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Abstract – Although fully automated modal analysis, a Structural Health Monitoring (SHM) technique, has 

recently been used to monitor the current condition of various civil structures, its application to wind-sensitive 

transmission towers remains limited. Most modal analysis and dynamic characterization studies related to these 

towers, which are essential for first-level damage detection, still require manual selection of input parameter 

values. This paper aims to contribute to the existing discussion by applying a machine learning (ML) algorithm 

to Stochastic Subspace Identification (SSI) to derive the modal parameters of a transmission tower located in 

Orion, Bataan, Philippines, thereby enhancing existing methodologies. In addition to utilizing Random Forest as 

the core intelligence of the method, the research explores three other ML algorithms—XGBoost, Decision Trees, 

and k-Nearest Neighbors (KNN)—as alternative modal prediction models within the framework. Despite 

limitations in sensor placement—restricted to the tower’s lower half—the study successfully extracted ten 

frequency values from an actual transmission tower, closely aligning with analytical predictions. The first mode 

from the field data was identified at 3.21 Hz, with only a 0.63% deviation from the analytical model. Damping 

ratios, ranging from 0.68% to 3.02%, exhibited deviations of up to 138% for the fundamental mode but remained 

within international code recommendations, such as the ASCE 74 guideline of 4%. Random Forest stands out 

among the ML models tested, showing the fastest runtime, highest performance accuracy, and smallest Coefficient 

of Variation (CoV) values given random datasets, closely followed by XGBoost. A variability analysis over 120 

two-minute datasets showed frequency CoVs between 0.42% and 2.39%, and damping CoVs between 2.02% and 

7.02%. The results of this study can be used in model updating and the structural design of transmission towers 

in the Philippines. They also serve as a baseline for future recordings, facilitating enhanced and data-driven post-

disaster decision-making. 

 

Keywords: automated modal analysis, transmission tower, machine learning, structural health monitoring, modal 

parameters 

 

 

 

I. INTRODUCTION 

 

Many studies have highlighted the vulnerability of transmission towers and their 

critical role in a nation’s economy [1, 2, 3], particularly for a disaster-prone country like the 

Philippines. Repairing power transmission lines incurs substantial costs, approximately one 

million dollars per kilometer [4], making the damage from these incidents seemingly 

irreversible [5, 6]. Despite their crucial function in sustaining power networks, transmission 
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towers remain an under-researched topic, particularly within the Philippines’ engineering and 

infrastructure sector.  A deeper understanding of their dynamic behavior will contribute to safer 

and more durable designs, ultimately improving long-term power grid reliability.  

 

Over the years, researchers have investigated the dynamic characteristics of 

transmission towers, particularly their response to extreme wind conditions. Several 

experimental and numerical approaches have emerged, including wind tunnel tests for design 

validation [7], Finite Element Modeling (FEM) for structural modeling [8], and fragility and 

vulnerability assessments [9]. However, among these, Structural Health Monitoring (SHM) 

has gained the most attention due to its ability to provide real-time monitoring, early warning 

systems, and predictive maintenance strategies. Recent advancements in sensor technology and 

data-driven analysis have further reinforced the shift toward automated SHM of different 

structures, ensuring greater accuracy in detecting structural anomalies and improving long-

term maintenance efficiency [10, 11, 12, 13, 14]. 

 

 In the field of SHM, Operational Modal Analysis (OMA) has been widely adopted to 

estimate damage-sensitive features in structures using system identification techniques without 

requiring external excitation. Stochastic Subspace Identification (SSI) is particularly useful for 

handling large vibration datasets with high computational efficiency and automation potential 

[15, 16]. However, traditional SSI methods present several challenges [18].  One significant 

limitation is the misidentification of spurious modes as stable ones, especially when working 

with extensive datasets, despite the application of stabilization diagrams (SD) [19, 20]. This 

issue arises due to the nature of SSI’s mathematical framework and the inherent noise present 

in vibration data. Additionally, SSI relies on the subjective selection of critical control 

parameters, such as the number of block rows (i) and system order (n). If these parameters are 

incorrectly set—either too high or too low—the method tends to produce unwanted modes and 

misidentify a structure’s dynamic properties [21, 24]. 

 

Several studies have emphasized this challenge. Zini et al. [22] and Tronci et al. [23] 

highlighted that existing research has not fully addressed the automated selection of control 

parameters, particularly i and n, leading to inconsistencies in modal identification. Similarly, 

Ardilla et al. (2023) noted that the exact system order is never precisely known, and current 

strategies often lead to overestimation or underestimation of modal parameters, affecting the 

reliability of the identification process. These limitations of traditional SSI techniques have 

been observed in recent OMA studies on transmission towers, including the works of Li et al. 

[25], Hsu et al. [26], Xingjie et al. [27], and Feng et al. [28]. Their findings highlight the need 

for enhanced automation, improved parameter selection strategies, and noise mitigation 

techniques to refine modal analysis accuracy for transmission towers. 

 

 To overcome parameter selection challenges, Zhou et al. [29] proposed a Monte Carlo-

based technique, randomly sampling i and n values to optimize real-mode extraction. Given 

the large volume of outputs, machine learning (ML) was integrated to filter and analyze results 

from large-scale simulations. In 2023 [32], Zhou et al. further refined their approach using 

XGBoost (XG) and DBSCAN to automatically detect closely spaced modes and optimize 

parameter selection. Rosso et al. [30] expanded on Zhou et al.'s [29] work, still using a Monte 

Carlo approach but incorporating four control parameters, including time window length (j) 
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and time instant parameters (t), identifying their position within the monitored signal. 

Specifically, the study utilizes a Halton Technique to generate random sets of control 

parameters, removing the subjectivity currently faced by existing challenges. Given the large 

number of outputs, they used Random Forest (RF) to classify and predict feasible sets, aiming 

to estimate the physical modes. This method was validated on a high-rise tower in Kuwait, 

successfully estimating physical modes close to its analytical results. Cucuzza et al. [31] 

adapted the technique to extract the dynamic properties of two confined masonry buildings in 

Italy. While the RF method produced robust results, the literature did not explore the 

computational advantages of using RF compared to other learning methods.  

 

Despite these advancements, few studies have validated ML-driven SSI for 

transmission towers. This study aims to contribute to the ongoing discussion on SHM for these 

structures by applying SSI using Rosso et al.'s open-source automated modal identification 

package. The study evaluates RF as the core intelligence while also exploring XG [29], 

Decision Trees (DT) [6, 47], and k-Nearest Neighbors (KNN) [48] as alternative models. This 

study integrates various SHM techniques [35, 36, 37] for data collection, preprocessing, and 

post-processing. The method is first applied to FEM-generated vibration data and then 

compares modal results extracted from the field. Additionally, modal parameters derived 

through Brincker and Andersen's SSI approach [33] and Caicedo et al.'s NExT-ERA method 

[34] serve as benchmarks for validation.  

 

 

II. DATA ACQUISITION AND PREPROCESSING 

 

The data collection process in this study is structured into two main stages: the Pre-

validation (PV) Stage, which involves computer-simulated responses, and the Field 

Implementation (FI) Stage, where real-world vibration data is collected from an actual 

transmission tower. Figure 1 presents the study framework, detailing the integration of these 

two data sources into the ML-based SSI approach. 

 
Figure 1. Study framework. 
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In the PV Stage, an FEM of the transmission tower is developed using ETABS, and 

random excitation generated in MATLAB is applied to simulate structural responses. These 

digitally generated signals serve as a reference for validating the results obtained from field 

measurements. 

 

For the FI Stage, field testing is conducted on a 230-kV steel lattice transmission tower 

operated by Peninsula Electric Cooperative, Incorporated (PENELCO) in Orion, Bataan, 

Philippines. The tower stands 38 meters tall, featuring a tapered cross-section with a base leg 

width of 7 meters, gradually reducing to 2.5 meters at 17.8 meters above ground. The field 

monitoring system, as shown in Figure 2, consists of 16 wired accelerometers installed at three 

distinct heights (5 m, 10 m, and 17.8 m), a thermo-anemometer for recording wind conditions, 

data acquisition devices, and a power supply. Vibration measurements were conducted in 

February 2024, coinciding with a scheduled power interruption by PENELCO to ensure safe 

and uninterrupted data collection. The total field test duration was approximately nine hours, 

including scaffolding setup, with four hours dedicated to continuous vibration monitoring. 

Wind-induced excitation served as the sole source of structural vibrations. 

 

 
Figure 2. (a) Location of sensors; (b) sensor A5 mounted on top of the tower member; (c) 

orientation of sensor; (d) placement of the sensor. 

 

Due to safety constraints and limited accessibility, sensors were mounted only on the 

lower portion of the tower. Consequently, while modal frequencies and damping ratios could 

be analyzed, a complete reconstruction of mode shapes was not feasible. Figure 2a presents 

the specific locations of the sensors, while Figures 2b–2d provide close-up views of sensor A5, 

showcasing its placement and orientation. The accelerometers were installed in two horizontal 

directions (x and y) to capture bidirectional vibrations. Data acquisition was performed at a 

sampling rate of 40 Hz to focus on frequency components below 20 Hz, following the Nyquist 

criterion. 

 

The recorded data are immediately organized and categorized. A total of 24 ten-minute 

datasets are evaluated and cleansed, and signal filtering is applied using the Butterworth filter 
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to isolate frequencies that are pertinent to the structural characteristics of the electrical 

transmission towers. The Butterworth filter's cutoff frequency is set at 2 Hz minimum and 

maximum of 19 Hz.  Singular Value Decomposition (SVD) is applied to the Power Spectral 

Density (PSD) graphs to further refine the data.  

 

 

III. ML-BASED SSI 

 

The SSI-COV algorithm [51] is the primary modal analysis method used in this study 

to identify modal parameters from covariance matrices of ambient vibration measurements.  

Its discrete-time state-space form is expressed as: 

 

                                            𝑥𝑟+1 = 𝐴𝑥𝑟 + 𝑣𝑟                                                        

                                                       𝑦𝑟 = 𝐶𝑥𝑟 + 𝑤𝑟                                                    (1a-1b) 

Where:   

𝑥𝑟𝜖ℝ𝑛 : State vector at sample 𝑟 , 𝑦𝑟𝜖ℝ𝑙 : Output vector at sample r , 𝑨𝜖ℝ𝑛×𝑛: State transition 

matrix , 𝑪𝜖ℝ𝑛×𝑛: Observation matrix , 𝑣𝑟 : Process noise, 𝑤𝑟 : Measurement noise 

𝑙 : Number of monitored degrees of freedom (DOFs), 𝑛 : System order 

 

Following the approach of Rosso et al. [30] and Cucuzza et al. [31], a Quasi-Monte 

Carlo (QMC) technique is adopted to automate the SSI process and avoid manual tuning of 

control parameters. Parameter sampling is performed using the Halton technique [53,54], and 

their limits are defined by Equations (2a–2d): 

 

𝑛𝜖[𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥] = [2 ∙ 𝑙, 𝑖𝑚𝑎𝑥 ∙ 𝑙] 

𝑗𝜖[𝑗𝑚𝑖𝑛, 𝑗𝑚𝑎𝑥] = [|
2

𝑚𝑎𝑥{𝑓𝑓 , 1}
| , 𝑗𝑚𝑎𝑥 ∙ 𝑙] 

𝑡𝜖[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥] = [0, 𝑗𝑚𝑎𝑥] 

                                    𝑖𝜖[𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥] = [[
𝑓𝑠

2𝑚𝑎𝑥{𝑓𝑓,1}
] , 10 [

𝑓𝑠

2𝑚𝑎𝑥{𝑓𝑓,1}
]]                           (2a-2d) 

 

To filter out only the stable poles, stability criteria [52] are applied as shown in 

Equations 3a- 3d:  

∆𝑓 =
𝑓𝑎 − 𝑓𝑏

𝑓𝑎
≤ 0.01 

∆𝜉 =
𝜉𝑎 − 𝜉𝑏

𝜉𝑏
≤ 0.05 

                                                   1 − 𝑀𝐴𝐶(𝛹𝑎, 𝛹𝑏) ≤ 0.02         

                                                                      𝜉𝑎 ≤ 0.10                                                   (3a-3d)                            
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The extraction of physical poles from possibly stable poles is accomplished via Kernel 

Density Estimation (KDE), which predicts the frequency value where most poles coincide. The 

univariate KDE based on a Gaussian Kernel [37,55] is represented by Equations 4a-4b. 

 

𝜙 =
1

𝑁𝑝ℎ
∑ 𝐾 (

𝑧 − 𝑧𝑝

ℎ
) ,

𝑁𝑝

𝑝=1

 

                                 𝐾 (
𝑧−𝑧𝑝

ℎ
) =

1

√2𝜋ℎ
𝑒

(𝑧−𝑧𝑝)

2ℎ

2

                                       (4a-4b) 

 

where 𝜙̂:   estimated probability density function (PDF) obtained from the KDE 

ℎ : bandwidth or smoothing parameter (fixed for all samples) 

𝑁𝑝 : all possible stable poles 

 

Phase 1 involves generating quasi-random sets of control parameters using the Halton 

technique and conducting a minimum of 100 useful QMC simulations [32], analyzing their 

stabilization diagrams through KDE, and training an ML model to classify feasible parameter 

sets based on an Information Content (IC) index of 0.01. Phase 2 then automates the 

identification of physical modes by filtering only high-quality simulations using the 

information obtained from Phase 1. 

 

The selection of KNN, DT, and XG in this study is based on their established roles in 

ML-based SHM, particularly in modal parameter identification. KNN [49] is convenient and 

widely used; however, it struggles with computational efficiency and is sensitive to data quality 

and hyperparameter choices. DT [6, 38] strikes a balance between ease of use and performance, 

but caution must be taken to mitigate overfitting and sensitivity to the data. Meanwhile, XG, 

an open-source machine learning package introduced by Chen and Guestrin [50], has gained 

significant popularity due to its high performance in regression, classification, and ranking 

tasks. 

 

Relationships between mode shape matrices of selected nodes from both the FI and PV 

stages are presented both numerically and visually. The Modal Assurance Criterion (MAC) 

[17], a statistical correlation criterion as shown in Equation 5. 

 

𝑀𝐴𝐶(𝜓𝑃𝑉, 𝜓𝐹𝐼) =
|({𝜓𝑃𝑉}𝑇{𝜓𝐹𝐼})|

2

({𝜓𝑃𝑉}𝑇{𝜓𝑃𝑉})({𝜓𝐹𝐼}𝑇{𝜓𝐹𝐼})
                         (5) 

where 𝜓𝑃𝑉 , 𝜓𝐹𝐼 are the analytical and operational mode shape vectors, respectively. 

 

 

IV. ML MODEL PERFORMANCE & MODAL ANALYSIS 

4.1 PV Stage  

A minimum of 100 useful sets and a study-defined maximum of 650 feasible sets were 

simulated across all ML models to estimate modal parameters with minimal deviations. Table 
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1 presents the effectiveness of each ML model in extracting useful sets during both phases. RF 

and XG demonstrated the highest efficiency, achieving 100% accuracy while requiring fewer 

sampled sets—260 and 272, respectively. In contrast, KNN and DT required significantly more 

sampled sets—355 and 338, respectively—to achieve 85% and 92% accuracy. These results 

suggest that KNN and DT require larger datasets to reach optimal performance. 

 

Table 1. ML models’ evaluation report – PV stage. 

 

ML 

Model 

Phase 1 Phase 2 

Runtime 

(hrs) 

TS1 Accuracy2 Runtime 

(hrs) 

TS1 Accuracy2 

RF 1.71 260 100% 1.53 1911 100% 

XG 1.84 272 100% 1.63 2022 100% 

KNN 1.92 355 85% 1.76 2445 84% 

DT 1.73 338 92% 1.68 2378 86% 

1Total Sampled Sets, 2Obtained from Python Classification Report 

 

For Phase 2, RF and XG maintain their accuracy at 100%, confirming their excellent 

generalization capability. However, DT experiences a decrease in accuracy from 92% in Phase 

1 to 86% in Phase 2, indicating reduced reliability in predicting new parameter sets. Similarly, 

KNN drops from 85% to 84%. The faster runtime in Phase 2 across all models can be attributed 

to the elimination of the need to re-run the entire SSI process for each simulation. Instead, the 

trained ML models directly evaluate new parameter sets, streamlining the computational load. 

The extended runtime for KNN and DT remains notable, likely due to their exhaustive 

comparison-based nature, which requires analyzing a larger number of sets before achieving 

convergence. Thus, RF and XG prove to be the most efficient in selecting and discarding 

feasible sets, making them optimal choices for ML-based SSI. 

 

Figure 3a presents the monitored acceleration data responses of the analytical model, 

showing clean acceleration signals due to the absence of environmental noise. Figure 3b 

presents the SVD of PSD, highlighting the fundamental frequencies of the first two bending 

modes, which peak at approximately 3.19 Hz and 3.23 Hz, respectively. 
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(a)                                                                    (b) 

Figure 3. (a) PV stage’s monitored signals and (b) SVD of PSD plot. 

 

Figure 4 presents the overlapped SDs from the PV stage, illustrating the distribution of 

stable and unstable poles across multiple iterations of the QMC simulation. The diagram 

provides insight into mode stability, with selected poles representing modes that satisfy 

stability criteria for frequency, damping, and mode shapes. Poles labeled as "0" (red circles) 

indicate unstable modes that fail the stability conditions [30, 31]. 

 

 
Figure 4. PV stage’s overlapped stabilization diagram after QMC simulations.  

 

Figure 5 further refines the modal identification process by applying KDE to extract 

the most prominent modes. The KDE graph highlights that Mode 2 exhibits the highest density, 

making it the most identifiable mode, whereas Mode 1, despite being closely related, has a 

slightly lower KDE prominence. Local modes, such as Modes 3 and 4, are the least identifiable 

due to their lower modal participation. The KDE distribution also reveals significant modal 

activity within the 10 Hz–15 Hz frequency range, with additional peaks beyond 15 Hz, 

indicating the presence of higher-order modes. 
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Figure 5. Stable poles KDE along frequency – PV stage. 

 

Tables 2 and A1 present the modal parameters estimated using ML-based SSI, SSI-

BA, and NExT-ERA techniques. Based on mode shape characteristics and modal direction 

factors, five modes are classified as bending, three as torsional, and two as local. It is important 

to note that this modal classification is derived from the analytical model. The classifications 

are supported by visual inspection of the FEM-derived displacement vectors shown in Figure 

A1, which clearly illustrate the distinct global deformation patterns associated with each mode. 

Notably, Modes 3 and 4 exhibit localized displacements concentrated in the lower section of 

the tower. This behavior aligns with findings by Bhowmik and Chakraborti [11], who 

identified similar localized modal responses in a 34-meter transmission tower analyzed using 

STAAD Pro.  

 

Table 2. Identified modal frequencies – PV Stage. 

 

 

Mode 

𝑓 (𝐻𝑧)  

 

Category 

 

ML-Based SSI 

 

 

FEM 

 

 

SSI-BA 

 

NExT-

ERA RF XG KNN DT 

1 3.187 3.189 3.186 3.188 3.217 3.193 3.234 Bending 

2 3.230 3.231 3.231 3.231 3.236 3.227 3.247 Bending 

3 6.286 6.289 6.280 6.288 6.301 6.246 6.173 Local 

4 7.461 7.481 7.472 7.477 7.453 7.519 7.164 Local 

5 9.109 9.095 9.098 9.109 9.114 9.027 9.375 Torsion 

6 10.065 10.099 10.100 10.090 10.06 10.151 10.058 Bending 

7 11.056 11.054 11.057 11.063 11.004 11.072 11.054 Bending 

8 11.154 11.164 11.451 11.442 11.185 11.217 11.232 Bending 
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9 12.220 12.242 12.280 12.250 12.233 12.256 12.2919 Torsion 

10 14.192 14.149 14.181 14.179 14.191 14.202 14.213 Torsion 

 

4.2 FI Stage  

Table 3 presents the effectiveness of each ML model in extracting useful sets during 

both phases. The performance of ML models for both PV and FI stages follows almost similar 

patterns. There is a slight difference in the runtime of the FI stage compared to the PV stage 

dataset. The longer runtimes for KNN and DT—2.11 and 1.91 hours, respectively—are 

primarily due to the larger number of samples required to meet the convergence criteria, which 

impacts their overall efficiency. 

 

Figure 6a presents the selected two-minute time history captured at eight locations 

along two axes. After Butterworth filtering, the SVD of PSD is developed and shown in Figure 

6b. 

 

Table 3. ML models’ evaluation report – FI Stage. 

 

ML 

Model 

Phase 1 Phase 2 

Runtime 

(hrs) 

TS1 Accuracy2 Runtime 

(hrs) 

TS1 Accuracy2 

RF 1.92 290 98% 1.74 2078 98% 

XG 2.01 301 98% 1.86 2188 98% 

KNN 2.25 333 88% 2.11 2578 84% 

DT 2.13 345 91% 1.91 2523 85% 

1Total Sampled Sets, 2Obtained from Python Classification Report 

 

 
(a)                                                                    (b) 

Figure 6. (a) FI stage’s monitored signals and (b) SVD of PSD plot. 
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Comparing the overlapped SDs from Figures 4 and 7, the analytical vibration data 

clearly show distinct modal peaks, which are more easily distinguishable than those from field 

vibration data.  These differences are anticipated due to the randomness of data from field tests, 

affected by the quality of testing owing to the limited number of sensors, and measurements 

are only conducted at the lower half of the structure.  

 

 
Figure 7. FI stage’s overlapped stabilization diagram after QMC simulations.  

 

Figure 8 illustrates the KDE graph displaying all identified poles, accompanied by 

numerical values of selected frequencies from Table 4, and offers a visualization similar to a 

power spectral plot. The graph reveals the presence of numerous identified modes, even 

through automated modal analysis. This highlights that the quality of modal identification is 

highly dependent on the clarity and informativeness of the vibration data collected from the 

field.  

 

The first and second modes are very identifiable but are located very close to each 

other, illustrating the challenge of distinguishing closely spaced modes, especially in structures 

with symmetrical cross-sections. Although we consider OMA as more representative of reality 

compared to numerical approximation, uncertainties and other factors related to field vibration 

collection affect the overall reliability of the OMA results. Given these uncertainties, we 

deliberately select only the modes that precisely match the numerical approximations to ensure 

a robust and unequivocal comparison of values and mode shapes between analytical and 

operational data. 

 

 
Figure 8. Stable poles KDE along frequency – FI stage. 
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Despite the proven capability of automated SSI to detect the most prominent modes, 

there remains difficulty in extracting modes during the FI stage due to not fully informative 

vibration data. Table 4 and Figure 8 both illustrate the modal matching conducted in this study, 

based on the highest KDE values for the identified modes, where the highlighted frequency 

value is the selected modal frequency for the FI stage. 

 

Table 4. Selection of representative modes based on KDE. 

Mode Frequency 

Value 

KDE Mode Frequency 

Value 

KDE 

3 6.34 0.22 8 11.30 0.21 

 6.21 0.18  11.32 0.08 

4 7.51 0.18 9 12.33 0.3 

 7.29 0.14  12.81 0.17 

5 9.11 0.17 10 14.23 0.09 

 9.21 0.10  14.11 0.08 

 

Tables 5 and A2 present the modal identification results obtained from field 

measurements using ML models, alongside comparisons with conventional system 

identification methods. Notably, several modes—particularly Modes 6 and 9—are marked 

with NI (Not Identified) or NA (Not Applicable). This omission underscores the difficulty of 

extracting reliable damping information from low-excitation, noise-polluted ambient vibration 

data using conventional techniques. These methods often fail to detect weaker modes due to 

insufficient energy content or sensor limitations, resulting in incomplete or inaccurate damping 

estimations. Moreover, when damping ratios are identified, traditional approaches tend to yield 

higher values than ML-based results, which suggests a potential overestimation influenced by 

signal noise and reduced sensitivity to subtle vibrational responses. 

 

Unlike damping, no specific code requirements exist for modal frequency values to 

limit vibrations and ensure structural integrity of the latticed tower. Consequently, a 

comparative analysis with similar studies remains the most reliable validation approach. The 

first fundamental frequency, identified at 3.21 Hz for a 38-meter tower, aligns well with 

expected values based on height-dependent trends observed in previous studies [3, 25, 26, 27, 

28, 39]. This further substantiates the expected correlation between tower height and the first 

and second bending mode frequencies, as illustrated in Figure 9. The trend highlights a 

fundamental principle in structural dynamics: as tower height increases, structural flexibility 

generally increases and natural frequencies decrease, underscoring the importance of 

evaluating frequency behavior across varying tower configurations. 
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A notable general trend for transmission towers is the decrease in damping ratio values 

from lower to higher modes, similar to the modal results of Takeuchi et al. [40]. However, this 

does not necessarily occur in other structures, as variations can be specific to individual cases. 

It is understood in structural analysis that lower modes typically have the highest participation 

ratios; however, the relationship between damping ratios and modes is not fixed, and variations 

can occur due to several factors at different modes, as seen in the study of Feng et al. [28]. 

 

Table 5. Identified modal frequencies – FI Stage. 

 

 

Mode 

𝑓 (𝐻𝑧) 

 

ML-Based SSI 

 

 

FEM 

 

 

SSI-BA 

 

NExT-

ERA RF XG KNN DT 

1 3.208 3.209 3.204 3.204 3.217 3.237 3.267 

2 3.267 3.284 3.316 3.285 3.236 3.480 3.339 

3 6.345 6.344 6.349 6.348 6.301 6.498 6.449 

4 7.502 7.502 7.493 7.497 7.553 7.317 7.306 

5 9.118 9.138 9.141 9.149 9.114 9.192 10.087 

6 10.181 10.198 10.226 10.208 10.06 NI1 NI 

7 11.091 11.071 11.062 11.012 11.004 11.836 11.491 

8 11.301 11.326 11.325 11.336 11.185 12.368 12.048 

9 12.334 12.399 12.395 12.406 12.233 NI NI 

10 14.234 14.236 14.229 14.228 14.429 18.225 18.336 

         1NI - Not Identified 

 

According to the extracted damping ratio values for the first and second sway modes, 

even with aerodynamic damping effects neglected, the identified damping values of 3.02% and 

2.51% remain below the ASCE 74 [42] recommendation of 4% and fall within the ranges 

specified by other international standards [41,43,44,45,46], which typically span from 1% to 

8%. A study conducted by Zou et al. [3] on a 28-meter transmission tower in China during 

Typhoon Haima (Typhoon Lawin in the Philippines) recorded damping values of 2.84% 

(transverse direction) and 3.83% (longitudinal direction) under a 16 m/s mean wind speed, 

demonstrating that the damping ratios obtained in this experiment align with those observed in 
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full-scale structures subjected to extreme excitations.  
 

 
Figure 9. Prediction vs estimated frequency value of the first mode. 

 

Zhu et al. [39] highlighted that a higher damping ratio improves energy dissipation and 

reduces wind-induced oscillations, while a lower damping ratio necessitates increased tower 

mass and axial force capacity to maintain wind resistance. In this study, if the measured 

damping ratio is 3.02% but needs to be increased to 4%, retrofitting strategies should focus on 

enhancing energy dissipation mechanisms through structural modifications, such as adding or 

improving joint connections or incorporating high-damping materials, to effectively mitigate 

oscillations without significantly increasing structural mass. However, several factors may 

influence the accuracy of damping ratio estimations, including sensor precision, data 

acquisition quality, environmental variability, and nonlinear noise interference in the vibration 

signals. These uncertainties emphasize the importance of high-quality sensor deployment and 

improved signal processing techniques to enhance the reliability of damping estimations in 

transmission towers. 

 

4.3 PV Stage vs FI Stage 

Referring to Table 6, both RF and XG models maintained high accuracy during the PV 

stage, with 100% accuracy, but this value dropped to a decent 98% for both training and 

prediction. This decline can be attributed to the more random dataset that resulted in less 

identifiable modal peaks. Aside from DT, in the FI stage, KNN also exhibits a notable drop in 

accuracy from 88% in the training phase to 84% in the prediction phase. Despite this, there is 

no significant change in overall accuracy across different stages, which could be due to the 

stability of the dataset. As a result, overfitting analysis for these models is challenging to 

conclude definitively for this study. 

 

Table 7 outlines the modal results obtained from two stages using the RF model: the 

PV stage, derived from the analytical model, and the FI stage, based on field sensor 

measurements. The percent change values indicate how much the frequencies have shifted 

from the PV to the FI stage. The frequencies shown here are selected from four models that 

exhibit the smallest relative differences from the FEM for both PV and FI stages. The 

frequency values recorded during the FI stage correspond well with those predicted by the 

theoretical model, with percent differences ranging from 0.11% to 1.25%, with the largest 
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increases observed in Modes 2, 6, and 8, and the smallest in Modes 5 and 10. Notably, all 

frequencies identified during the FI stage are slightly higher than their PV counterparts, except 

for Mode 7, which showed a marginal decrease of 0.54%. This may suggest that the analytical 

model's assumptions and estimations do not fully capture the tower's true dynamic responses. 

The assumption that the FEM model as the healthy state is not reasonable, however, values 

observe in the recent operational modal analysis serve as the baseline for future observation. 

 

Table 6. Accuracy of each ML model - PV vs FI. 

 

 

Phase 1  Phase 2 

ML 

Model 

PV 

Accuracy 

FI 

Accuracy 

 PV 

Accuracy 

FI 

Accuracy 

 

RF 

 

100% 

 

98% 

  

100% 

 

98% 

 

XG 

 

100% 

 

98% 

  

100% 

 

98% 

 

KNN 

 

85% 

 

88% 

 

  

84% 

 

84% 

DT 92% 91%  86% 85% 

 

For the damping ratios, significant discrepancies are observed, with percent changes 

ranging from –52.45% to +137.80%. These differences are expected because the FEM assumes 

a fixed damping ratio of 1% for all modes. Therefore, the damping values identified during the 

PV stage should cluster around this baseline. In contrast, the damping ratios obtained from the 

FI stage reflect the actual energy dissipation behavior of the structure under ambient 

conditions, which can vary due to material properties, joint flexibility, wind interaction, and 

other environmental factors. This contrast highlights the importance of field-based modal 

identification in refining model assumptions and enhancing the realism of structural 

simulations. 
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Table 7. Modal parameter results– PV vs FI Stage 

 

Mode 

𝑓 (𝐻𝑧) Percent 

Change 

1 

𝜉 (%) Percent 

Change PV FI PV FI 

1 3.19 3.21 0.63 1.27 3.02 137.80 

2 3.23 3.27 1.24 1.08 2.51 132.41 

3 6.29 6.35 0.95 2.01 1.57 -21.89 

4 7.46 7.50 0.54 2.22 1.69 -23.87 

5 9.11 9.12 0.11 1.55 0.85 -45.16 

6 10.06 10.18 1.19 1.32 1.44 9.09 

7 11.15 11.09 -0.54 1.23 1.82 47.97 

8 11.16 11.30 1.25 1.78 1.94 8.99 

9 12.22 12.33 0.90 1.69 0.82 -51.48 

10 14.19 14.23 0.28 1.43 0.68 -52.45 

                                1 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶ℎ𝑎𝑛𝑔𝑒 = (𝐹𝐼 − 𝑃𝑉)/𝑃𝑉 

 

 

4.4 Mode Shape Analysis and FE Model Updating 

Figure A1 presents the mode shapes derived from the ETABS model, serving as the 

reference for mode classification into bending, torsional, and local modes. Due to limited 

sensor placement on the lower portion of the tower, a complete reconstruction of mode shapes 

from field data was not possible. However, ML-based SSI was still able to estimate mode 

shapes, with only six frontal nodes considered for visualization in this study. 

 

The sensor placement significantly influences mode shape accuracy, particularly for 

torsional modes, which require diagonal sensor positioning. Sensors were installed at three 

heights only and in two horizontal directions, limiting nodal coverage. As a result, higher-order 

bending and torsional modes (Modes 8, 9, and 10) were not fully identified, leading to lower 

MAC values for these modes.  

 

The FI model was tuned to include operational damping ratios extracted from modal 

analysis, diverging from the original assumption ξ=1% for all modes as suggested by the 

Chinese GB50009-2012 Code for latticed towers and ξ=4% based on the ASCE standard. The 

model update utilized time history functions generated using a random wind noise vibration 
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using MATLAB (Scenario 1) and historical earthquake data from the 1940 El Centro 

earthquake (Scenario 2). As expected, from Figures A2-A4, the tower with a 1% damping ratio 

experiences the largest displacement, highest nodal shear, and overturning moment, 

highlighting the importance of accurate assumptions to avoid overdesign or under design. 

 

4.5 Variability Analysis 

For variability analysis, the 4-hour continuously monitored data is divided into 120 

two-minute datasets. Each dataset undergoes individual ML-based SSI for each model. These 

tests were conducted over a short span of four hours in a single day, which may account for 

the stable temperature readings that varied between 29°C to 33 °C and the wind speeds that 

peaked at a modest 2 m/s. 

 

Figure 10 shows the average values, including the standard deviations of performance 

scores from metrics across 120 runs of segmented datasets. From the representation, both RF 

and XG achieved high scores from different metrics such as accuracy, precision, recall, and 

F1-score—each maintaining 98-99% mean values in all categories. In contrast, KNN and DT 

exhibited lower performance levels. KNN scored ranging from 85 to 87, while DT displayed 

slightly higher precision at 86%, recall at 89%, F1-score at 87%, and accuracy at 88%.  

However, for smaller-scale applications with fewer sensors and datasets, DT's simpler 

structure offers a faster alternative. In light of these findings, this study highlights the 

importance of selecting and optimizing ML models based on specific data volumes and 

application requirements. 

 

Figure A5 presents histograms and Coefficient of Variaton (CoV) values for 120 

identified frequencies across ten modes of four ML-based SSI models, offering valuable 

insights into how the identification system responds to various types of different sets of 

acceleration data. The CoVs for frequencies show significant variation, ranging from 0.42% to 

2.39%, suggesting that while the system is largely robust, some higher modes, like modes 9 

and 10, display notable variability and also rank as the least identifiable. On the other hand, 

the CoVs for damping ratios, as shown in Figure A6, are significantly higher and more widely 

spread than those for frequencies, with values spanning from 2.02% to 7.02%.  
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Figure 10. Comparison of Phase 2 average score metrics for different ML models. 

 

By inspecting Table 8, RF stands out, demonstrating the fastest processing time for 2-

minute data intervals and considering sixteen sensor channels, higher accuracy in classifying 

stable modes, lower relative differences compared to analytical results, and smaller CoVs for 

random data sets. XG is also a strong contender, showing robust performance across multiple 

metrics. For simplicity, only the accuracy of the field test results is shown, as values for other 

evaluation metrics are very close to the accuracy values. Furthermore, correlation analysis 

using Pearson coefficients, such as for Mode 1 (see Figure A7), revealed weak and statistically 

insignificant relationships between modal frequencies and environmental variables like 

temperature and wind speed, and was therefore excluded in determining the best ML model, 

despite consistent readings across all models 

 

Table 8. Performance summary of ML models and best model selection based on key metrics. 

 

ML 

Model 

 

 

Accuracy 

 

Total 

Runtime 

(h) 

Average 

Relative Difference 

(RD) vs FEM 

 

MAC 

(PV vs 

FI) 

 

CoV 

PV FI f 𝜉 

RF 0.97 1.65 0.24 0.79 78.6 1.30 3.89 

XG 0.96 1.86 0.30 0.93 78.6 1.32 3.94 
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KNN 0.89 2.33 0.38 1.09 78.2 1.38 4.04 

DT 0.88 2.08 0.32 0.95 78.2 1.36 3.96 

 

Metrics 

Evaluated 

 

Highest 

accuracy 

 

Fastest 

runtime 

 

Lowest 

RD 

Highest 

average 

MAC 

 

Lowest 

average CoV 

Best 

Performing 

Model 

 

RF/XG 

 

RF 

 

RF 

 

RF/XG 

 

RF 

 

 

V. CONCLUSIONS AND RECOMMENDATION 

 

Despite the challenges posed by limited sensor placement and environmental 

variability, this study establishes a strong foundation for developing an automated and 

comprehensive Structural Health Monitoring (SHM) system for transmission towers and other 

critical infrastructures in the Philippines. The successful implementation of Rosso et al.'s 

(2023) Stochastic Subspace Identification (SSI) algorithm demonstrates its viability in 

extracting dynamic characteristics from both digitally simulated and field-measured vibration 

data, making it an effective first-level damage detection tool. Expanding sensor deployment 

across higher elevations of the tower will enhance mode shape estimation, allowing for more 

precise damage localization. Future research should explore environmental variability, 

including nighttime measurements with fluctuating temperatures and higher wind speeds, to 

further validate the system’s robustness. 

 

The results confirm a strong alignment between operational modal analysis (OMA) and 

finite element model (FEM) predictions, though significant variability in many modes makes 

mode-matching challenging. While fundamental frequencies closely follow theoretical 

expectations, damping ratios exhibit greater uncertainty, with Mode 1 showing a deviation of 

up to 138%. These findings highlight the sensitivity of damping estimation to field conditions, 

emphasizing the need for high-quality data acquisition equipment and optimized sensor 

deployment. 

 

Among the machine learning (ML) models tested, Random Forest (RF) outperformed 

other algorithms, delivering higher accuracy, faster processing times, and lower deviations 

from FEM results. XGBoost (XG) also demonstrated strong performance, whereas K-Nearest 

Neighbors (KNN) and Decision Trees (DT) exhibited longer runtimes and lower efficiency, 

suggesting the need for further optimization through Bayesian tuning or the exploration of 

alternative ML models. 
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To enable real-time monitoring of transmission towers, future studies should integrate 

more automated and noise-sensitive data acquisition and preprocessing systems capable of 

filtering and refining vibration signals before modal identification. This requires 

interdisciplinary collaboration, particularly with hardware specialists, to develop a data 

acquisition interface compatible with multiple sensor types, including accelerometers. 

Ultimately, this study serves as a stepping stone toward a fully automated SHM system, 

bridging the gap between real-time data collection and structural performance assessment, 

ensuring the resilience and safety of critical infrastructures in the Philippines. 
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