
 1

Philippine Engineering Journal (2002) XXII1 (2): 1-10

DIRECT DATA TRANSFER OVER THE HOST CONTROLLER
INTERFACE OF THE BLUEZ BLUETOOTH® PROTOCOL STACK

IN BAYANIHAN LINUX V2.0

William R. Cheung*, Joel T. Fallorina* and Janice M. Ballesteros
Advanced Science and Technology Institute

UP Technopark, Diliman, Quezon City
Department of Science and Technology

mobilesys@asti.dost.gov.ph

ABSTRACT

The Bluetooth specification defines a whole protocol stack necessary for a standardized
interface of different Bluetooth devices. One of the layers in the stack is the Host Controller
Interface (HCI). It serves a vital role in interfacing the higher and the lower parts of the stack.
This paper discusses the implementation, setup, and testing processes involved in directly
utilizing the HCI layer in sending and receiving data. An application was developed on top of
Bayanihan Linux v2.0 which has built-in Bluez, the official Linux Bluetooth protocol stack. The
application shows the operations and functions of the HCI layers in transferring data. Accessing
the HCI layer directly will have several advantages, one of which is the reduced overhead from
higher layers. The setup was tested with a 3COM USB Adapter and a 3COM PCMCIA Card.

Index Terms - Bluetooth, Bayanihan Linux, BlueZ, Host Controller Interface

I. Introduction

Linux and Bluetooth Wireless Technology have gained popularity in the local and
international market. In order to take advantage of this, an application utilizing the
Bluetooth Technology and Linux was developed. Moreover, the application was
developed on top of the Host Controller Interface to investigate the layer since it serves
an important role in the protocol stack. The application was named BTChatter. The ASTI
Bayanihan Linux (BL) v2.0 operating system was used in the development. It includes
BlueZ, the official Linux protocol stack for the Bluetooth Technology. The application
was developed using the HCI module of BlueZ. The enablers used were 3COM USB
Adapter and 3COM PCMCIA Card.

®The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by ASTI is under license.

Other trademarks and trade names are those of their respective owners.
*William R. Cheung and Joel T. Fallorina , undergraduate students of Computronix College in Dagupan City,

worked with ASTI under the Presidential Summer Youth Workshop Program Year 2003.
*DOST-ASTI is the research and development institute of the Philippine government mandated to pursue R&D
 in the advanced fields of Microelectronics and Communications technologies.

 2

II. The Tools Used

2.1 The ASTI Bayanihan Linux v2.0

The ASTI Bayanihan Linux is an easy-to-install Linux distribution primarily
developed for desktop use. It is a customized distribution based on the Red Hat Linux
8.0 Psyche release. BL is a project of the Open Source Group of ASTI

 The name Bayanihan Linux was derived from the word Bayanihan, a Filipino
tradition which signifies working together for the common good. The Open Source
movement exhibits the spirit of Bayanihan, a virtual community working together to
develop, produce, and maintain software that everyone can freely use.

Some features of BL version 2.0 include:

• Linux Kernel 2.4.18
• Easy to install with user-friendly interface
• KDE 3.0
• Office Suite applications
• Support for audio, video, and multimedia applications
• BlueZ Bluetooth Protocol Stack and Tools for Bluetooth applications development

(The included kernel has been recompiled and customized to particularly support
Bluetooth technology, the BlueZ stack, and the applications development tools.)

2.2 The Bluetooth Wireless Technology

Bluetooth wireless technology is a low cost, low power, short-range radio
technology utilizing the 2.4 GHz ISM (Industrial, Scientific and Medical) band. It was
originally developed as a cable replacement technology and evolved into a wireless
personal area network (WPAN) technology. It provides a universal link to connect
different devices without the hassle of connecting and disconnecting different kinds of
wires and cables [1].

The technology defines a software protocol stack to enable devices to work with

other devices from different manufacturers [1]. Figure 1 shows the architecture of this
protocol stack.

 3

Figure 1. The Bluetooth Protocol Stack

The most common implementation of the Bluetooth protocol stack is the two

processor architecture (see Figure 2). The stack in a two processor architecture is
implemented partly in the host (higher layers of the stack, i.e. Logical Link Control and
Adaptation Protocol and above) which may reside in the computer and partly in the target
module (lower layers i.e. Link Manager Protocol and below).

Applications can be developed over the higher layers of the protocol stack. In this

paper, we shall focus only on one layer, the Host Controller Interface.

2.3 The Host Controller Interface

The Host Controller Interface (HCI) is the interface between the host processor
and its target processor [1]. This layer provides a uniform command method that enables
access to Bluetooth hardware capabilities [3].

 host processor

target

processor

 4

Figure 2. The two processor architecture

 HCI provides the mechanisms for the actual data transfer. The HCI layer of the
stack we used communicates through a Universal Serial Bus (USB) port. The initial step
in the communication process is to know the packet structure of the data that the HCI
layer understands [2]. This layer uses three packet types (see Figure 3): commands that
go from host to module, events that go from module to host, and data that travel in both
directions. Between them, these three packet types can be used to completely control a
Bluetooth module and to transfer any data required [1].

Figure 3. The HCI packets

Aside from completely controlling a Bluetooth module, HCI commands allow the host to:

• control, setup, tear down, and configure links.
• set the link’s power saving modes and role switch policies.
• control many baseband features such as timeouts.
• retrieve status information on a module.
• invoke Bluettoth’s test modes for factory testing and for Bluetooth qualification

[1]

III. Working with the HCI layer

BlueZ as a whole consists of a set of kernel modules which implements the
Bluetooth protocol stack and some programs to control the stack and to use the stack to
communicate. The HCI implementation in BlueZ was used in this project.

Since the BTChatter utilizes the HCI layer, it requires HCI packet construction,

sending and receiving; breakup of a large packet to smaller ones (in sending side);

HOST

TARGET

command event data

 5

combining small packets to larger ones (in receiving side), and application level flow
control. Figure 4 shows the test setup of the BTChatter application.

 computer 1 computer 2

Figure 4. Communication setup of the BTChatter application

3.1 Sending ACL data packets

In constructing an Asynchronous Connectionless (ACL) packet we made use of
the primitive function writev(). Here we put the type of packet, the header (composed
of handle, flags and data length) and the payload data. The function that was used to
send a packet in HCI layer was named hci_send_acl(). The definition of this
function is listed below.

 int hci_send_acl (
 int dd,

uint16_t handle,
uint16_t dlen,
void *data,
uint16_t flags)

The largest packet that can be sent in a single hci_send_acl() call is hardware

dependent [1]. The hci_get_buffer_size command is used to determine the size of
the largest packet [1]. We used the G_LOCK() and G_UNLOCK() macros to prevent race
conditions, since our program is a multi-threaded application [4].

3.2 Receiving ACL packets

To be able to receive ACL data packets we used the primitive read() function. It also
has a timeout parameter so that flag and error can be used if packets don't arrive in
time. It uses the hci_data structure for convenience. The HCI data structure is:

 ruct hci_data{
 uint16_t handle;
 uint16_t dlen;
 void *data;
 uint16_t flags;
 };

 6

 The receiving function is hci_recv_data(). This function receives the single
packet coming from the module. The definition of this function is listed below.

 int hci_recv_data(
 int dd,
 struct hci_data *d,
 int to)

 The command poll() is used to determine if any packets or data have arrived. If
there is data, there is a function (IsdataIn()) that determines if the packet is going out
(from hci_send_acl()) or coming in (from the opposite side of connection). Any
packets that are going out are ignored. The packets that are coming in are read and the
structure is filled.

3.3 Fragmenting the packets

The largest data that can be sent in a single hci_send_acl() call is hardware
dependent. In the module it is 128 bytes. This can be determined by using the
hci_read_buffer_size command. The mere 128 bytes are not enough for the
maximum size of the message that the program should be able to send. Therefore, a large
packet has to be broken down into small ones, that can be transferred in a single call. A
header has also been created (aside from ACL header) so that the packet can be
reconstructed reliably. The header is constructed as follows:

typedef struct {
 uint16_t type;
 uint8_t num;
 uint16_t dlen;
}strm_hdr;

 The implementation first determines the buffer size of the hardware. It then constructs
the bigger packet from the header and data. Then in a loop it sends each fragment until all
fragments are sent. If the number of fragments is more than the module can buffer, the
function waits for the hci_number_of_completed_packets_event before
continuing sending to prevent buffer overflow. The number of packets that can be sent
without waiting for a hci_number_of_completed_packets_event is also
determined from the hci_read_buffer_size command. When all the fragments are
sent, the function now waits for a reply. This is the acknowledging scheme to make the
transfer reliable. If no reply is received, the function will send the packets again up to
several times until HCI_NUM_OF_TRY is reached. After which, the following messages
will be issued: connection timed out and the function returns (-1) indicating an
error. Once a reply is received, the function exits with a return value of zero (0).

3.4 Combining the fragments

 7

The fragments are then combined after receiving the packets. The header is read to
determine the length of the packets. The application continues reading until the
maximum length is reached and returns the value zero (0) upon success and (-1) upon
failure or timed out.

The implementation first sets the filters so that only ACL packets are received. It

reads the data from the socket, and checks whether this is the start or the continuation of
packets. If it is the start of the packets, the header is copied. The header gives important
information such as the length of the payload data. Any arriving continuation packet will
be concatenated to the previous packet. When the payload length is reached, the program
returns. By now, it is apparent that the function did not send any acknowledgment or
reply to the sender. This is because in a multi-threading environment one thread might
receive the packet but the other might not. The receiving thread has the responsibility of
acknowledging the packet and indicating that it has really received those that are bound
to it.

IV. Results

Figure 5 shows the chat and file sending action of the main window of the
BTChatter. All messages sent by both the sending and receiving ends will be displayed
in the Chatter View. Clicking the Send File button will launch the File selector window.
If no file is chosen, an error messages is generated. After choosing a file, the receiving
end will be notified and will be asked to save or discard the file. If the receiving end
accepts and saves the file, transfer then starts.

Figure 5. The file transfer in progress

 The output of the application was analyzed through the output of the hcidump
application. The hcidump application is the HCI packet analyser of BlueZ that

 8

determines the direction and type of data that goes through HCI. Figure 6 shows the
output of hcidump while sending a 10.4 MB file. The hcidump shows the individual
packets moving in the HCI layer. Each of the data packets shown here is either a part of
the file or an acknowledgement packet.

Figure 6. The output of hcidump

 The hcidump result of each module was used to verify packet directions, sizes
and handles. Each packet was monitored from the sending to the receiving side to check
that the connection is correct. With connection established, data transfer between
computers is now operational.

V. Conclusion

Direct data transfer is possible over the Host Controller Interface of the Bluetooth

Protocol Stack. The HCI layer can be directly used in data transfer applications.
Development and implementation of the chat program with file transfer feature on top of
the HCI layer reduces the overhead from higher layers since the control headers from the
other layers will not be used. The only tradeoff is that there are extra work like
fragmenting and combining packets. This project used only the HCI layer to test its
capabilities and limitations, since it is essential for the proper operation of the higher
layers.

 9

It was also shown that Bluetooth applications development is possible with
Bayanihan Linux v2.0 (BLv2.0). The BlueZ module in BLv2.0 was used in the
implementation of the project.

VI. Recommendation

The program automatically inquires and connects to all Bluetooth modules. This
consumes a lot of time. In order to save time, it is better to add the inquiry and connection
code to the Bluetooth modules. In addition, the data transfer rate may be increased by
improving the sending action of the messages for chat and file transfer.

The BTChatter application can be enhanced by making it a native KDE

application. Also, the Bayanihan Linux version 3.0 (BL3) is already available, it is
recommended that enhancements/applications be developed on top of BL3.

We also encourage developers to work on value-added applications. There are

endless applications that a developer can do on top of the HCI layer such as broadcast
messaging, multi-player games, image transfer, video and audio streaming, etc.

VII. References

1. Jennifer Bray and Charles F. Sturnman, “BLUETOOTH: Connect Without
Cables,” Prentice Hall PTR, Upper Saddle River, New Jersey 07458 (2001).

2. http://www.palowireless.com/infotooth/tutorial/hci.asp

3. J. Ballesteros, M. Borres, et al. Developing a Windows 2000 Serial Driver for

Bluetooth, “Philippine Journal of ICT and Microelectronics”, Volume 1 Number
2 *July 2002).

4. http://developer.gnome.org/doc/API/

5. http://www.gtk.org/api/

 6. http://sourceforge.net/mailarchive/forum.php?forum= bluez-users

 10

Acknowledgement

The authors would like to thank the Mobile Systems and Applications Group
(MSAG) of the Advanced Science and Technology Institute (ASTI). MSAG is
composed of the following people:

Project Leader: Bienvenido H. Galang Jr.
Members: Emmanuel Balintec, Janice M. Ballesteros, Mabeth M. Borres, Lucelle C.

Botardo, Anne Margrette Q. Caccam, and Billy S. Pucyutan

The authors appreciate the trust, support, and pieces of advice that the group
provided in order to make this project successful.

 MSAG is part of the Computer Software Division of ASTI. Its mission is to
empower Filipino software developers with tools such as the Bayanihan Linux v2.0 and
to conduct technology transfer activities through trainings and workshops such as the
PSWYP.

®The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by ASTI is under license.

Other trademarks and trade names are those of their respective owners.
*William R. Cheung and Joel T. Fallorina , undergraduate students of Computronix College in Dagupan City, worked with ASTI

under the Presidential Summer Youth Workshop Program Year 2003.
*DOST-ASTI is the research and development institute of the Philippine government mandated to pursue R&D
 in the advanced fields of Microelectronics and Communications technologies.

