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ABSTRACT

DC current measurement using magnetic flux balancing with an automatic controller is presented. A
ferromagnetic, toroidal core is used both as a flux detector and magneto motive force summer element.
A symmetrical, AC triangular current sent through an excitation coil builds up flux in the core. The
DC current to be measured is sent through a another coil, which sets up a bias magneto motive force
or mmf. The bias mmf causes the core to reach saturation earlier on one side of the flux build up than
on the other side. As core saturation is reached, a voltage pulse transition is detected in a separate
winding by a Schmitt trigger. Its duty cycle varies with the amount of flux imbalance affecting an
automatic control feedback which strives for zero flux, by sending an opposing current, through a
fourth coil, producing a canceling flux. An electronic null balancing circuit was wired to verify the
technique.

Keywords: Coercion point, flux, magneto motive force, Opamp, proportional-integral, residual flux,
remanence, saturation, Schmitt trigger

1. INTRODUCTION

Current measurement techniques have been devised in many configurations. There are both
passive and active techniques. Passive measurement techniques do not need any other external
power. In passive current measurements, the current is passed in series, through a small,
precision calibrated resistance. Typically, these resistor shunts produce 50mV for 100 amperes
or more and are placed directly on the terminals of a D’Arsonval meter. Typical accuracy of
these meters are 3% to 5% and offer the simplest kind of current indication.

In other cases, the voltage is processed further with circuitry for galvanic isolation and
amplification. Different current ranges are made possible by the addition of multiplier
resistances on the meter.

Active techniques use more circuitry and require external power. In current mirror
configurations, current is entered on one side of the mirror. By the use of a scaling resistor,
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Figure 1. DC Current ”‘Transformer”’ Simplified Block Diagram. The mmf from a current iM flowing
in an auxiliary winding opposes the mmf from In and the output signal from a Hall element in an
air gap of the core, affects an automatic control system striving for zero flux in the core, such that

NiN = NM IM . Under balance conditions, the voltage, Um is a measure of In.

the output of the mirror is converted to a voltage referred to ground, thus a measure of the
original input current is obtained. Sense FETs use this technique to minimize insertion power
loss.

Still other active techniques use the idea of zero flux null balancing. Null balancing affords
the greatest isolation and the least insertion loss in the circuit whose current is being measured.
What is required, however, is that the null detector remain consistent as the balance condition
is reached. The detector, likewise, has to be very sensitive near the null point. Signal bandwidth
is limited by the closed loop bandwidth of the system. Signal range is limited by the compliance
of the closed loop elements, but is easily scaled by the turns ratio of the coupled coils producing
the flux.

A convenient way of measuring DC currents from a few amperes to several kilo-amperes is
to use a DC current transformer based on a Hall element as in reference [1]. In Figure 1, the
DC current ”‘Transformer”’ contains a ferrite core which is magnetized by the current In to be
measured. The magneto motive force or mmf, from a current Im flows in an auxiliary winding
with NM turns. It opposes the magneto motive force, mmf from In and the output signal from
a Hall element in an air gap of the core.

This affects an automatic control system, striving for zero flux in the core, such that
N In=NM Im. The voltage Um across an external resistor, RM, is therefore a measure of
the current In.

The turns ratio provides a means for ranging the current to be measured. For example,
a transformer rated for 100 amperes needs 1 turn through the primary section. If it is used
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for measuring a current less than 20 amperes, then the primary winding should have 5 turns
to obtain the maximum accuracy. The turns ratio of a 100 A dc current transformer is, for
example, 1:1000, i.e. Im = 100ma for In = 100 amperes. Hall effect DC transducers have a
typical accuracy of +/- 1% from 0 to 50KHz and the response time<1 microsecond.

DC Current transformers are used in power electronics for measuring DC currents,
AC currents with a DC current component, and also low frequency ac currents, such as
phase currents of PWM variable speed motor drives. The measured quantity is used for
instrumentation, as the current response in automatic control systems, and for tripping
protective devices in case of overload or short-circuit.

2. MAGNETIC FLUX BALANCE METHOD

Current measurement can similarly be achieved by a magnetic flux balance technique. However,
it makes use only of a toroidal ferrite core which acts as both the detector and magneto motive
force or mmf summing component. No Hall device is employed. The core does not need an air
gap.

2.1. Physical Core Measurements & B-H Characteristic

A toroidal core of ferrite material was measured for physical dimensions with a caliper. Table I
shows the physical core data. The B-H magnetization curve is shown in Figure 2. This was
obtained by driving an excitation coil with an AC triangular current source, recording the
induced voltage in a separate pick up coil, and subsequently, numerically integrating the voltage
taking core area, Ac, and mean path length, Le, into consideration.

Ri = 7.5mm
Ro = 14mm
H = 13.5mm

where
Ri = inner radius
Ro = outer radius
H = height

Core Area, Ac = 0.8775 sq. cm.
Mean path length, Le = 6.75442 cm.

Table I. Core Physical Data

2.2. Flux Balance Detection by Core Non-linearity

In Figure 3, when an exciting current passes through a coil, Nexc, wound around a core,
magnetic flux builds up in the core. If the residual flux, or remanence in the core is opposite
the magnetizing force, a coercion point is reached where the polarization of the residual flux
goes to zero and reverses direction. If a detection coil, Ndet, is wound on the core, such a
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Figure 2. B-H Curve of the Ferrite Core. Core reaches a level of 0.17 Tesla at 150 Amperes per meter.
Coercion point occurs around 25 Ampere per meter. Residual flux or remanenceis about 0.07 Tesla.

Figure 3. Magnetic Flux Balance Detection. Uses a non-linear core driven to saturation by a triangular
exciting current. Duty ratio at Vout is a function of core imbalance.

huge change of flux accompanied by a change in current will induce a spike voltage in it. As
the current reaches its peak value, core saturation begins; the induced voltage decreases. As
the current returns towards zero, induced voltage reverses. When the magnetizing current hits
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(a) Balanced Case

(b) Unbalanced Case, Positive Bias

(c) Unbalanced Case, Negative Bias

Figure 4. Magnetization vs. Induced Voltage: Triangular current of +/- 1amp peak applies mmf in
core. (a) No bias mmf produces a symmetrical (balanced) induced voltage (b) Positive and (c) Negative

bias mmf produces an asymmetrical induced voltage (unbalanced).
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(a) Balanced Case

(b) Unbalanced Case, Positive Bias

(c) Unbalanced Case, Negative Bias

Figure 5. Induced Voltage vs. Schmitt Trigger output: The detected voltage is processed by an inverting
Schmitt Trigger whose thresholds are about +/- 2 Volts. (a) With no bias mmf, duty ratio is 50%
(balanced case) (b) With a positive bias mmf, duty ratio is 24% (c) Negative bias mmf, duty ratio is

76%.
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zero, residual flux remains. When the current builds up in the opposite direction, a similar
process occurs.

The induced voltage has half wave symmetry. This is shown by the time responses in
Figure 4a. Note that the peak voltage does not occur at the zero crossing of current on either
side of the positive and negative current excursions due to the coercion points.

Direct current is introduced via a third coil, Ndc. It will produce a static bias mmf that
causes mmf offset on the B-H curve. Normally, direct current will not induce any voltage in a
set of coupled coils but with an alternating current present in the excitation winding, the core
experiences a rate of change of flux that induces a voltage in the detection winding. Without
any bias mmf, the induced voltage has half wave symmetry. It looses symmetry with a bias
mmf. Figure 4 shows the time dependent responses of the core for three different cases: a) with
zero mmf, b) with an mmf caused by the direct current in one direction c) with an mmf in the
opposite direction. Similar voltage curves are reported as in reference [2].

An inverting type Schmitt trigger picks up the detected voltage and produces a pulse width
that varies in accordance with the asymmetry of the detected voltage. Figure 5 shows the three
Schmitt trigger outputs: (a) with zero mmf and aio, DR, of 50%, the balanced case, (b) and
(c) with an mmf caused by the direct current in one direction and in the opposite direction,
with DR=24% and DR= 76%, respectively.

2.3. Automatic Feedback Balance Controller

The magnetic flux balance current measuring block diagram is shown in Figure 6. A toriodal
core of ferri-magnetic material is used as flux sensor. The magneto motive forces are introduced
via 3 coils: Ndc, Nm, and Nexec. The Ndet coil is used to sense the induced voltage transition
pulse as coercion is reached. Operational amplifiers provide automatic feedback to achieve
null at the balance condition. A symmetrical AC triangular current excites the core through
a coil of Nexc turns. As the current ramps up, flux builds up in the core. The DC current
to be measured is sent through a coil of Ndc turns, which sets up a static bias mmf in the
core. The bias mmf causes the core to reach saturation earlier on one side of the flux build
up than on the other side. As core saturation is reached, a voltage pulse transition is detected
in a separate winding of Ndet turns. The pulse is sent to a Schmitt trigger, that produces an
output duty cycle whose value represents an amount of flux imbalance and polarity. The duty
ratio is converted to an average voltage by a low pass filter. This is fed back to G(s), which
is selected to be a proportional-integral controller to produce a balancing current on the core
through a coil Nm turns that strive to zero out the flux, i.e., Idc Ndc = Im Nm. The current
Im is passed through Rm to produce a voltage Um, whose average value is proportional to the
current Idc under null (balanced) conditions.

3. SYSTEM SETUP

Electronic circuits in Figure 7 were built using standard operational amplifiers. Class AB
configurations with buffered darlington emitter followers are used as voltage to current
converters as in reference [3]. With an Rm equal to 2.5 ohms, the transconductance gain
is at 0.4 Amps/volt. The Schmitt trigger requires an operational amplifier with a high slew
rate. A 12 Volt/microsecond slew rate was used. The upper and lower trip points are ±2 volts

Copyright c© 2005 Philippine Engineering Journal Phil. Engg. J. 2005; 26:33–44



40 M. T. ESCOTO

Figure 6. Magnetic Flux Balance Current Measuring Expanded Block Diagram. It uses the non-linear
ferrite core characteristic to detect flux imbalance. An automatic feedback controller strives for zero
flux in the core, such that IdcNdc = ImNm. The current Im flows into Rm, causing a proportional

voltage, Um, to be a measure of the DC current, Idc.

Figure 7. Photo of Test Set up. Oscilloscope display traces the Schmitt trigger output and the induced
voltage in the detection coil. DC test current is 0.5 A.
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respectively. Operational amplifier saturation levels are made symmetrical by a double level
clipper using the zener breakdown mode of bipolar junction transistors. Reference [4] shows a
similar double level trigger circuit for measurements.

An active low pass filter, with unity gain and a cutoff frequency of 1.6Hz, processes the
Schmitt trigger output for average voltage. This is compared with set point, Href, which is set
to zero. The proportional plus integral (PI) controller takes the error signal and adjusts IM
until the 50% duty cycle is attained by the Schmitt trigger. This corresponds to an average
voltage of zero under balanced conditions.

A cascaded current loop insures that the balancing current follows the command current of
the PI controller at null conditions. The PI controller has a gain of 16, with the corner set at
10Hz. Closed loop bandwidth is about 30 Hz.

Core windings are as follows: Ndc=10 turns, Ndet=30 turns, Nexc=10 turns, Nm=10 turns.
#22 AWG copper wire was used for all 10 turn coils; #26AWG wire was used for the 30 turn
coil. Core data and B-H characteristics are shown in Table I and Figure 2 respectively. A soft
magnetization type material of ferrite is used for the core as this is easily de-magnetized and
re-magnetized.

The excitation coil is current fed with a 1kHz triangular signal whose peak current is 1
ampere. A standard +/-12 Vdc, 3Ampere laboratory supply was used to power all blocks. A
separate adjustable supply with a series resistance was used to provide the test direct current.

Um is measured with a Fluke 77III multi-meter. An Instek Scope (Model GDS-820C) and
Function Generator (Model GFG-8020H) were used.

Um, Volts Um,Volts
(Negative Idc (Positive
Current) Current)

0.004 0.00 .003
-0.116 0.05 0.119
-0.23 0.10 0.253
-0.371 0.15 0.388
-0.482 0.20 0.510
-0.606 0.25 0.641
-0.726 0.30 0.777
-0.862 0.35 0.908
-0.981 0.40 1.035
-1.112 0.45 1.177
-1.232 0.50 1.299
-1.368 0.55 1.438
-1.498 0.60 1.574

Table II. Direct Current Measurement Raw Test Data
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4. DICUSSION OF TEST RESULTS

Preliminary tests were conducted for static and transient responses. Direct current was
provided by a separate power supply. Tests were conducted at a room temperature of 24
degrees Celsius.

4.1. Static Tests

Table II shows the direct current test data for both directions of Idc. Regression results are
shown in Figures 8 and 9. The slope is 2.625 Ohms for Figure 8 and 2.501 Ohms for Figure 9.
Zero offset has been observed to be within ±0.004 volts. Accuracy is within ±3%.

4.2. Step Response

A step input of 0.5 ampere is set for Idc. The response is shown in Figure 10. The time constant
is about 1 millisecond if one assumes an approximate, first order response.

4.3. Limitations

Under dynamic tests, the loop must be fast enough to maintain balance, otherwise, if the core
saturates, all induced voltages disappear resulting in loss of the Schmitt trigger signal. Loss of
signal causes Um to take on the value of the supply rail voltage. The system has to be reset
by turning off the power.

The circuit also introduces a small ripple into the DC current loop as a result of the turns
ratio coupling with the exciting current. This is minimized by reducing the number of turns
on Ndc.

5. CONCLUSION AND RECOMMENDATION

The half wave symmetry of the detected voltage, as a balance detection point, suffices for
current measurement as found in this technique. The core must have this non-linear property.
The actual magnetic field strength, mmf level, can be computed by multiplying the balancing
current Im by Nm. The level of bias flux in the core can be determined from B-H curve of the
material, if required. The technique may also find possible applications in the measurement of
static, external magnetic fields.

Preliminary tests have shown a viable, isolated, direct current measuring scheme. Tests
should be performed for long term drift, temperature stability, accuracy, and off balance due
to sudden, large, changes in current. Tests also could be conducted to determine the consistency
and accuracy of the proposed method when using a different batch of cores belonging to the
same series or cores of a different type of material. Empirical equations could be formulated
to help size and select the magnetic and physical parameters of the core and the windings.
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Figure 8. Regression for Positive Direction of Direct Current

Figure 9. Regression for Negative Direction of Direct Current
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Figure 10. Magnetic Flux Balance Current Measuring 0- 0.5 ampere Step Response
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NOMENCLATURE

Symbol Description Units
mmf Magneto motive force Amp-turns/m
Rm Measuring resistance Ohms
Href Magnetizing force Amp/m
Um Measured voltage Volt
Im, Idc Balancing current, direct current Ampere
Ndc, Nm Turns of wire Turns
T Magnetic flux Webers/square meter
H Magnetizing force Amp/m
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