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Abstract— When process data is taken from the sensors of a plant, errors of varying degrees are inherent. Measured 

variables will most likely violate dynamic process models. Because of this, large volumes of data may be unreliable for process 

control, monitoring, and optimization. This paper describes a new method for simultaneous Nonlinear Dynamic Data 

Reconciliation and Gross Error Detection (NDDR-GED) which conditions raw sensor measurements and estimates bias in faulty 

sensors. The problem is formulated as a dynamic NLP, solved using a hybrid Nelder-Mead Simplex Particle Swarm Optimization 

(NM-PSO) algorithm and a moving horizon approach. The use of NM-PSO warrants the transfer of solutions, embedded in each 

elite particle, from one horizon NLP to the next, thereby promoting smoother profiles and faster convergence. This new feature is 

seen to be a learning mechanism of the method across time. Discretization of ODEs was done using orthogonal collocation on finite 

elements. Using simulated data from the nonlinear process model of an adiabatic CSTR, the resulting profiles were both smooth 

(with a percent standard deviation reduction in measurement error of 80-90%) and accurate to the process model within 10-7. 

Also, large biases were corrected accordingly, if the faulty sensor was known a priori. 
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1. INTRODUCTION 

 
Modern plants around the world consist of two main interacting systems: the physical plant and its 

information system [1]. The physical plant consists of the machines, equipment, hardware, utilities, 
control elements, process materials, among others. The information system, sometimes in the form of a 
Distributed Control System (DCS), acts as the brain of the plant where measurements from the physical 
plant are processed and integrated to achieve the best productivity. One of the roadblocks to achieving 
the best productivity is the way these process data are obtained and used.  

 
When process data are acquired from the sensors of the physical plant, errors of varying degrees are 

inherent. Measured variables such as flow rates, compositions, temperatures, and pressures will most 
likely violate steady-state and/or dynamic process models. Data Reconciliation (DR) and Gross Error 
Detection (GED) are the 2 available technologies for adjusting the raw process data so that they satisfy 
known process models while preserving as much information from the plant as possible [2].  

 
Historically, Kuehn and Davidson (1961) first posed the problem of linear steady-state data 

reconciliation [3]. From their work, hundreds of publications have appeared in the last half-century about 
DR, GED, optimal sensor placement, and fault detection and diagnosis. 

 
According to Narasimhan and Jordache (2000) [4], a measured variable is said to be contaminated 

with 2 types of errors: random errors and gross errors. Random errors, or measurement noise, are small 
fluctuations of the measured variable from the true value; they can be electrically induced or process-
induced [5]. Process-induced noise can arise from disturbances during incomplete mixing, turbulence, 
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vibrations, and other random events. Electrically induced noise is brought about by the instrument 
hardware. Gross errors, on the other hand, are large deviations arising from poor sensor calibration, 
improper sensor installation, instrument malfunction, or fouling. A type of sensor fault which is 
consistent in magnitude over the observation time is called a bias, denoted by μ.  

 
To illustrate how random and gross errors manifest in a measured value, Fig. 1 plots the frequency 

of measurement values for a particular flow rate in steady-state, q. In the figure, the true value of q is 
x^e=8.00 units. Because sensor bias is also present, it shifts the most likely measured value to 9.25 units. 
In addition, a Gaussian probability distribution of possible measured values is found around 9.25, 
indicating noise with a known standard deviation of σ = 0.15. Noise is evident from non-repeatable 
measurements of a steady-state variable. If, say, the measured value at one point is x^m=9.18, it actually 
harbors a random error of ε=-0.07 and a bias of μ=+1.25, on top of the true value x^e=8.00. 

 

Figure 1. Random and gross errors in a measured variable (reproduced from [5]) 

 

DR aims to reduce random errors, producing new reconciled values, called estimates, which are 
approximations of the exact value, xe. Note that the value of xe can never be truly known, unless an 
infinite set of measurement data is available and there is no mismatch between the actual process and its 
model. On the other hand, the GED method for bias is called bias estimation. Bias estimation aims to 
determine the sign and magnitude of the persistent measurement deviation. In DR-GED, models are seen 
to be trusted to validate measured data. This is in contrast to a lab experiment, wherein measured data are 
trusted to validate a model. 

 
Nowadays, steady-state DR-GED is a mature technology. As listed by Bai and Thibault (2010) [1], 

it has been widely applied in processing industries such as chemical, biochemical, petrochemical, pulp-

and-paper, and mineral processing. However, applications in dynamic process models must still undergo 

a lot of research. This paper describes a new method for simultaneous nonlinear dynamic data 
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reconciliation and bias estimation (NDDR-GED). The next section presents a literature review that will 

give sense to the choice of methods in this work. Section 3 outlines the problem statement and objectives; 

Section 4 presents the methodology; and, lastly, Section 5 discusses an illustrative case of an adiabatic 

continuously stirred-tank reactor. 

 

 

 

2. LITERATURE REVIEW 

 
The Data Reconciliation (DR) procedure is based on the fact that: in adjusting sensor measurements 

to satisfy the process models, the loss of information must be a minimum. 
 
From information theory, one criterion that quantifies the loss of information is the Akaike 

Information Criterion (AIC). The DR-GED problem becomes an optimization problem by minimizing 
the AIC, which is the objective function. The branch-and-bound technique was used by Yamamura et al. 
(1988) to solve the resulting MINLP (mixed-integer nonlinear program) from AIC minimization for 
steady-state linear DR-GED [6]. 

 
Before the use of AIC, the traditional method for nonlinear dynamic measurement noise reduction 

uses the Extended Kalman Filter (EKF) [7]. Digital data filters simply aim to produce minimum variance 
estimates from state-space models. Stanley and Mah (1977) [8] pioneered the use of the Kalman Filter for 
linear dynamic DR-GED. Later on, optimization-based nonlinear DR (AIC minimization), when 
extended to dynamic process models, has proven to be a superior estimator than EKF [9] [10].  

 
The work of Liebman et al. (1992) [11] is one of the most cited works in the use of Nonlinear 

Dynamic Data Reconciliation (NDDR) for on-line estimation and noise reduction. They have employed a 
moving horizon approach that captures a time-window of measurements, wherein DR is performed only 
once per window. Vacchani et al. (2005) [12] also devised a recursive NDDR, which adopted the 
recursive nature of the EKF approach. They argued that EKF is still competitive to the NDDR moving 
horizon approach, with the right modifications. 

 
The most recent developments for NDDR-GED are the use of novel particle filtering by Zhang and 

Chen (2014) [13], the correntropy robust estimator for NDDR-GED by Zhang and Chen (2015) [14], an 
adaptive NDDR by Taylor and Laylabadi, (2006) [15], support vector regression by Miao et al. (2011) 
[16], and the robust auto-associative neural network or AANN-NDDR by Bai et al. (2007) [17]. In the 
last two references, DR-GED is achieved by data-driven methods instead of model-based methods.  
 

 

2.1 Moving Horizon Estimation 
This paper improves upon the approach of Liebman et al. [11] to NDDR, which they call the 

moving horizon estimation (MHE). In the next paragraphs, the details of MHE are discussed.  
 
On the basis of minimum AIC, the NDDR problem is formulated as a nonlinear program (NLP). 

 

 

(1) 
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In Eq. (1), f is a set of nonlinear ODEs, xm is the set of measured values, xr is the set of reconciled 

estimates (decision variables), μ is the set of biases, σ is the set of standard deviations, u is the set of 
unmeasured variables, N is the number of sensors, and H is the number of discrete time steps in a 
horizon. Collectively, sets f and h constitute a system of differential-algebraic equations (DAE).  

 
Note that aside from reconciled estimates, xr, the solution of Eq. (1) can also give estimates for the 

biases, μ, and unmeasured variables, u. Unmeasured variables may fall in either of these 2 cases: they are 
process variables without sensors due to economic, technical, or practical reasons; or, they are unknown 
model parameters, e.g. reaction rate constants, transfer coefficients, mixture interaction parameters, and 
distribution coefficients. Thus, NDDR also offers a way to estimate model parameters on-line.  

 
In MHE, H is defined as the horizon length or window width. The search space in Eq. (1) involves 

only N×H dimensions (number of decision variables). The time steps are defined as follows: 
 

 (2a) 

 
(2b) 

 

where t0 is the starting discrete time of the horizon and ∆t is the duration of a time step in seconds. The 
horizon length, H, can be treated as a tuning parameter in MHE, which must be set beforehand. A larger 
H can increase model accuracy of the results, but can also propagate too many errors from earlier flawed 
estimates. Figure 2 illustrates how a sample horizon with H = 3 moves in time. 

 

  

 

The MHE has the following 4 steps: 

1. Obtain measurements and set the value of H. 

2. Optimize Eq. (1) for all  over  where . 

3. Save only  for on-line data reconciliation. 

4. Repeat step 2 at next time step . 
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Figure 2. Horizon movement illustration for H = 3 

 

The algorithm indicates that the intended application is for on-line data reconciliation. This means 
that as N new measurements are collected in the next discrete sampling time, tH, new estimates are 
produced for that sampling time, xr (tH), by solving Equation (1) within a history of H time steps from the 
past. Thus, the profile of estimates remains as smooth as H permits. In practice, MHE is applied to raw 
measurements before feeding them to the Distributed Control System (DCS). Smooth profiles help 
attenuate excessive control action previously brought about by noisy and faulty measurements. 

 

2.1 Optimization Methods for NDDR 
Two widely used NLP techniques for DR in the industry are successive quadratic programming 

(SQP) and generalized reduced gradient (GRG) [4]. Liebman et al. (1992) used the SQP for NDDR [11]. 
Tjoa and Biegler (1991) used a hybrid SQP for steady-state data reconciliation [18]. In 1992, Sanchez et 
al. developed a software package called PLADAT for variable classification and steady-state plant DR 
using SQP [19].  

 
Today’s implementations of simultaneous DR and bias estimation necessitate population-based 

metaheuristic algorithms due to large process networks. Valdetarro and Schirru (2011) used particle 
swarm optimization (PSO) in the DR of measurements from a nuclear power reactor [20]. Prata et al. 
(2010) took real measurement data from an industrial polypropylene reactor, and used PSO for steady-
state DR [21]. Wongrat et al. (2005) experimented on a modified genetic algorithm (GA) for nonlinear 
steady-state DR also [22]. 

 
Particularly interesting is the PSO implementation of Prata et al. (2009) to the NDDR problem of an 

industrial polypropylene reactor [23]. PSO is the chosen optimization solver for Eq. (1) due to its simple 
yet efficient handling of high-dimensional, multi-modal, nonlinear, discontinuous objective functions. In 
[23], PSO efficiently estimated 286 state variables and 10 parameters in the reactor model consisting of 9 
nonlinear ODEs and 15 algebraic equations in every horizon movement.  

 
Historically, PSO was introduced by Kennedy and Eberhart in 1995 [24]. The simplicity of the 

algorithm lies in the fact that it does not need to calculate gradients of the objective function. Parsopoulos 
et al. (2001) [25] were the first to study the use of PSO to solve steady-state DR problems.  
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In the mentioned DR applications of population-based metaheuristic algorithms above, the Gross 

Error Detection (GED) case was not handled. When the gross error location is not known, the problem 

becomes an MINLP, due to the binary decision of whether a gross error is present in a sensor or not. 

However, if the location is known a priori, Eq. (1) is applicable, and the solution can still be obtained 

using the standard PSO or GA. This NDDR-GED case is the problem addressed in this paper. 

 
 

 

3. PROBLEM STATEMENT 

 
This paper describes a new method for nonlinear dynamic data reconciliation and gross error 

detection (NDDR-GED), which is based on moving horizon estimation (MHE) and a chosen 
implementation of Particle Swarm Optimization.  

 
The problem is formulated as a series of NLPs (Eq. (1)) solved every H discrete time steps, where 

H is the horizon length. A variant of the PSO, the hybrid Nelder-Mead Simplex and Particle Swarm 
Optimization (NM-PSO) method, taken from Zahara and Kao (2009) [26] is used to solve the NLPs. It is 
argued that augmenting the Nelder-Mead Simplex to PSO every iteration leads to faster convergence. 
Moreover, the use of PSO warrants the use of a learning mechanism in the MHE, where the elite particles 
of a swarm in the current horizon’s NLP are transferred to the next. When applied, succeeding horizon 
NLPs converge even faster and smoother profiles are also achieved. This would work under the 
assumption that for smooth profiles, the optimal solution in the current horizon’s NLP is just nearby the 
optimal solution in the next horizon’s NLP. 

 
Lastly, the DAE system serving as constraints in the NLP will be discretized by orthogonal 

collocation on finite elements (OCFE). OCFE was originally developed to solve the model for heat and 
mass transfer with chemical reaction in a catalyst pellet, which has steep gradients (Carey and Finlayson, 
1975) [27]. This problem is of the same type as the adiabatic stirred-tank reactor test case to which the 
proposed method is to be evaluated. 

 
The overall NDDR algorithm is entirely coded in MATLAB® R2013b. The adiabatic stirred-tank 

reactor test case is described by a nonlinear dynamic model having 2 state variables and 2 input variables. 

Gross errors were also doped to the 2 state variables one at a time. Performance is evaluated qualitatively 

using time-profiles, and quantitatively using % SDR (% std. dev. reduction of measurement error), which 

is a measure of response smoothness and accuracy. 

 

 

4. METHODOLOGY 

 
This section describes the NDDR-GED method and the details of NM-PSO, OCFE, and the test 

case.  
 
 

4.1. The Proposed NDDR-GED Algorithm 
Some assumptions must be made before presenting the proposed NDDR-GED algorithm. If ever 

gross error or bias is present in an instrument, the bias persists over time. This means that bias only needs 
to be estimated at the initial steady-state set of measurements, and its value is treated as a constant over 
the succeeding horizon NLPs. Furthermore, it is assumed that no other gross error will appear in the other 
instruments mid-simulation. Lastly, it is assumed that there is no precision degradation in the sensors 
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throughout the process duration. This means that the standard deviation of measurement noise, σ, does 
not change with time [28].  

  
 
The proposed algorithm has the following steps: 

1. Obtain process measurements and set H. 

2. Optimize Eq. (1) via NM-PSO at initial steady-state only, to obtain  and . 

3. Start the current horizon from the initial time  to . 

4. Optimize Eq. (1) via NM-PSO for all  over  using  as initial conditions to 

the DAE constraints. 

5. Save only .  

6. Repeat steps 4-5 for the next horizon, where .  

 

 

 
Figure 3. Horizon movement for the proposed NDDR-GED MHE for H = 3 

The DAE constraints in Eq. (1) are recognized as an initial value problem (IVP). Thus, the recorded 

estimates at  from the previous horizon are treated as initial conditions to the current horizon. 

Also, the decision variables in the objective function of Eq. (1) do not include the estimates at , i.e. the 

solution matrix on the current horizon has a size  whose elements are . In 

contrast to the work of Liebman et al., the proposed algorithm saves the result at  instead of . 
This is illustrated in Figure 3. 

 
 

4.2. Hybrid Nelder-Mead Simplex and Particle Swarm Optimization 
A valuable feature common between the simplex method and particle swarm optimization is that 

they are both gradient-free methods. The objective function need not to be differentiable in the search 
space. However, because the NLP is heavily constrained and accuracy is important, a gradient-based 
repair method was used in constraint handling. The main features of the adopted NM-PSO are: 

 
1. Initialization. A population size of P particles is generated. Each particle is given a random 

starting position in the search space, and a random starting velocity. As suggested by Zahara and 
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Kao (2009), P = 41N + 1, where N is the number of search space dimensions or optimization 

decision variables. 

 

2. Swarming. The velocity and position of the pth particle on the ith iteration is updated using: 

 
 

 
 

(3a) 

  

 

(3b) 

 

where  is the current velocity,  is the updated velocity,  is the current position,  is the 

updated position,  is the particle’s best position so far, and  is the global best particle 
position so far. Both c1 and c2 are set to 2.0, while c0 is linearly decreasing from 0.9 to 0.4, 
according to  
 

 
 

(4) 

   
where I is the number of iterations and c0 is computed every iteration, i. The linearly decreasing 
inertia weight allows global search at the onset of swarming (exploration), and a more local search 

towards the end (exploitation). The function  is a random value from a uniform distribution 

inside (0, 1). The function  returns -1, 0, or 1 depending on the sign of the input value. 
 
3. Gradient Repair Method. This constraint handling technique, proposed by Chootinan and Chen 

(2006) [29], is used to direct the infeasible particles toward the feasible region after every velocity 

and position update. An infeasible particle at position  is moved to a new position  according 

to 

 

 

 

(5a) 
 

 

(5b) 
 
 

 

(5c) 

 

where  is the degree of constraint violation,  is the derivative of the constraints with respect to 
the position vector x, e is a small perturbation factor to approximate the gradient, M is the total 
number of constraints, and N is the number of optimization decision variables. For the case when 

 is not a square matrix, the Moore-Penrose pseudoinverse is used for .  
 

For nonlinear constraints, Eq. (5) does not guarantee repair in one application to an infeasible 
particle. It is repeated successively until the particle reaches the feasible region, but at most 5 times 
only. If the 5th application is not enough to repair the particle, it is arbitrarily deemed unrepairable. 
 
4. Constraint Fitness Ranking. Because of the occurrence of unrepairable particles, all particles are 

ranked based on their constraint fitness . Let  be the total number of constraints and  be the 
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number of inequality constraints. Inequality constraints are numbered 1 to Q, and equality 

constraints are numbered Q + 1 to M. The constraint fitness of a particle in position x is computed 

as  

 
 

 

(6a) 
 
 
 

 

(6b) 

 

where  is a random weight from the interval [0, 1] assigned to the jth constraint. Particles inside 

the feasible region would have , while infeasible particles have . The higher the 
constraint fitness value, the farther the particle from the feasible region. When two particles have 
the same constraint fitness value, the one with lesser objective function value comes first.  
 
5. Nelder-Mead Simplex. If N is the number of optimization decision variables, then the top N+1 

particles in the ranking are fed to the Nelder-Mead simplex routine. A reflection coefficient of 1, 

contraction coefficient of 0.5, expansion coefficient of 2, and shrinkage coefficient of 0.5 were 

used.  

 

6. Termination. The exit criterion is the set number of iterations. Tolerance is set to 10-12. 

4.3. The Adiabatic CSTR Model 
The algorithm is tested on the adiabatic CSTR system taken from Seinfeld [30]. Figure 4 shows a 

diagram of the system. The process dynamic model is written as 
 

 
Figure 4. Adiabatic stirred-tank reactor system 

 
 

 

(7a) 

  

 

(7b) 
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where,  

  

 is an Arrhenius rate expression, 

 = feed conc., gmol/cm3, 

 = feed temperature, K, 

 = tank conc., gmol/cm3, 

 = tank temperature, K. 

 
The CSTR system contains a first-order exothermic reaction, where the tank concentration (A) and 

tank temperature (T) are the state variables, and the feed concentration (A0) and feed temperature (T0) 
are the input variables. Other physical constants in the dynamic model are shown in Table 1. The initial 

steady-state of the CSTR system is at the following exact values  of scaled variables: A0 = 6.5, T0 = 
3.5, A = 0.152472 and T = 4.609221. Refer to [11] for details of the scaling. State and input variables in 
this paper, henceforth, are scaled.  

 
 
 
 
 
 

Table 1. Physical data for the Adiabatic CSTR 

Parameter Value Units 

 

10.0 cm3 s-1 

 

1000.0 cm3 

 

-27,000.0 cal gmol-1 

 

0.001 g cm-3 

 

1.0 cal (g K)-1 

 

5.0 × 10-4 
cal (cm2 s 
K)-1 

 

10.0 cm2 

 

340.0 K 

 

7.86 × 1012 s-1 

 

14,090.0 K 

 

1.0  - 

 

 

To simulate transient behavior, the feed concentration A0 was abruptly increased from 6.5 to 8.5 at t 
= 100 sec, and then to 5.5 at t = 150 sec. T0 was held constant. The response of A and T are produced 
over a period of 250 seconds, with samples taken every Δt = 2.5 seconds.  
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To generate noise, measured values were taken from a normal distribution, centered on the 
simulated true response, with a standard deviation of σ = 0.15 for all variables. In addition, estimates 
were imposed to be bounded within ±3σ of the measured values. To simulate gross errors, a bias of +10σ 
is doped on the measured variables A and T. 

 
 

4.4. Orthogonal Collocation on Finite Elements 
OCFE solves the IVP in Eq. (7) at discrete time steps, and also at interior points within a time step 

for added accuracy. Each time step constitutes a finite element. A finite element is first scaled to 

, where the interior points are set to the roots of some orthogonal polynomial, so chosen that the 
interpolated values at these points accurately represent the solution inside a time step. In this work, a 4th-
order collocation method is done using the 2nd-order shifted Legendre polynomial, 

 

 

(8) 
 

whose roots are  and . The discrete times  are referred to 
as the collocation points per finite element. In OCFE, the ODEs in Eq. (7) are written as Eq. (9), and their 
solution is given by Eq. (10). 
 

 

 

(9) 
 
 

 

(10a) 
 
 
 

 

(10b) 

 

where y(t) is the vector [A(t) T(t)]T,  = 4 is the number of collocation points,  and  are collocation 

points, and  are called basis functions. Basis functions are defined like so in Eq. (11a) because it is 

the only way to define a rational polynomial function such that  when , and  

when . Differentiating Eq. (10) gives the discretized derivatives as Eq. (11). The discretized form of 
Eq. (7) is written in Eq. (12) for all j = 0, 1, 2 …Nc, 

 

 

(11) 
 
 

 

(12a) 
 
 

 

(12b) 
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where  is the right-hand side of Eq. (7a),  is the right-hand side of Eq. (7b),  and  are the collocation 

points, and  is the size of a time step. The  appears in Eq. (12) to scale the finite element 

from  back to . Furthermore, it is imposed that the slope of the response functions 
at the end of one finite element, te, must be equal to slope at the start of the next finite element, ts. This 
statement is written mathematically as Eq. (13).  
 
 

 

(13) 

 

Equations (12) and (13) constitute the system of purely nonlinear algebraic equations that takes the 
place of f and h in Eq. (1) as equality constraints during optimization. To demonstrate how large and how 
sparse the system is with respect to a given horizon length, Figure 5a shows an incidence matrix of the 

system for H = 3. For Figure 5 only, the notation  denotes the jth collocation point in the ith finite 
element (both zero-based). These points are depicted in the moving horizon in Figure 5b. For H = 3, there 
are 20 algebraic equations (rows) and 28 estimates (columns). Rows 4, 7, 14, and 17 are Eq. (13), and the 
rest correspond to Eq. (12). 

 

 

Figure 5. Discretized ODEs (H = 3): (a) incidence matrix; (b) collocation points 

 



In this work, input variables A0 and T0 are assumed to be constant on all collocation points within a 
finite element, implying that input step changes appear only at finite element boundaries.  

 
It was noted in Step 4 of the proposed algorithm that saved values from the previous window are to 

be used as initial conditions in the next window. These initial conditions are , , , and . 
In effect, the NLP per window reduces to 24 estimates and 18 equations for H = 3. These correspond to 
the boxed row and column labels in Figure 5a. Note that the incidence matrix dimensions increase with 
increasing H. 

 
 

4.5. A Novel Learning Mechanism 
Formerly, the idea is to let NM-PSO solve the NLP at each horizon movement as if each NLP is 

unrelated. However, doing so requires a lot of computational burden. Most of the computing time will be 
spent on the gradient repair subroutine.  

 
The gradient repair involves taking the pseudo-inverse of a 24 X 18 matrix (for H = 3), and do it 5 

times per particle, multiplied by around 200 particles, times 100 iterations, times 100 horizon 
movements. It would take days to finish a simulation run in this setup, what more at higher H. 

 
The novel learning mechanism is a necessary solution to speed up the computation. Recognizing 

that the profile of estimates should be smooth, the solution to the NLP in the current horizon must be just 
around the vicinity of the solution to the NLP in the next horizon. Thus, it is proposed that N+1 elite 
particles from the swarm of the current horizon are to be transferred to the initial swarm of the next 
horizon. This way, the reconciliation learns from its previous experiences. 

 
The number of iterations in the NM-PSO can now be reduced from 100 to 10 (arbitrarily chosen) 

while still expecting smooth results, except for the first horizon NLP where the NDDR has no experience 
to learn from yet.  

 
 

 

Figure 6. Discrete times in the current and the next horizon (H = 3) 

 

On a final note, one must be careful in “transferring” the elite particles. Each elite particle carries its 
own solution matrix containing the estimates in the discrete times of the current horizon. However, as 
illustrated in Figure 6, the discrete times in the current horizon are different from the discrete times in the 
next horizon. Therefore, the solution matrix from the current horizon must be modified to correspond to 
the discrete times in the next horizon, prior to the “transfer of elites”. 
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Let  be the jth discrete time at the ith horizon, where i = 1 is the current horizon. To properly 
“transfer” the elites: 

(1)   the estimates at  must be removed;  
(2)   the solution matrix is shifted one time step to the left; and,  

(3) the estimates at  must have an initial guess, which, in this work, is . 
 

 

 

5. ILLUSTRATIVE CASE STUDY 

 
In this section, the proposed NDDR-GED algorithm as applied to the measurements from an 

adiabatic CSTR is evaluated in two experiments: (a) No gross error; and (b) Single gross error. 
Performance evaluation is done both quantitatively and qualitatively. 

 
The quantitative measure for performance is given by % SDR or percent standard deviation 

reduction of measurement error. Since the estimates are expectedly smoother than the measurements, the 
standard deviation of the measurement error must decrease after NDDR. Here, measurement error means 
the difference between the measurement and the exact values. Percent SDR is computed by 

 

 
(14) 

where 

 
 

 
 

In the hypothetical case when all , then EE = 0, EESD = 0, and % SDR = 100%. On the other 
hand, the worst case happens when EE > ME, which means that after the application of NDDR, the 
estimates are farther from the true values than the raw measurements. In that case, % SDR is negative.  

 

5.1. No Gross Error 
The average, worst, and best performance of the proposed NDDR algorithm are presented in 

Figures 7, 8, and 9, respectively. In Table 2, the % SDR of the best performance is compared between 2 
other works, at different chosen horizon lengths. 

Table 2. % SDR of best-performance NDDR (H = 3) compared to other works 

  Current Work (H = 3)  
Liebman et al. (1992) 

(H = 10) 
 

Tian et al. (2006) 

(H = 10) 

 MESD EESD % SDR MESD EESD % SDR MESD EESD % SDR 

A 0.0817 0.0043 94.53% 0.0559 0.0068 87.8% 0.0578 0.0084 83.58% 

T 0.0829 0.0069 91.72% 0.0546 0.0125 77.1% 0.0509 0.0121 76.67% 

A0 0.0940 0.1168 - 0.0484 0.1757 - 0.0512 0.1833 - 

T0 0.0842 0.1137 - 0.0536 0.0184 65.7% 0.0521 0.0142 72.11% 
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Figure 7. Average performance of NDDR (H = 3): (a) A, (b) T, (c) A0, (d) T0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Worst performance of NDDR (H = 3): (a) A, (b) T, (c) A0, (d) T0 
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Figure 9. Best performance of NDDR (H = 3): (a) A, (b) T, (c) A0, (d) T0 

 

 
The omitted % SDR data in Table 2 indicates that % SDR is negative, i.e. the estimate errors are 

worse than the measurement errors. For the state variables, A and T, however, the estimates improved 
greatly from the raw measurements, even greater than the improvement from literature. Recall that 
Liebman et al. used SQP, instead of PSO, to solve the NLP. They also used OCFE for discretization. 
Meanwhile, Tian et al. (2006) used a transfer function matrix model instead of the OCFE [31]. 

 
Take note that the proposed NDDR-GED algorithm achieved the better % SDR even at a lower 

horizon length (H = 3) than those used in literature. However, for the input variables, A0 and T0, longer 
horizon lengths are needed to achieve better results. A and T measurements can be reconciled more 
readily than A0 and T0 because they have more spatial redundancy, i.e. the way they appear in the 
balances makes their values more constrained. The values of A0 and T0 have more freedom to adjust, and 
so they need more temporal redundancy (longer horizon length) to keep them straight. 

 
Aside from the % SDR, the average accuracy of all estimates with respect to satisfying the process 

model was also computed. Model accuracy in Figure 7 was found to be . Even though the 
estimates satisfy constraints and minimize Eq. (1), they are only binding within a limited time-window of 
the model solution.  

 
There are 2 things to note, qualitatively, from Figures 7 to 9: (a) at the onset, estimates are far from 

the true response, but eventually pick up accuracy. This is because the algorithm takes time before it can 
capture reality with enough measurement history; (b) estimates are sometimes found to be persistently 
inaccurate within a period of time (e.g. at time steps 63 to 80 in both A and T). This means that the 
algorithm failed to locate the global minimum in one time step, but caused the swarm to do the same in 
the next time steps thanks to the learning mechanism (Section 4.5). Almost always, the global minimum 
fails to be located during rapid transient behavior. Nevertheless, the inaccuracy is smoothly removed in 
time, discouraging abrupt changes in control action to the process. This is advantageous because control 
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hardware is saved from wear and tear. Thus, the learning mechanism is found to be a double-edged 
sword to NDDR. 

 
 

5.2. Single Gross Error 
 
The final objective is to test the proposed NDDR-GED algorithm for the adiabatic CSTR test case 

with a single gross error. From experience, a horizon length of 3 is enough to produce desired results. A 
bias of magnitude +10σ is doped on each variable A and T. Results are shown in Figures 10 and 11, 
respectively. 

 
 

Table 3. % SDR of NDDR-GED results with gross error (H = 3) 

  Grossed Variable: A  Grossed Variable: T 

 MESD EESD % SDR MESD EESD % SDR 

A 0.0941 0.0105 88.86% 0.0813 0.0106 86.98% 

T 0.0911 0.0205 77.54% 0.0899 0.0104 88.48% 

A0 0.0799 0.1709 - 0.0836 0.1741 - 

T0 0.0892 0.1947 - 0.0856 0.1789 - 

 

 
Both results are shown to have successfully estimated the bias from the initial steady-state NLP, 

and eliminate accordingly. For NDDR performance, the same qualitative observations are seen in both 
figures. However, it is worth mentioning that persistent inaccuracies in variables A and T and lack of 
smoothness in A0 and T0 are more severe in the presence of bias. 

 
Table 3 shows a quantitative evaluation under the presence of bias. The acceptable % SDR for 

variables A and T shows that their response is smooth. But the negative % SDR in variables A0 and T0, 
again, indicates that H needs to be increased to achieve smoothness. Due to the O(n3) time complexity in 
gradient repairs, higher values of H would entail a greater computational burden. Thus, they will be 
deferred to future works. 
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Figure 10. NDDR-GED results (H = 3, μA = +10σ): (a) A, (b) T, (c) A0, (d) T0 

 

 
 

Figure 11. NDDR-GED results (H = 3, μT = +10σ): (a) T, (b) A, (c) A0, (d) T0 

 



19 

 

 
Copyright 2016 | Philippine Engineering Journal  Phil. Eng’g J. 2016; 37(2): 1-22 

K.E. PILARIO & J.C. MUÑOZ 

6. CONCLUSION AND RECOMMENDATIONS 

 
An algorithm for NDDR-GED was developed using the moving horizon approach. It was assumed 

that gross errors are persistent over time and that no additional gross errors are to be detected from other 
sensors mid-simulation. The features of the algorithm include the hybrid Nelder-Mead Simplex and 
Particle Swarm Optimization (NM-PSO) method, a novel learning mechanism, and orthogonal 
collocation on finite elements (OCFE) for discretizing the process model DAE. The learning mechanism 
is warranted by the use of a population-based metaheuristic optimization algorithm in solving the NDDR 
NLP. 

 
The algorithm was, then, tested to an adiabatic CSTR test case with a first-order exothermic 

reaction. Quantitatively, the performance of the algorithm is satisfactory, having a % SDR of up to 94%, 
better than those from literature even at a lower horizon length. The reconciled estimates were accurate to 
the model within 10-7. Also, biased variables are accounted for effectively. However, the main problem is 
the lack of smoothness for the variables A0 and T0, as well as inaccuracies in variables A and T during 
rapid transient states. This is attributed to: (a) inadequate redundancy by using a small horizon length; 
and, (b) failure of the NM-PSO to locate the global minimum (or the correct one if there are multiple 
global minima); and, (c) the learning mechanism misleading the swarm to an erroneous global minimum 
for a period of time. 

 
In this work, the choice of H = 3 suffices to demonstrate the effectiveness of the algorithm. It was 

not chosen by a tuning method, but chosen based from experience only. Thus, the recommendation is to 

test increasing horizon lengths in the MHE. However, a faster and just-as-reliable constraint handling 

technique should be used. If gradient repair is still desired, a parallel computing package can be used for 

improving speed, such as in MATLAB®.  
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8. NOMENCLATURE 
 

Symbol    Description Units 

A tank concentration gmol/cm3 

T tank temperature K 

A0 inlet flow concentration gmol/cm3 

T0 inlet flow temperature K 

xm value of measured variable - 

u value of unmeasured variable - 

xe exact/true value - 

 random error - 

μ gross error/bias - 

σ standard deviation - 

xr reconciled estimate - 

P number of particles - 

I number of iterations - 

N number of decision variables - 

H horizon length - 

t discrete sampling time sec 

% SDR percent std. dev. reduction - 
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