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Abstract— Benthic cover mapping has always been challenging, primarily due to the compounding effects of the overlying 

water column. While a number of algorithms have been developed to address these, research on the application and performance 

assessment of such methods to seagrass mapping using high-resolution satellite images is limited. This research dealt with seagrass 

mapping using WorldView-2 images with an emphasis on the evaluation of the relative performance of different water column 

correction methods and on the band combinations. A geometric correction was conducted using DGPS survey coordinates. 

Atmospheric correction was performed using the Fast Line-of-Sight Atmospheric Analysis (FLAASH) model as this produced 

image-derived spectra similar to field spectra.  Three water column correction models were applied and compared, namely, 

Lyzenga’s Optical Model (LOM), Stumpf’s Ratio Model (SRM), and Simple Radiative Transfer Model (SRTM). Maximum 

Likelihood Classification (MLC) was used to classify the image corrected for glint and water column effects. Using LOM and 

SRTM, overall classification accuracies obtained were 75.50% and 87.84%, respectively. STRM yielded the highest overall 

accuracy at 88.30% with ML applied on Worldview-2’s coastal, green, yellow and red bands. However, the use of the coastal blue 

band, instead of the blue band, marginally increased the accuracy of the classification using SRTM. 
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1. INTRODUCTION 

 

The Philippines is composed of approximately 7,100 islands. It has one of the longest coastlines and 

most diverse coastal ecosystems in the world. Most of its people depend on marine and coastal 

biodiversity for their livelihood. Protection and proper management of coastal resources are important 

for a country like the Philippines. Currently, there is a lack of complete baseline data and inventory of 

coastal resources, particularly seagrasses, in the country.  

 

Seagrasses are unique flowering plants [1], being the only angiosperms able to live completely 

submerged in water [2]. They produce flowers, fruits and seeds and they have an extensive rhizome 

system to anchor them firmly to the sea bottom [3]. Seagrass beds play an important role in marine 

environments. They are part of a complex ecosystem that supports different forms of life. They are food 

to several marine species [4]. Seagrasses also serve as breeding and nursery grounds, as well as habitat 

for fish and crustaceans [5]. Seagrasses also contribute to the physical structure of the environment. 

Sediments settle, as they pass through seagrass beds, settle stabilizing the seabed and reducing erosion. 

Seagrasses maintain coastal water quality and clarity. They help reduce greenhouse gases by absorbing 

carbon dioxide and they produce oxygen by photosynthesis [5]. Unfortunately, they are the most 

neglected coastal habitat. There are fewer research papers on seagrass than on corals. Priorities for 

studies or research are on other resources with immediate economic impacts, i.e., corals, seaweeds, 

animals, or fishes that either live in coastal habitats or are associated with them. 
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Assessment and monitoring our marine environment are essential for coastal resource management. 

Being able to map seagrasses augments our knowledge of seagrass ecology, emphasizes threats to 

seagrasses, and helps in finding ways to prevent possible losses and degradation [2].  Accurate, precise, 

and up to date information about the location and distribution of seagrasses is important for the 

sustainable preservation of the coastal ecosystem.  Remote sensing techniques offer this capability in a 

cost-effective way, but it has its own set of limitations.  

 

Airborne sensors were used for a long period to map seagrass ecosystems. With the availability of 

satellite-borne multispectral scanners in the 1970‘s, an alternative way of mapping emerged [6, 7]. 

Researches using moderate (Landsat TM, etc.) to high (Quickbird, IKONOS, etc.) resolution satellite 

images of mapping seagrasses materialized [8]. In 2003, an environmental remote sensing group in New 

South Wales used Landsat 5 TM and Landsat 7 ETM+ images to assess seagrass change from 1988 to 

2002 in Wallis Lake. In this research, seagrass was distinguished from macroalgae and bare substrate. 

Mapping was carried out at spatial density that traditional in situ methodologies are unlikely to achieve. 

However, the authors suggested the use of Quickbird multispectral images for higher accuracy. [6] 

 

The use of higher spatial resolution satellite imagery, including SPOT 5, IKONOS, Quickbird, and 

WorldView-2, would enable an increase in accuracy in mapping seagrasses. Pasqualini, et al. (2005) [9] 

used SPOT 5 to map a specific species of seagrass, Posidonia oceanica in the Mediterranean. Principal 

Components Analysis (PCA) was applied on the green (0.50 – 0.59 μm) and red (0.61 – 0.68 μm) bands 

of two SPOT 5 images and supervised classification by general hypercube was used to produce the 

cover map. They concluded that SPOT 5 has the potential for fine-level habitat discrimination, with an 

accuracy range of 73 – 96% comparable to that of IKONOS imagery. Arce (2005) [10] compared 

IKONOS and Hyperion for mapping benthic habitats, including seagrass. IKONOS is a high-resolution 

multispectral imagery with a 1m spatial resolution and 4 bands while Hyperion is a hyperspectral 

imagery with a 30m spatial resolution and 220 bands. Arce‘s results showed the benefits of using higher 

spatial resolution imagery when mapping benthic features [10]. Lyons, et al. (2011) [11] used Quickbird 

4-band multispectral satellite imagery (spatial resolution of 2.44 m) to detect seagrass change cover in 

Moreton Bay, Australia. They were able to map and differentiate seagrasses using Maximum Likelihood 

supervised classification. However, with an overall accuracy of 63% only, it was concluded that the 

Quickbird sensor was not particularly suited for mapping discrete seagrass cover classes due to its wide 

spectral band range [11]. 

 

As noted, there have been many researches regarding the use of high-resolution multispectral 

satellite imagery to map seagrasses. However, further advancement is needed to obtain more accurate 

results. The WorldView-2 satellite imagery, having a 2.0 m spatial resolution for the multispectral bands 

and the inclusion of bands specific to coastal mapping, may enable more accurate seagrass mapping. 

Curran (2011) used PCA and ISODATA unsupervised classificationto detect seagrasses from three 

WorldView-2 images covering three study sites: Jarrett Bay, Blounts Bay, and Sandy Point. The satellite 

image of Sandy Point was found to be unusable for mapping seagrasses because of sun glint. The first 5 

bands were subjected to PCA and components 1 and 2 of the PCA results were used for classification. 

Results showed that the water depth limit for accurately mapping seagrasses using remote sensing was 

less than 0.8 m. The accuracy results of the seagrass classification for Jarrett Bay were 40.9% for depths 

greater than 0.8 m, 86.4% for depths less than 0.8 m while for Blounts Bay, 50% for all depths. The low 

accuracies obtained are attributable to the lack of water column correction prior to image classification. 

Ludin and Ruslik (2011) [12] utilized two classification techniques: Maximum Likelihood per-pixel 

supervised classification and unsupervised classification after PCA on one satellite image. Spectral data 

of seagrass were used for accuracy assessment purposes. The combination of green, red-edge, and NIR2 
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bands produced significantly better seagrass detection compared with other band combinations. Ludin 

and Ruslik (2011) [12], unfortunately, was not able to map the extent of seagrass in the image due to the 

image being taken during high tide, but concluded that for depths less than 5 m, the accuracy of 

WorldView-2 to map seagrasses was more than 70%. Similar to Curran, no water column correction 

was applied. It is evident that without accounting for the effects of the water column, achievable 

seagrass mapping accuracy may be low. 

 

The aim of this research is to develop a methodology to accurately map seagrasses and other 

benthic habitats of the coastal area around Santiago Island in Bolinao, Pangasinan using a WorldView-2 

multispectral satellite image. In situ spectral data of seagrasses and other benthic covers, bathymetric 

data, field monitoring data on seagrasses, and actual knowledge of the study area were necessary. 

Recognizing the importance of water column correction, this research examines the performance of 

different water column correction techniques as applied to seagrass mapping. 

 

 

2. MATERIALS AND METHODS 
 

The study site is the coastal area surrounding Santiago Island, Bolinao, Pangasinan in the 

northwestern part of the Philippines (Figure 1). The coral reef system of Bolinao is typical of true 

fringing reefs in the Central Indo-Pacific [13] which experiences a maximum semi-diurnal tidal range of 

1 m [14]. Similar to most of the reefs in the Philippines, the Bolinao reef system includes a significant 

area of seagrass beds. It has the most diverse seagrass beds in the Northern Philippines [15].  

 

 

 
Figure 1. Seagrass meadows (dark green areas) surrounding Santiago Island, Bolinao, Pangasinan 

 

 

Figure 2 shows the methodological framework of this research. The first step involves data 

gathering which includes acquiring the satellite image and conducting fieldwork, e.g., water quality 

surveys, bathymetric surveys, spectral measurements and establishment of ground control points. The 

processing of the satellite image involves geometric and radiometric correction, land masking, sun glint 

removal, and water column correction. After all these corrections, the image is classified. Accuracy 
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assessment is then carried out using the validation data gathered before producing the final benthic 

habitat map. 

 

 

 
Figure 2. Benthic cover mapping methodology 

 

 

Downwelling spectral irradiances, both in-air and underwater, were measured around Santiago 

Island on October 16, 2010, using a USB4000 Fiber Optic Spectrometer operating between 200 – 1100 

nm with an optical resolution of ~0.3 (FWHM) and a 22-degree optical lens. To collect underwater 

irradiances, a 10-meter long fiber optic cable with a cosine diffuser was used at depths of less than a 

meter (except at the deep water station which is more than 10 m in depth). Irradiance is measured with 

the spectrometer pointing upwards with the cosine diffuser attached. A total of nine stations were 

established — six of them have seagrasses, one is a deep water location and the remaining two have 

other benthic covers such as corals, rubble, sand, seaweed (Figure 3). Water quality data were also 

measured at the different research stations using an AAQ Rinko to aid in the analysis of light 

attenuation. The AAQ measures depth, temperature, conductivity, salinity, turbidity, chlorophyll a, 

dissolved oxygen, pH and photo quantum. The positions of spectral measurement stations were 

determined using a Magellan handheld GPS receiver (nominal accuracy of 3 m).  



47 

 

 
Copyright 2017 | Philippine Engineering Journal  Phil. Eng’g J. 2017; 38(2): 43-62 

COMPARATIVE ASSESSMENT OF WATER COLUMN CORRECTION TECHNIQUES 

 
Figure 3. Ground control points (GCPs) indicated by yellow crosses and spectral data measurement sites 

indicated by red stars 

 

 

Underwater irradiances were measured at different depths at one station to determine the attenuation 

coefficient of the water (Figure 4) to be used in the water column correction technique Simple Radiative 

Transfer Model. Irradiances above water were measured at every station to account for possible 

variations due to change in sun position, cloud cover, etc. The reflectance of seagrasses and other 

benthic covers was measured with the spectrometer with an approximate 45-degree angle from the 

zenith. Measurements of seagrasses were carried out above water, just below the water surface, mid-

water, and at the bottom to obtain underwater spectral signatures of seagrasses and other benthic covers. 

To be able to calculate the optical leaf properties of seagrasses, samples were measured above water 

against an almost white and a black background. For each object, a total of 11 reflectances were 

measured and then averaged. All reflectance measurements were referenced to a calibrated white 

Labsphere Spectralon reference panel.  
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Figure 4. Fieldwork for spectral data measurement (Upper left: Measurement of underwater irradiance; Upper 

right: Measurement of seagrass bed reflectance above water; Lower left: Water quality measurement using AAQ; 

Lower right: Reflectance measurement of seagrass samples.) 

 

 

Different benthic covers strategically located around Santiago Island were located in the field for 

use as training and validation data (Figure 5). Those areas with 70% to 100% seagrass cover are 

considered ―dense seagrass areas‖. Any area with less than 70% cover is considered ―less dense 

seagrass‖ (Figure 6). These less dense seagrass areas are mostly seagrass mixed with sand and rubble. 

Corals and sargassum are located within the boundaries of the shallow area around the island. 

 

 

 
Figure 5. In situ benthic cover points of interest 
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Figure 6. Photographs of different benthic covers: (A) and (B) Dense seagrass (C) Less dense seagrass (D) Sand 

(E) Sargassum (F) Corals. 

 

 

Bathymetric data were obtained for use in the water column correction using the Stumpf‘s Ratio 

Model and Simple Radiative Transfer Model. ie. A Lowrance single-beam echosounder was used to 

acquire bathymetry data. The instrument was mounted on a boat which slowly cruised on a planned path 

around the study area. A HOBO water level logger was deployed to measure the change of tides during 

the survey. These data were then used to correct the bathymetry data. The HOBO water level data 

logger measures temperature and barometric pressure, from which water level at specified times can be 

computed. Point vector files were produced from the field survey data. An optical model implemented 

in ENVI 4.8 was then used to estimate the bathymetry from the image using the bathymetric data 

gathered from the field. The bathymetry and the water column optical properties are essential to the 

remote sensing of marine habitats, especially seagrass beds. Best results of the signal from the seagrass 

canopy are maximized by limiting the errors due to the attenuation of light in the water column [16]. 

 

Water quality data were also acquired in this research (Figure 4). The water column attenuates light 

that reaches the seagrass beds causing inaccurate spectral response from the benthos.  Before reaching 

the substratum, light is attenuated by the depth of the water column itself and by five water column 

components. Light is either absorbed or scattered by pure water, colored dissolved organic matter 

(CDOM), phytoplankton, dead organic particulates, and mineral particulates [8]. To measure the water 

column components, AAQ, a cabled multi-parameter water quality meter, was used at several stations in 

the study area. It has sensors which measure conductivity, temperature, depth, chlorophyll fluorescence, 

turbidity, dissolved oxygen and pH [17].  

 

The satellite image used in this research is a standard (LV2A) WorldView-2 multispectral image 

acquired on 7 March 2010. WorldView-2 high-resolution commercial imaging satellite captures images 

with eight multispectral bands: (1) coastal, (2) blue, (3) green, (4) yellow, (5) red, (6) red edge, (7) 

NIR1, and (8) NIR2. The coastal band (400 – 450 nm), said to be able to penetrate chlorophyll and 

water more than the blue band, was added to support vegetation analysis, bathymetric studies, and 
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atmospheric correction techniques. The yellow band (585 – 625 nm), on the other hand, is significant for 

vegetation applications. The red edge band (705 – 745 nm) and near infrared 2 band (860 – 1040 nm) 

will aid in vegetation analysis. The spatial resolution is 1.84 m for the multispectral bands and is 

resampled to 2 m for commercially available images [17]. 

 

The satellite image was corrected for the following: radiometric, sensor, and geometric errors. The 

WorldView-2 Product Specifications states that WV2 geolocation accuracy is of 6.5 m CE90, with 

predicted performance in the range of 4.6 to 10.7 meters CE90, excluding terrain and off-nadir effects 

[19]. CE90 is defined as the horizontal accuracy. It is a measurement, expressed in meters, on the 

ground depicting the radius of a circle within which an object of known coordinates should be located 

on an image with an accuracy of 90% [19].  

 

Ground control points (GCPs) were acquired to check the geometric correction of the image (Figure 

3). In July 2010, six GCPs were measured using a Topcon HiPer Ga model receiver (DGPS) with a 

horizontal accuracy of 3 mm. Five of these GCPs were located on Santiago Island and one on the 

Bolinao mainland. Points on the island were positioned near the water boundaries to secure high 

accuracy for coastal areas. These GCPs were networked and adjusted accordingly. Using ENVI 4.8, 

image registration was applied on the image. A root mean square (RMS) error of 0.468 for an Image-to-

Map registration was calculated. The image was resampled using the Nearest Neighbor 1st-degree 

Polynomial method. The Nearest Neighbor method was selected because it only moves original data 

values, meaning the digital number (DN) of the pixel nearest the resampled coordinates becomes the 

new DN of the output pixel [20]. It doesn‘t average pixel values making the image useable before 

atmospheric correction and classification. This is appropriate for mapping habitats because it preserves 

changes in data values across boundaries without smoothing them out. When extracting marine features, 

it is advantageous to remove all upland and terrestrial features, including clouds, [21, 22]; consequently, 

all upland features, were masked out of the image. The image explicit 0% cloud cover, eliminating the 

need for cloud masking.  

 

Atmospheric correction removes the effects of the absorption and scattering of light in the 

atmosphere. This correction will result to the water-leaving radiance which is the measure of the total 

energy recorded from the top of the water column also known as at-surface-reflectance. In the case of 

marine remote sensing, only 8 to 10 percent of the signal corresponds to the marine reflectance. The 

total signal received at the satellite altitude is mostly by radiance contributed by atmospheric scattering 

processes [22, 23]. In this research, FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes) was used for atmospheric correction. FLAASH incorporates the MODTRAN4 radiation 

transfer code. This model begins with a standard equation for spectral radiance at a sensor pixel, L, 

involving the addition of the radiance that is reflected from the surface and goes straight into the sensor 

and the radiance from the surface that is scattered by the atmosphere and into the sensor. 

 

Sun glint correction is vital to attain more accurate mapping of benthic features. Sunglint is the 

specular reflection of light from water surfaces [24] caused by ocean swell and chops, thereby limiting 

the quality and accuracy of benthic remote sensing [25, 26]. It is a function of sea surface state, sun 

position, and viewing angle. The deglinting method of Hocheberg, et al. (2003) refined by Hedley, et al. 

(2005) was applied in this research. Pixels that exhibit different ranges of sun glint, preferably over deep 

water areas, were selected. From the selected pixels, the minimum near infrared value (minNIR) was 

determined. This value represents the NIR brightness with no sun glint. A linear regression of NIR 

brightness (x-axis) against the band signal (y-axis) was then implemented. The slope of this regression 

line is the output of interest (bi). Subtracting the product of bi and the NIR brightness of the pixel 
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resulted in the deglinted image band [26]. This was applied to all bands. Figure 7 shows the image 

before and after sun glint correction. 

 

 

 
Figure 7. Before (left) and after (right) sun glint correction 

 

 

Lastly, water column correction was also applied to the image. As noted earlier, previous researches 

on seagrass mapping have neglected the potential impact of the water column on classification accuracy. 

In this research, three water column correction methods, namely, Lyzenga‘s Optical Model (LOM), 

Stumpf‘s Ratio Model (SRM), and a simple radiative transfer model (SRTM), were examined.  

 

The Lyzenga‘s Optical Model, also known as Linear Band Model, is an image-based water column 

correction technique. To remove the influence of depth on the bottom reflectance, a measurement of 

depth for every pixel in the image and information of the attenuation characteristics of the water column 

are required [27]. It is, however, difficult to provide depth measurements for each image pixel. LOM 

addresses this using a ‗depth invariant bottom index‘ generated from each pair of spectral bands to 

remove the effects of the water column in the image without the need to measure water depth. LOM 

requires prior removal of scattering in the atmosphere and external reflection from the water surface 

(sun glint). 

 

In clear waters, light decays exponentially with increasing depth. In this algorithm, to make the 

relationship of the radiance and depth linear, values of radiances are transformed using natural 

logarithms (ln). 

 

Xi = ln(Li)                                                                 (1) 

 

In Equation 1, Xi is the transformed radiance of a pixel in band i, and Li is the pixel radiance in band 

i, which should already be corrected for atmospheric effects and sun glint. Groups of pixels of the same 

bottom types but of varying depths are then selected from the image bands which exhibit attenuation and 

have good water penetration.  

 

The severity of light attenuation in the water is described by the attenuation coefficient, k. Solving 

for k requires calculation of too many unknown quantities, making this unfeasible. Lyzenga addressed 

this problem by using information from more than one band. Getting the ratio of attenuation coefficients 

cancels out unknown parameters. To calculate the ratio of attenuation coefficient, ki/kj, two bands are 

selected and a bi-plot of log transformed radiances for the same bottom types but varying depths is 
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made. The slope of the bi-plot represents the ratio of attenuation coefficients between bands. This ratio 

ki/kj is dependent only on the wavelength of the band and clarity of the water and is independent of the 

bottom type. The slope represents an axis of radiance values for a specific substratum. Only depth 

changes as one moves along the line. 

 

Adding a bi-plot of radiance values of a different bottom type would yield a similar line with only 

depth changing between data points. However, this line would not lie on the exact same position as the 

other bottom type. It will be displaced either above or below the bi-plot of the first bottom type because 

of the difference in radiance values between different bottom types but nevertheless, the gradient of each 

line should be identical. To obtain the index of each bottom type, the y-intercept must be calculated. 

From the equation of a line: 

 

 Y = p + q * x,                                                        (2)  

 

Where p is the y-intercept and q is the gradient of the regression of y on x.  

Solving for the y-intercept, p: 

 

 P = Y – q * x,                                                        (3)  

 

Consequently, the depth invariant index can be obtained as follows: 

 ,                         (4) 

 

This algorithm, however, cannot account for varying bottom types without extensive calibration. It 

must be used on a uniform substrate, hence, the need to identify in the image different substrate types 

and apply the algorithm separately on each type. Furthermore, it should be noted that LOM‘s major 

weakness is that it is dependent on the clarity of the water. 

 

In 2003, Stumpf and Holderied [28] presented an alternative bathymetry algorithm which better 

accounts for water turbidity. The SRM provided a solution for water column correction with fewer 

parameters, thus, making it easier to apply on large areas of interest. Atmospheric correction is required 

prior to the application of the ratio model. Similar to LOM, transformed natural logarithms of radiance 

values were used to linearize the relationship between band spectral values and depth. A simple linear 

relationship between the ratio of reflectance in two bands and depth were used instead of a multiple 

linear regression. 

 

Different bands have different water absorption characteristics. This means one band will have less 

reflectance values than the other. Bands with higher absorption will have reflectance values that will 

decrease proportionally faster than bands with lower absorption. Accordingly, the ratio between the low 

and high absorption bands will increase when both are log-transformed. Change in ratio because of 

change in albedo is much less than that caused by change in depth signifying that dissimilar bottom 

albedos will still have the same ratio at constant depth. This being said, the ratio may be used to 

approximate depth independently of substrate and needs only to be scaled to the actual depth using the 

equation: 

  

,                                                    (5) 
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where m1 is a tunable constant representing the slope of the relationship between the ratio and depth, n 

is a fixed constant for all areas to guarantee positive logarithm values and a linear response with depth, 

and m0 is an offset for depth (Z=0). Unfortunately, this algorithm could not take into account the varying 

albedo over seagrass substrate, similar to the limitation of the LOM. 

 

Another method to determine the bottom reflectance is the use of a simplified radiative transfer 

model (SRTM) of light to correct for the effects of the water column. Reflectance at the water surface is 

equal to the sum of the contribution of the bottom and the water column. The deeper the water, the 

lesser is the contribution of the bottom to the water surface reflectance. Consequently, the shallower the 

depth, the more negligible is the contribution of the water column and the greater is the contribution of 

the bottom [29]. The reflectance at the water surface was modelled using in situ spectral measurements 

as follows [29]: 

               (6) 

Where: 

 = 0.545 *  is the spectral reflectance just below the water surface; 

 is the spectral reflectance just above the water surface; 

 is the spectral reflectance of an infinitely deep homogeneous water column; 

 is the bottom spectral reflectance; 

 is the diffuse attenuation coefficient, and; 
z is the water depth 
 

A spectral parameter, Kd, which is the diffuse attenuation coefficient is used to determine the depth 

at which a water column can be considered optically infinite. It was computed directly from in situ 

underwater measurements of downwelling spectral irradiance using the equation: 

 ,                                                       (7) 

 

where c (λ,z1 )and v (λ,z2 ) are the in situ downwelling spectral irradiance at depths z1 and z2 below the 

water surface, respectively. 

 

After all the corrections have been applied, Maximum Likelihood Classification (MLC), which uses 

the variance and covariance in class spectra to determine the classification scheme, was used to classify 

the image corrected using the three water column correction techniques, namely: Lyzenga‘s Model, 

Stumpf‘s Ratio Model and the Simplified Radiative Transfer Model. Classified images from different 

band combinations, 1 (coastal) 3 (green) 4 (yellow) 5 (red), 2 (blue) 345, 13456 (red edge) and 23456, 

were also produced. Field data were used to create the regions of interest of different benthic covers 

such as dense seagrass, less dense seagrass, corals, sargassum, and sand. Accuracy assessment of the 

classified images was carried out using the field validation data. 

 

 

 



54 

 

 
Copyright 2017 | Philippine Engineering Journal  Phil. Eng’g J. 2017; 38(2): 43-62 

A.M. Tamondong, A.C. Blanco and M.D. Fortes 

 

3. RESULTS 
 

3.1 Irradiance and Spectral Reflectance 

 

The irradiance across the spectral range decreases as the depth or the overlying water column height 

increases (Figure 8). Attenuation is relatively low in the 400 – 500 nm range and beyond 900 nm. The 

decrease is greatest in the 500-700 nm range. Water absorbs more in the 600 – 700 nm range, where 

WorldView-2‘s red band (630 – 690 nm) lies. Yang [30] also observed the absorption of an optically 

shallow water in the 600 – 800 nm range. On the other hand, water absorbs minimally in the shorter 

wavelengths, including WorldView-2‘s coastal band (400 – 450 nm) and blue band (450 – 510 nm).  

Consequently, the reflectance of different benthic covers would decrease as measurements are taken 

deeper into the water column.  

 

 

 
Figure 8. Irradiance decay as it goes deeper into the water column measured using a spectroradiometer 

 

 

 Seagrass, sand, coral, and rock are most separable in the 500 – 650 nm range, which covers the 

green, yellow, and red bands (Figure 9). In contrast, these cover types are least discernible in regions 

beyond 700 nm. Rocks and corals are inseparable in the 400-450nm range. Sand has the most distinctly 

separate spectral signature, having the highest reflectance in the visible range. Seagrass has the lowest 

reflectance. In view of these observations, the coastal, blue, green, yellow and red bands (Bands 1, 2, 3, 

4, 5, respectively) are considered the most suitable bands for mapping benthic habitats. This is 

consistent with Yang [30], who observed that 555, 650, 675 and 700 nm are good bands for estimating 

the leaf area index (LAI) of seagrasses and concluded that 500 – 630 nm and 680 – 710 nm are the most 

effective ranges for classifying seagrass. Zaffoli et al. [31] also observed that the bands between 400 – 

600 nm are best to use for bottom classification while Misbari et al. [32] found that the blue and red 

bands of Landsat TM and OLI have the highest agreement between field data and seagrass delineation. 
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Figure 9. Comparison of underwater reflectance values of different benthic covers with the corresponding band 

ranges of WorldView-2 

 

 

3.2 Comparative Performance of Water Column Correction Techniques 

 

Comparing overall accuracies of different classification images (Table 1) from different water 

column correction techniques with varying band combinations showed that the Simplified Radiative 

Transfer Model (SRTM) and Stumpf‘s Ratio Model (SRM) have almost equal accuracies. The SRTM 

produced the highest overall accuracy with 88.30% using the coastal, green, yellow and red bands while 

SRM‘s overall accuracy was 87.84%. The lowest overall accuracies were obtained using Lyzenga‘s 

Optical Model (LOM) across different band combinations. The use of the coastal band instead of the 

blue band resulted in a minimal increase in overall accuracy when SRTM and SRM are applied. This is 

not the case for LOM, which even resulted in significantly lower overall accuracy. LOM does not 

require field data, making it the easiest water column correction to apply. However, it is effective only 

in clear waters [31]. This is not the case in many parts of the study area, hence, the relatively poor 

performance of the LOM. 

 

 
Table 1. Overall Classification Accuracy Obtained with Different Water Column Correction Techniques 

Water Column Correction Model 
Band Combinations 

1345 2345 13456 23456 

Lyzenga's Optical Model (LOM) 75.54% 82.04% 69.39% 74.11% 

Stumpf's Ratio Model (SRM) 87.84% 86.70% 86.73% 86.05% 

Simple Radiative Transfer Model 

(SRTM) 
88.30% 87.29% 86.98% 85.96% 

 

 

The spatial distributions of benthic cover as mapped using SRM and SRTM are highly similar while 

that of LOM is noticeably different (Figure 10). There were more ―sargassums‖ mapped using LOM. 

These included actual dense seagrass areas in the north of Santiago Island and north of the mainland 
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Bolinao. LOM yielded low user‘s accuracy (23.54%) for sargassum (Table 2). Dense and less dense 

seagrass have relatively high producer‘s and user‘s accuracy (61.83% – 98.25%) across the three water 

column correction techniques with the lowest being the producer‘s accuracy using LOM. Corals have 

relatively low producer‘s and user‘s accuracy (42.38% – 56.68%). Corals are typically located in 

optically deeper waters than seagrasses. As such, classification resulted in a lower accuracy because the 

contribution of the bottom diminishes as the depth increases [31]. It becomes difficult to differentiate 

bottom reflectance in deeper waters causing confusion between corals and other covers. SRTM 

produced the highest overall accuracy but it wasn‘t the highest producer‘s or user‘s accuracy of some 

benthic covers. For corals, SRM had the highest producer‘s (56.68%) and user‘s (52.76%) accuracy 

because the efficiency of SRTM is reduced in deeper waters. For other classes, the producer‘s or user‘s 

accuracy of LOM and SRM are at times higher than SRTM. SRTM takes into account the quality of 

water in the area thus assuming an attenuation coefficient uniform in the study area, resulted to lower 

accuracies of SRTM. 

 

 

 
Figure 10. Maximum Likelihood Classified Images with Band Combination 1,3,4,5 (from left to right) using 

Lyzenga‘s Optical Model, Simple Radiative Transfer Model (SRTM) and Stumpf‘s Model 

 

 

Table 2. Producer‘s and User‘s Accuracy of the Classified Images Corrected for Water Column Effects using 

Different Techniques for Bands 1, 3, 4, 5 

Class 

Lyzenga's Optical 

Model 
Stumpf's Ratio Model 

Simple Radiative 

Transfer Model 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Corals  46.35 49.49 56.68 52.76 42.38 51.06 

Dense 

Seagrass 
61.83 98.25 87.90 96.52 88.07 96.38 

Less 

Dense 

Seagrass 

87.78 83.1 90.3 81.51 91.84 82.15 

Sand 87.99 70.33 83.06 71.53 80.22 81.64 

Sargassum 85.42 23.54 71.23 51.73 72.5 47.49 
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3.3 Coastal Blue (Band 1) vs. Blue (Band 2) 

 

Comparing SRM classification images based on separate use of coastal band and blue band shows 

minimal visible differences (Figure 11). This corresponds to the comparable overall accuracies noted 

earlier. Based on spectral signatures (Figure 9), seagrass, corals, and sand have good separability in both 

coastal and blue band ranges. The producer‘s and user‘s accuracy (Table 3) of the coral, dense seagrass 

and less dense seagrass indicate minimal increase with the use of the coastal blue band. Significant 

increases in user‘s and producer‘s accuracy were noted for sargassum. Though the accuracies for sand 

slightly decreased, the use of the coastal band produced the highest overall accuracy at 87.84%. 

 

 

 
Figure 11. Classified Images of Stumpf‘s Ratio Model using Band Combination 1, 3, 4, 5 (left) 

and 2, 3, 4, 5 (right) 

 

 

Table 3. Producer‘s and User‘s Accuracy of Stumpf‘s Ratio Model with Band Combination 1, 3, 4, 5 

and 2, 3, 4, 5 

Class 

Band Combination 

1, 3, 4, 5 

Band Combination 

2, 3, 4, 5 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Producer's 

Accuracy 

(%) 

User's 

Accuracy 

(%) 

Corals  56.68 52.76 56.68 49.65 

Dense Seagrass 87.90 96.52 85.86 95.79 

Less Dense 

Seagrass 
90.30 81.51 90.11 82.37 

Sand 83.06 71.53 84.52 74.5 

Sargassum 71.23 51.73 66.08 45 
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3.4 Use of Red Edge 

 

Adding the red edge (band 6) decreased the overall accuracy of all classified images (Table 1). 

However, the decrease is only pronounced for the LOM-based classification images. The reflectance 

curves of the different benthic cover classes, except seagrass, are overlapping with each other in the 

wavelength range of the red edge band (705 – 745 nm). This has produced depth invariant index layers 

with reduced separability among classes, resulting to lower LOM accuracy. For the case of SRM and 

STRM, it is evident that the red edge did contribute additional significant information for the separation 

of the classes.  

 

 

4. DISCUSSION 

 

Remote sensing has been an effective tool in mapping seagrasses in recent years. However, to 

compensate for the effects of the water column, correction techniques are essential to increase the 

accuracy of classification from satellite images. The water column attenuates light especially in the 

longer wavelengths and increasing depths, making it difficult to retrieve bottom reflectance from 

satellite images. The use of water column correction techniques minimizes these effects. There are 

different water column correction techniques; three were implemented in this research. 

 

The advantage of Lyzenga‘s Optical Model (LOM) is that it uses the ratio of bands with good water 

penetration to lessen the effects of the water column. Field data are not required to use the model, 

making it the easiest method among the three. However, based on the results presented herein, it gave 

the lowest overall accuracy (see Table 1). The assumption of LOM is that the water is clear and uniform 

in the study area which is not the case in most areas with seagrasses. This limits the application of LOM 

in seagrass mapping. In addition, LOM requires sample areas with homogeneous cover type. This may 

not be a problem with high resolution images but may be an issue when using LOM on lower resolution 

images (e.g., Landsat). 

 

Stumpf‘s Ratio Model (SRM) is an improvement of LOM. It makes use of actual depth data or 

estimates to improve the approximation of the water column‘s influence on light penetration. This added 

feature improved the accuracy of the classification of seagrass and other benthic habitats compared to 

that of LOM (Table 3) while maintaining relative ease of application. However, as pointed out earlier, 

both LOM and SRM are unable to account for varying albedos. Hence, sample areas must be carefully 

selected. Furthermore, the performance of SRM may vary depending on the number and location of 

depth measurements or estimates to fine-tune the approximation process. In this research, depths 

throughout the study were estimated using bio-optical modelling, thereby the approximation can be 

made with reasonable accuracy throughout the study area. It can be argued that the requirement for 

actual depth values may limit the application of SRM. However, tools for bathymetric estimation has 

become increasingly available, for example the BOMBER (Bio-Optical Model Based tool for 

Estimating water quality and bottom properties from Remote sensing images), an add-on tool for 

ENVI+IDL [33] which is based on the works of Albert and Mobley (2003) [34] and Lee et al. (1998) 

[35].  

 

The highest overall accuracy was produced by the Simple Radiative Transfer Model. SRTM needs 

intensive field data. Information needed from the field is reflectance of an infinitely deep water, surface 

reflectance, bottom reflectance, depth and attenuation coefficient. With these, the SRTM can accurately 

account for the effects of the water column. However, these measurements are typically not available. 
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The unavailability of a spectrometer and the difficulty of spectral measurements may pose a challenge 

towards widespread use of SRTM. It was pointed out that this additional information only slightly 

increased the accuracy of classification compared to the results of SRM. 

 

 
Table 4. Comparison of water column correction techniques 

 Lyzenga’s Optical 

Model 

Stumpf’s Ratio 

Model 

Simple Radiative 

Transfer Model 

Needs Depth Data No Yes Yes 

Needs Field 

Spectrometry Data 
No No Yes 

Attenuation 

Coefficient 
Image-based Image-based Field-based 

 

 

Table 4 summarizes the differences in the application of the water column correction techniques 

used in this research. LOM doesn‘t require field data while SRM requires depth data and SRTM 

requires depth and field spectrometry data. The attenuation coefficients of LOM and SRM are estimated 

from band ratios of the image while SRTM needs the actual attenuation coefficient from field data. 

Based on the results, SRM is a suitable alternative to SRTM, considering similar accuracy levels 

obtained. SRM may even be preferred over SRTM considering relative ease of application. However, 

SRM and SRTM will have to be applied and compared in other sites with different water quality 

conditions.  

 

WorldView-2 satellite imagery boasts of its coastal band for mapping coastal features because of its 

ability to penetrate the water better than the other bands. The use of the coastal band instead of the blue 

band slightly increased the overall accuracy of benthic habitats. It produced the highest overall accuracy 

at 87.84%, with notable improvement in mapping sargassum. This is considered significant as 

sargassum and seagrass are typically difficult to accurately separate in satellite images. On the other 

hand, the use of red edge band, which is valuable in vegetation studies, was shown to decrease the 

overall accuracy of classification. This is consistent with the findings of Yang et al., [36] that although 

seagrasses have high reflectance in the red edge range, there is a poor correlation between the 

subsurface remote sensing reflectance at 715 nm and leaf area index (LAI) because of the absorption of 

water in this range. 
 

 

5. CONCLUSIONS 
 

The research has evaluated the performance of water column correction techniques through the 

assessment of the accuracy of the resulting benthic cover classification. The combination of coastal blue, 

green, yellow, and red is the best combination to use for mapping benthic cover based on WorldView-2 

images. However, the use of coastal blue instead of the blue band offered marginal improvements in the 

classification accuracy. As shown in this research, the Simple Radiative Transfer Model and the 

Stumpf‘s Ratio Model produced comparably accurate results. In contrast, the Lyzenga Optical Model 

performed poorly as it cannot account for the spatial variability in water column characteristics. Adding 

the red band did not result in significant improvement in the classification. To the contrary, it worsened 

the classification accuracy when the Lyzenga Optical Model was used.  
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Among the water column correction techniques implemented in this research, the Simplified 

Radiative Transfer Model showed the best classification with an overall accuracy of 88.30%. The 

SRTM takes into account in situ light attenuation data of the study area. It uses a diffuse attenuation 

coefficient computed from actual underwater measurements of downwelling spectral irradiance. Due to 

comparable accuracy and practicality, the SRM can be considered as a good alternative model. Overall, 

Worldview-2 is suitable for mapping seagrasses provided the effects of the atmosphere, sun glint, and 

water column are properly accounted for. 
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