use any subgroup to color X;. Choose H; = (b),
with right cosets H;, H;a, H;a?, H;a®, H;a*. We need to use a normal
subgroup of G that contains the stabilizer of x, to color X,. Since
Stab;x, = {e, b}, our only option is to use H, = (a, b). Since H, = G,
the only coset of H, is itself.

The sets of images of x; under the elements of the cosets of
H,; are

Hix; = {x{,bx{} Hiax, = {ax,,a*bx;}  Hia’x; = {a®xy,a®bx,}
Hia3x; = {a3xy,a’bx,} Hia*x; = {a*x;, abx,}
Meanwhile the set of images of x, under the elements of H, is
Hyx, = {x,,ax,, a’x,,a3x,,a*x,, bx,, abx,,a’bx,, a’bx,, a*bx,}

But some of the elements in H,x, are equal, and we get
_ 2 3 4
H,x, = {x,,ax,,a°x,,a’x,,a*x,}

If we assign the colors yellow, orange, red, beige, white, and blue to

Hix;,Hiax,,Hya’x;, H a®x,, Hia*x;, and H,x,, respectively, we
obtain the coloring shown in Figure 6(b).
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Figure 6
A left coset-method 2 coloring of the star pattern (A), and a right coset-
method 1 coloring of the modified star pattern (B)

(6.3) Coset Colorings of the Pampanga Giant Lantern

If we examine the recent designs of giant lanterns by Pampanga’s
artists, we see that the colorings are usually based on left coset
colorings, where the full symmetry group or an index 2 subgroup of
the symmetry group is used. This is the case for the colorings in
Figure 1 and Figure 2(b). This feature is also present in the majority
of the giant lanterns displayed during the Giant Lantern Festival
(“Amazing Giant Parol Festival in Pampanga”, n.d.). Observe that the
elements of the symmetry group permute the colors in each orbit,
indicating that the coloring can be obtained using left cosets.
Furthermore, there are at most two colors in each orbit, so either an
index 1 or index 2 subgroup of the symmetry group was used.

We now derive some symmetrical colorings of the parol
that are dissimilar to existing designs by using left coset colorings
with subgroups of higher index or by using right coset colorings. We
applied the coset coloring method to the giant lantern patterns in
the Parul Sampernandu Coloring Book (City of San Fernando
Pampanga Tourism Office, 2015). Although not all these designs
have been displayed in the Giant Lantern Festival, these were
designed by some of Pampanga’s renowned artists. The symmetry
groups of most giant lantern patterns in the coloring book are of type
D,,, while some are of type C;, or Ds. The patterns are very intricate
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such that the set of tiles usually have more than 20 orbits under the
symmetry group. Since there are too many orbits, we opted to use
the same color in distinct orbits at times. Figure 7 shows two
patterns taken from the coloring book. The symmetry group of the
pattern shown in Figure 7(a) is G = (a) = C;,. The coloring is
obtained by left coset coloring-method 2 using the subgroups (a),
(a?) and (a®). Figure 7(b) shows a coloring of a parol pattern with
symmetry group G = (a, b) = D,,. The pattern is colored using right
coset-method 2 since not all orbits have a one-to-one
correspondence with the symmetry group. The subgroups (a, b),
(a?,ab) and (a®, b) are used for the coloring.

Figure 7
Examples of a left coset coloring (A) and a right coset coloring (B) of
the Pampanga Parol
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(7) CONCLUSION AND RECOMMENDATIONS

This paper examines the symmetries and color symmetries of
Pampanga’s giant lanterns. The symmetry group of the uncolored
designs are either finite cyclic or a finite dihedral where the group
of rotations is generated by a rotation or order n about the center,
and where n is usually a multiple of 5. The existence of designs
where n is not a multiple of 5 reveals that some artists are already
departing from the tradition of centering their designs on the five-
pointed star. Color symmetry analysis reveals that colored designs
by parol artists match left coset colorings where the subgroups of
the symmetry group used for the coloring is either index 1 or 2. We
show how to obtain a different variety of colorings by using higher
index subgroups with left coset coloring or by using right coset
coloring.

Left or right coset colorings are just one of many methods that
allow us to come up with symmetric colorings. Other methods
include employing an algorithm that uses double cosets or exploring
colorings that may be obtained from different coloring methods that
specify the level of symmetry attained: perfect, semiperfect, chirally
perfect. One may also attempt to find a more general approach to
address the limitation encountered in right coset colorings when
there is no one-to-one correspondence between the symmetry
group and the orbits of the tiles under the symmetry group. In fact,
those interested in the theory of color symmetry may analyze the
structural properties of right coset colorings and double coset
colorings.

We hope that this contribution encourages mathematicians to
do research on math art, artists to explore the ways math can be
used to generate art, and teachers to use math art for instruction. We
also hope this initiates more collaboration between mathematicians
and artists, especially those of Central Luzon. This paper is just a
glimpse into the world of math art. Indeed, there are still many areas
to be explored in this fascinating field.
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