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ABSTRACT

The fracture parameters governing the cohesive crack model is obtained through the use of entropic
regularization. Specifically, it is employed as a smoothing technique that lends to the solution of a
difficult identification problem cast as a mathematical program with equilibrium constraints (MPEC).
Results suggest that reformulation of MPEC as a nonlinear programming problem using entropic
regularization show promise in the solution of the parameter identification problems considered in
this paper.

1. INTRODUCTION

Research has shown that the application of the concepts of fracture mechanics can lead
to satisfactory simulation and prediction of the local damage phenomena and the effect of
structural size to fracture (Bažant and Planas, [4]). Moreover, it offers a logical approach to
structural analysis and design based on sound mathematical and mechanics concept.

The applicability of fracture mechanics to real engineering problems depends on the
knowledge of fracture models that can be used to satisfactorily simulate the behavior of
quasibrittle fracture. One such model is the Cohesive Crack Model (CCM) the main idea
of which was developed independently by Dugdale [19] and Barenblatt [3]. The formulation of
the CCM as a suitable nonlinear model for mode I fracture, however, is largely credited to the
work carried out by Hillerborg and his co-workers [24].

Like all fracture models, the CCM is governed by a tension-softening relation that describes
the fracture behavior of a quasibrittle material. Its application to fracture mechanics requires
the characterization of the softening law, where, in most instances, the shape of the softening
law is known a priori. Even with a simplified softening relation, such as the one-branch law
used by Hillerborg and co-workers [24], the identification of the parameters characterizing the
relation is not a trivial task.

The advancement of experimental techniques makes it possible to characterize some of
the fracture properties of cementitious materials. The uniaxial tensile test, for instance, is
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universally accepted as the most direct way of doing this. Experimentalists (Petersson, [32];
Reinhardt, et al., [36]; Cattaneo and Rosati, [11]; van Mier and van Vliet, [43]) generally agree,
however, that this type of mechanical testing is difficult to perform due in part to the inability
to consistently obtain uniform stress distributions across the crack. This could be attributed
to specimen imperfections and accidental eccentricity of the loading apparatus. Moreover, a
study conducted by Hordijk et al. [25] cast doubt on the reliability of the results obtained in
the uniaxial tensile test.

A number of indirect approaches that rely on optimization procedures to obtain the cohesive
fracture parameters of predefined softening laws have been introduced in various literatures.
Among these include the works of Roelfstra and Wittmann [38], Ulfkjær and Brincker [42],
Mihashi and Nomura [30], Bolzon and Maier [6], Que and Tin-Loi [40], Tin-Loi and Que [39].

The methodology proposed by Tin-Loi and Que [39] will be adopted in this work. The
formulation of the parameter identification problem is cast as a special type of constrained
optimization problem known in the mathematical programming literature as a mathematical
program with equilibrium constraints or MPEC where equilibrium constraints refer to
complementarity conditions involving the orthogonality of two sign-constrained vectors. A
direct solution to MPEC is known to be very difficult (Luo et al., [28]). To overcome this
difficulty, MPEC is reformulated as a nonlinear programming problem (NLP).

The main objective of this paper is to show that a smoothing function based on entropic
regularization (Fang and Wu, [20]) can be used as an NLP-based algorithm to solve a parameter
identification problem cast as an MPEC. Identification is carried out using actual experimental
data obtained from three-point bend test and wedge splitting test using two-branch and three-
branch laws to simulate the fracture behavior of the materials.

This paper is organized as follows. In Section 2, key components of the CCM are discussed.
The complementarity formulation of the two-branch and three-branch softening laws are
described. The discretization of a structural model using the boundary element procedure
is presented. The formulation of the direct problem as a mixed complementarity problem is
explained. Section 3 deals with the formulation of the inverse problem where the identification
problem is cast as MPEC. Section 4 introduces a solution to the MPEC by reformulating the
identification problem as NLP using smoothing algorithm based on entropic regularization.
The method is tested using several experimental data sets. The paper concludes in Section 5.

2. FORMULATION OF THE DIRECT PROBLEM

A fundamental assumption that characterizes the CCM from other fracture models is the
idea that inelastic deformation and micro-cracking occur in a narrow area, called the fracture
process zone. The localization of the damage zone allows the interpretation of the fracture
process zone as a line crack of zero width. This further permits the assumption that the bulk
material remains elastic and isotropic. The variation of the tensile stress and displacement
discontinuity along the length of the fracture process zone can be described conveniently by
a softening law. Figure 1 illustrates the key idea of the CCM and the associated softening
relation, in this case, a nonlinear softening law for mode I fracture.

As shown in the Figure 1, the distribution of tensile stress varies nonlinearly along the length
of the fracture process zone. At the tip of the fracture process zone, the stress and deformation
are equal to the tensile strength of the material and zero, respectively. It is assumed that
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Figure 1. Definition of the cohesive crack model.

fracture initiates when the principal stress at a point attains the value of the tensile strength
ft of the material. Crack propagates orthogonal to the direction of the principal stress. As
Hillerborg et al. [24] have pointed out, this is not a real crack but only a fictitious one which is
capable of transferring stresses between crack faces, thus the so-called ”fictitious crack model”.

The model is a convenient mathematical idealization of the material damage occurring in
the fracture process zone of quasibrittle materials. The stress on the crack interface decreases
with increasing displacement discontinuity w. In the model, a true crack appears when the
critical crack width wc is reached. At this point, the value of the tensile stress drops to zero.

An essential ingredient of the cohesive crack model is the softening relation or softening law
(see Figure 1). The softening law is the analytical description of the variation of the tensile
stress and displacement discontinuity w along the length of the fracture process zone. For as
long as tension forces dominate in a structure and where the effects of lateral deformations
and stresses can be neglected, the softening law is considered a material property.

The problem of characterizing the softening law is an important component in the use of the
CCM for fracture analysis. Considerable research has been spent towards its determination
using direct (experimental) and indirect methods (inverse analysis and other techniques).
Practical applications of the model often call for simplified softening relations to be employed.
For instance, the use of a two-branch law (Petersson, [32]) is extensively reported in literatures
and is generally considered a good approximation of the mode I fracture behaviour of concrete.
Nonlinear softening laws have also been used in the investigation of the fracture processes of
cementitious materials (Foote et al., [21]; Planas and Elices, [33]; Hu and Mai, [26]; Carpinteri
and Massabò, [10]; Reinhardt and Xu, [37]. The softening curves mentioned can satisfy the
modelling requirement for computational simplicity and predictive accuracy.

Depending on the chosen softening relation, as few as two parameters may be required
to completely describe the softening law. For example, a generic nonlinear softening curve
(Figure 1) with a known softening function σ = f (w) requires only two parameters (e.g., ft

and wc or ft and GF ) to completely describe the relation. In the context of the CCM, these
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parameters are considered material properties which are independent of specimen geometry and
loading. Often than not, however, only the tensile strength ft and the fracture energy GF are
chosen due to the difficulty of experimentally measuring the critical crack width wc. Both the
tensile strength ft and the fracture energy GF can be determined by performing appropriate
fracture mechanics tests. It is worth mentioning that in some engineering applications, it
may not even be necessary to completely characterize the softening law. For instance, if only
the maximum load of a structure is required for design purposes, then the tensile strength
ft and the initial slope of the softening curve will provide sufficient information (Alvaredo
and Torrent, [1]; Guinea et al., [23]). In this paper, two-branch and three-branch piecewise
linear softening laws are used in characterizing the cohesive fracture properties of quasibrittle
materials.

The analytic description of a piecewise linear softening law in complementarity format
was first developed by Bolzon et al. [7] using unilateral contact and nonlinear softening
spring analogy. However, due to the use of pseudo slope in the formulation, the geometrical
representation of the parameters is difficult to visualize. Also, the formulation limits the general
configuration of the softening curve to a ”convex” one. Although the behaviour of a majority
of quasibrittle materials can be approximated well using convex-shaped piecewise linear laws,
there may be cases, especially for new materials, when Dugdale-type (concave shape) curves
or convex-concave shaped linear laws yield better solutions.

Tin-Loi and Xia [41], in the context of softening of struts, have proposed an alternative
complementarity formulation for a piecewise linear hardening-softening relation which
overcomes the abovementioned limitations. The resulting relation is a general and powerful
description of piecewise linearized laws. In the formulation, actual softening slopes are used
and ”concave-convex” representation of a softening curve is accommodated.

Using the formulation proposed by Tin-Loi and Xia [41], the analytic description of a two-
branch softening law, as shown in Figure 2, is expressed as:

fi = tbvi
1 + tcvi

2 +
(
h1Mi

1 + h2Mi
2

)
zi + tini, (1)

fi ≥ 0; zi ≥ 0; fiT zi = 0, (2)

where subscript i indicates pointwise application of the expressions along the crack locus and
tiis the normal traction at location i. fi ∈ <3 is a non-negative auxiliary vector (which can
be interpreted, in the spirit of classical plasticity, as yield or activation function). zi ∈ <3 is
another non-negative auxiliary vector, which represents opening displacements.

The vector of yield functions is given by fiT =
[

f i
1 f i

2 f i
3

]
and the vector of opening

displacements by ziT =
[

zi
1 zi

2 zi
3

]
. It must be noted that under this definition, f i

1, f i
2 and

f i
3 are the activation functions of the third, first and second softening branches respectively,

and zi
1 = w represents the final opening displacement of point i in the crack locus. Vectors of

constant entries are written as

vi
1 =

 0
−1

1

 , vi
2 =

 1
1
0

 , ni =

 −1
0
0

 ,
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Figure 2. Definition a of two-branch softening law using actual slopes.

and the matrices Mi
1 and Mi

2 are expressed as

Mi
1 =

 −1 1 0
−1 1 0

0 0 0

 , Mi
2 =

 0 −1 1
0 0 0
0 −1 1


The relation set expressed by Equation (2) is referred to in the mathematical programming

literature (Cottle et al., [15]) as a Linear Complementarity Problem (LCP). The relation
fully describes the characteristics of the piecewise linear softening law shown in Figure 2. For
instance, it is easy to verify that for any given traction 0 ≤ t ≤ tc precisely two solutions
exist for w, one corresponding to the elastic case w = 0 (vertical branch) and the other due to
activation of the softening mode. Likewise, for any given crack width 0 ≤ w ≤ wc, there exists
only one solution to the LCP.

As shown in the Figure, four parameters are required to completely characterize a two-
branch softening curve, namely the tensile strength tc, the breakpoint strength tb, the slope of
the first and second softening branches, h1 and h2, respectively.

The analytic description of a three-branch softening law is derived in the same manner as
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Figure 3. Definition a of three-branch softening law using actual slopes.

that of the two-branch law. Referring to Figure 3, the LCP formulation is expressed as:

fi = tavi
1 + tbvi

2 + tcvi
3 +

(
h1Mi

1 + h2Mi
2 + h3Mi

3

)
zi + tini, (3)

fi ≥ 0; zi ≥ 0; fiT zi = 0, (4)

where h1, h2 and h3 are the slopes of the first, second and third softening branches respectively,
tc is the tensile strength, ta and tb are the breakpoint strengths. These comprise the parameters
required of the three-branch softening law. The vectors of yield functions fi ∈ <4 and opening
displacements zi ∈ <4 are defined as fiT =

[
f i
1 f i

2 f i
3

]
and ziT =

[
zi
1 zi

2 zi
3

]
,

respectively. As in the case of the two-branch law, f i
1 represents the yield function of the

horizontal branch and f i
2, f i

3 and f i
4 are the yield functions of the first, second and third

softening branches, respectively. Also, zi
1 = w represents the final opening displacement of the

ith point in the crack locus.
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Figure 4. Problem definition for mode I fracture.

The vectors of constant entries are given by

vi
1 =


0
0

−1
1

 , vi
2 =


0

−1
1
0

 , vi
3 =


1
1
0
0

 , ni =


−1

0
0
0

 ,

while the matrices are written as

Mi
1 =


−1 1 0 0
−1 1 0 0

0 0 0 0
0 0 0 0

 , Mi
2 =


0 −1 1 0
0 0 0 0
0 −1 1 0
0 0 0 0

 , Mi
3 =


0 0 −1 1
0 0 0 0
0 0 0 0
0 0 −1 1


To provide a generic description of the fracture problem at hand, consider a typical three-

point bend test as shown in Figure 4. Due to the symmetry of geometry and loading, mode I
fracture is expected. For this reason, the location of the potential crack discontinuities Γc is
known a priori and coincides with the axis of symmetry of the structure.

In accordance with the cohesive crack model, all nonlinearities are assumed to be
concentrated along the locus of discontinuities Γc for which crack is expected to propagate.
The potential crack path Γc divides the specimen into two homogeneous zones, Ω1 and Ω2,
which are assumed to be linear elastic and isotropic. Each zone is bounded by the potential
crack surface Γc, the constrained surface Γu and the unconstrained surface Γp As is usual in
structural modeling, displacements are prescribed in the constrained surface Γu while external
actions are imposed in the unconstrained surface Γp.

The abovementioned assumptions make it possible to express the nonlinear response of the
structure as being governed by the following integral equation (Cen and Maier, [12]; Maier
and Frangi, [29]):

t (x) =
∫
Γc

Z (x, s) w (s) dΓ + te (x) , x, s ∈ Γc (5)
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where the normal tractions t on the interface Γc are given by the superposition of the effects of
the elastic and inelastic actions. The latter is due to actual normal displacement discontinuities
w while the former is from an external action (in the case of a stable three-point bend test,
is an imposed displacement u) in the absence of kinematic discontinuities. The first term on
the right hand side of Equation (5) represents the inelastic effect and is described through
Green’s function or influence coefficients Z (x, s) , x, s ∈ Γc (x ≡ field point,s ≡ source point).
These influence coefficients can be determined from an elastic analysis of the structure as the
normal tractions t due to unit normal displacement discontinuities w across Γc in the unloaded
structure. The second term on the right hand side of Equation (5) refers to the elastic response
of the uncracked structure for a given controlled displacement u.

In most practical cases, the analytical expressions for Z (x, s) may not be possible to
determine. Hence, for purposes of numerical analysis, a space discretization of Equation (5)
is required. This can be achieved by employing any numerical analysis techniques where the
finite element and boundary element approaches are eminently applicable. However, since only
the variables lying at the interface Γc are to be determined a multizone BEM approach can
be used to advantage over the more traditional FEM.

The idea of a multizone BEM for fracture analysis is to introduce distinct zones (see
Figure 4), each one containing the crack surface, formulated by its own system of boundary
integral equations. The zones are joined together by enforcing compatibility and equilibrium
conditions at the crack interface. The paper by Tin-Loi and Que [39] provides useful
information in the implementation of a multizone BEM for fracture problems.

Discretization of the structure using multizone BEM and enforcing compatibility and
equilibrium conditions at the crack interface lead to the following expression for the traction

t = te + Zw (6)

where t is a vector of normal tractions, te is a vector of elastic tractions due to externally
applied actions on the structural model, Z (discretized version of Green’s function) is a square
matrix of influence coefficients and w is a vector of displacement discontinuity. From the same
formulation of the computational model, the load ”reaction” p as shown in Figure 4 due to an
imposed displacement u is obtained as

p = pe + rw (7)

where pe is the elastic response corresponding to u, and r is a known vector obtainable from
the computational model.

In the case of the two-branch law, collecting relations (1), (2) and (6) for all points i on the
interface leads to the following mixed complementarity problem (MCP)

t = te + Zw

f = tbv1 + tcv2 + (h1M1 + h2M2) z + Nt (8)

f ≥ 0, z ≥ 0, fT z = 0
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A solution of the MCP (8) is achieved when the displacement discontinuity and traction
vectors are determined given the softening parameters tb, tc, h1 and h2. Once a solution is
found, Equation (7) can then be used to obtain the load-displacement (p− u) diagram of the
structure.

3. INVERSE ANALYSIS

Conceptually, the parameter identification problem is easy to understand and follows
the traditional methodology underlying classical fitting problems. Its formulation is
straightforward and involves some error norm and appropriate constraints. Numerically,
however, the particular problem that needs to be solved is highly challenging, primarily because
some constraints in the formulation involve complementarity conditions.

The parameter identification problem can be formulated as follows. Start with the
assumption that a number of pairs of load-displacement readings

(
pm

j , um
j

)
has been obtained

where j ∈ J represents a measurement with J denoting the set of all measurements; a
superscript m indicates a measured quantity. Readings

(
pm

j , um
j

)
usually represent actual

experimental data obtained from mode I stable fracture tests (or a pseudo-data generated
from a forward analysis using Equations (7) and (8) of the fracture problem). Let

(
pc

j , u
c
j

)
denote, respectively, the reaction and displacement values that would be computed (hence the
superscript c) from the numerical model.

After this step, set up a suitable objective function (error norm) ω, defined as some norm
of the difference between measured reactions pm

j and computed reactions pc
j . The objective

function provides a measure of the ”goodness” of the results obtained from the numerical
model. It must be noted that, if desired, statistical characterisations of experimental errors
can be accounted for by appropriately weighting the objective function (Bolzon et al., [8];
Bolzon and Maier, [6]). The fracture parameters are determined by minimising ω subject to
constraints of the form given by Equations (2) or (4) and (7) and other constraints which may
help in the convergence of the optimization process. The parameter identification problem can
be stated formally as the following constrained optimization problem:

min
∀j∈J

ω ≡
∑

j

∥∥pm
j − pc

j

∥∥
subject to tj = Zwj + te

j ,

fj ≥ 0, zj ≥ 0, fTj zj = 0,

pc
j = pe

j + rT wj , (9)
other constraints

where ‖·‖ indicates some error norm. Tin-Loi and Que [39] investigated the suitability of
various types of error norms for the parameter identification problem given in Equation (9).
The study indicates the robustness of the 1-norm and it will employed in this work.

For a two-branch softening law, the constrained optimization formulation is expressed as
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min
∀j∈J

ω ≡
∑

j

∥∥pm
j − pc

j

∥∥
subject to tj = Zwj + te

j ,

fj = tbv1 + tcv2 + (h1M1 + h2M2) zj + Ntj ,

fj ≥ 0, zj ≥ 0, fTj zj = 0, (10)

pc
j = pe

j + rT wj ,

tc ≥ tb,

bounds on (tb, tc, h1, h2)

As shown in relations (10), one constraint imposed for the two-branch optimisation formulation
is that the tensile strength tc is greater than or equal to the breakpoint strength tb of the
softening curve (see Figure 2). Such a simple (and obvious) expression usually helps in the
optimisation procedure. Other constraints include imposed bounds on the parameters. It must
be noted that these bounds, i.e., upper and lower bounds, are usually prescribed by the analyst
based on an engineering knowledge of the material.

For a three-branch law, the formulation for the identification problem is

min
∀j∈J

ω ≡
∑

j

∥∥pm
j − pc

j

∥∥
subject to tj = Zwj + te

j ,

fj = tav1 + tbv2 + tcv3 + (h1M1 + h2M2 + h3M3) zj + Ntj ,

fj ≥ 0, zj ≥ 0, fTj zj = 0, (11)

pc
j = pe

j + rT wj ,

tc ≥ tb ≥ ta,

bounds on (ta, tb, tc, h1, h2, h3)

Again, constraints include bounds on the parameters as well as the inequality relations related
to the tensile strength and breakpoint strengths. Notice that in the formulation of both the two-
branch and three-branch softening laws, a convex-concave combination of softening behaviour
is allowed.

The parameter identification problem, expressed generally as the constrained optimisation
problem (9), belongs to a special class of problems in MPEC (Luo et al., [28]) for which
the equilibrium constraints are complementarity conditions. Because of the presence of
complementarity constraints the optimization problem is a very difficult problem. It is well-
known that MPECs fail to satisfy standard constraint qualifications such as the Mangasarian-
Fromovitch Constraint Qualification (MFCQ). Violation of this constraint qualification is
essentially synonymous with numerical instability of the feasible set and hence finding a
solution to the problem becomes challenging.

The idea that an MPEC is simply a nonlinear program (Bard, [2]; Luo et al., [28]) generalised
to include some complementarity constraints led to the investigation of the applicability of
NLP-based algorithms for the solution of the identification problem. A key strategy proposed
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for the solution of MPEC (9) is through reformulation where NLP techniques can be applied.
Since the major source of difficulty in MPECs lies with the complementarity constraints, the
idea then is to eliminate or replace these constraints such that a solution to the reformulated
problem is a solution to the MPEC. The development of suitable NLP-based algorithms capable
of solving the challenging identification problem was addressed in the Ph.D. Dissertation by
Que [34].

4. ENTROPIC REGULARIZATION AND COMPUTATIONAL RESULTS

The use of smoothing techniques in the area of complementarity problems has received
renewed interests lately (Chen and Mangasarian, [14]; Chen and Harker, [13]; Gabriel and
Moré, [22]). Studies have shown that smoothing techniques are promising tools for the solution
of difficult mathematical problems. Tin-Loi and Que [39] have shown that a reformulation of the
parameter identification problem (9) using a smoothing algorithm based on Fischer-Burmeister
function yielded excellent results. In this paper, another smoothing function based on entropic
regularization (Birbil et al., [5]) is adopted for the solution of the MPEC (9).

A key idea in the smoothing algorithm is the replacement of the complementarity conditions
fTj zj = 0 by the set of equations

φµ (fk, zk) = 0, ∀k, (12)

where k = 1, . . . , 3n for two-branch laws and k = 1, . . . , 4n for three-branch laws. The function
φµ has the property that φµ (a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab = µ. The particular φµ

function (Birbil et al., [5]) that is adopted in this work is:

Φµ (a, b) = − 1
µ

ln [exp (−aµ) + exp (−bµ)] (13)

Denoting the functions φµ (fk, zk) by Φµ (f, z), MPEC (9) can be reformulated as an NLP
given by

min
∀j∈J

ω

subject to tj = Zwj + te
j ,

fj ≥ 0, zj ≥ 0, Φµ (fj , zj) = 0,

pc
j = pe

j + rT wj , (14)
other constraints

The algorithm proceeds by solving a series of nonlinear programs (or inner iterations), each
represented by NLP (14), for increasing values of the smoothing parameter µ (or after each
major iteration) until the desired complementarity tolerance has been met.

It must be noted that although the nonnegativity constraints fj ≥ 0 and zj ≥ 0 are strictly
not required in the NLP (14), including them as constraints is beneficial in practice as their
inclusion tend to speed up convergence as well as to increase numerical stability. It must be
emphasised that the initial value of µ and its increase for each major iteration are problem
dependent. An initial value of µ ranging from 1.0 to 5.0 for two-branch laws and 5.0 to 10.0 for
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three-branch laws and the increase kept at a factor of 2.0 to 3.0 can yield good results in the
identification problem. Too large an initial value may not provide a solution to the nonlinear
program while too small a value may lead to a much more ill-conditioned initial NLP.

To test the applicability of the smoothing algorithm based on the smoothing function (13),
actual test data are used. The General Algebraic Modelling System or GAMS (Brooke et
al., [9]) using version 2.5 with CONOPT2 (Drud, [18]) as solver is used to solve the reformulated
MPEC. The identified parameters are then used as inputs to solve the MCP (8) using PATH
(Dirkse and Ferris, [17]) which, in turn, enables one to obtain the predicted load - displacement
(p− u) curve. The predicted p − u curve is then compared to actual data set. All runs are
implemented using a Pentium 3 computer running at 850 MHz under Windows NT.

The first data set is obtained from a notched three-point bend test (Bolzon et al., [8]) of a
polymeric composite specimen made of an epoxy matrix with silicon micro-spherical hollow
inclusions. The known properties of the tested specimen are E = 3707 MPa and v = 0.39. For
the two-zone BEM modelling of the structural model, a total of 158 quadratic elements were
used in the discretization where 15 elements (or 31 node pairs) were located at the interface.

Although all of the 48 recorded p − u points can be used for the identification problem,
sufficient information regarding the fracture behaviour of the specimen can be drawn using
only 32 data points. Some preliminary computational results indicate that there is no significant
gain in the accuracy of the identified fracture parameters when using all the recorded data
points instead of the 32 subset points. There is however significant gain in computational cost
when using only a subset of the p− u data set as compared to the 48 recorded data points.

It must be noted that the points in the adopted p − u data set are chosen such that they
are reasonably equally spaced. This distribution has a regularization effect which reduces ill-
conditioning of the data since clustering of data points is avoided. This is especially relevant for
experimental observations where, typically, the recorded points contain noise and clustering.
Computational experience indicates that this distribution scheme is particularly suitable for
the parameter identification problem considered in this work.

The second data set is obtained from a wedge splitting test of normal strength concrete
specimen (Denarié et al., [16]). The specimen has the following recorded material properties:
E = 25200 MPa and v = 0.2. The boundary element discretization of the structure consists of
a total of 192 isoparametric quadratic elements, of which 17 pairs of elements (or 35 node pairs)
are located along the potential crack interface. Although 128 p−u points are recorded, these are
very much clustered as Figure 5 indicates. Again, 32 reasonably spaced data points were chosen
for the identification problem. This number is not only sufficient to describe satisfactorily the
recorded experimental response, but also, being distinct points, reduced ill-conditioning.

The third data set is obtained from a notched three-point bend test (Olsen, [31]) of a normal
strength concrete with material properties: E = 26110 MPa and v = 0.2. The dimensions of
the structure is shown in Figure 6. The structural modelling of the specimen is carried out
using a two-zone BEM discretisation. Each zone is discretised using a total of 121 isoparametric
quadratic elements. At the potential crack interface, 18 pairs of quadratic elements (or 37 node
pairs) are used. For this data set, the p−u points are obtained by digitizing the reported p−u
curve in the literature. 32 p− u point data set is also used for parameter identification.

Table I shows the identified parameters for a two-branch law. Also shown are the computed
real error ω̂ and running time t in seconds. Starting value of the parameter µ for the first, second
and third data sets are 5, 1 and 1 respectively. The parameter is then increased respectively
by a factor of 2, 3 and 2 for the first, second and third data sets. Predicted p − u curve for
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Figure 5. Plot of the 128 recorded data points of the LMC/EPFL wedge splitting test.

Figure 6. Dimensions for the structural model of data set 3.

each of the data sets are shown in Figures 7 to 9. The figures indicate that good agreement is
achieved between the actual and predicted p− u curves. Results also compare well with other
reported NLP techniques (Tin-Loi and Que, [40]).

Results of the parameter identification problem using the three-branch law is shown in
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Data tb tc h1 h2 ω̂ t
1 2.643 11.214 332.279 44.547 11.960 1453
2 0.678 3.430 93.603 4.791 19.682 1342
3 0.544 2.481 48.377 3.026 15.002 593

Table I. Identification results for the two-branch law.

Figure 7. Data 1: Identified vs experimental p− u curves using two-branch softening law.

Table II. For the data sets considered, the starting parameter µ is 10, 5 and 5 for the first,
second and third data sets, respectively. As compared to the two-branch law, a higher starting
value of µ seems to yield better results for the three-branch law. A factor of increase of 2 is
used for each run of the NLP for all the data sets.

As in the two-branch law, a comparison of the experimental and predicted p − u curves
(Figures 10 to 12) shows excellent agreement. It is worth noting though that for the first data,
the computed error is actually bigger for the three-branch law than that of the two-branch
law. This may indicate that the solution may have converged prematurely for the reason that
the identification problem considered is a highly nonconvex problem.
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Figure 8. Data 2: Identified vs experimental p− u curves using two-branch softening law.

Data ta tb tc h1 h2 h3 ω̂ t
1 0.564 2.786 10.949 314.755 52.948 18.846 17.570 2567
2 0.248 1.012 4.073 155.378 12.101 1.146 7.409 1589
3 0.423 1.329 3.279 141.707 19.148 2.464 10.939 1640

Table II. Identification results for the three-branch law.

Although the use of more softening branches may yield better agreement with the
experimental data, it may not be practical as the run time can increase significantly. As has
already been mentioned, for most practical purposes, a two-branch law may suffice to provide
a good picture of the fracture behaviour of quasibrittle materials such as concrete. Comparing
the identified tensile strengths of the materials, the use of a two-branch softening law often
yields a more conservative result than that of the three-branch softening law.
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Figure 9. Data 3: Identified vs experimental p− u curves using two-branch softening law.

5. CONCLUDING REMARKS

A smoothing technique based on entropic regularization is employed in the identification of the
fracture parameters of the cohesive crack model. Results suggest that this approach compare
well with other NLP techniques used in the identification problem (Tin-Loi and Que, [40]).
However, the success of this smoothing function in the reformulation of the MPEC as NLP
depends, to a large extent, on the goodness of the starting initial value as well as its eventual
increase. The use of the entropic regularization function, in the context of the smoothing
algorithm for parameter identification, as considered in this paper, does not seem to be as
robust as that of the Fischer-Burmeister function (Kanzow, [27]) as reported in Tin-Loi and
Que [40].
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