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Abstract – Slope instability associated with heavy rainfall or earthquake is a familiar geotechnical problem in the Philippines. This study 

aims to perform a detailed landslide susceptibility assessment of Antipolo City using a statistical approach. In this study, morphologic 

and non-morphologic factors contributing to landslide occurrence and their corresponding spatial relationships were considered. The 

multivariate logistic regression was performed in randomly selected datasets based on the landslide inventory. These were divided into 

training and test data sets based on K- cross fold validation scheme resulting to different models. The model selected for the final 

implementation has an overall accuracy of 91.66%, AUROC of 0.908, standard error of 0.002 and RMSE of 0.2478. Cross validation 

with deterministic approach using physically based slope stability models were performed, where there was no significant difference 

between the two approaches in identifying areas of highly and very highly susceptible to landslide occurrence. The study also shows that 

almost 40% of Antipolo City has been assessed to be potentially dangerous areas in terms of landslide occurrence. . 
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I. INTRODUCTION 
 
Landslide is defined as the downward movement of slope materials, such as rock and soil, 

triggered by gravity due to other natural hazards such as earthquake and intense amount of rainfall. 
This phenomenon is generally affected by site morphology, geology and human activities, to name a 
few. Preparatory variables are site factors that cause marginal stability to the area. These factors 
include gradient, aspect, slope materials, drainage conditions are that may be attributed to failure 
without considering the landslide initiating factors. Natural triggering factors, such as excessive 
rainfall, seismic activities, volcanic activities, erosion and storm waves, cause the transition from 
marginally stable to unstable conditions.  

 
There are diverse methods in landslide susceptibility mapping. Susceptibility is defined as the 

tendency of landslide occurrence in an area. Susceptibility is mathematically represented as the 
probability of spatial occurrence of documented landslides for a specific set of geo-environmental 
conditions [1].  

 
In recent years, scientists all over the world have studied different GIS-based approaches in 

susceptibility assessment. Many have investigated particular areas using a single method; may be it 
heuristic, statistical, or deterministic. Others claim that a deterministic approach coupled with a defined 
hill slope hydrology is the best approach for spatial landslide prediction [2]. The use of GIS is an 
effective tool in landslide susceptibility mapping because it is capable of applying both quantitative and 
qualitative approaches in the analysis. One of the main benefits of using GIS is its capacity to do spatial 
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data analysis, which is particularly useful in natural disaster assessment. 
 
A validation based on a well-defined deterministic stability model would be a good verification 

of the reliability of the other models. This study aims to perform landslide susceptibility assessment of 
Antipolo, Rizal using logistic regression, with a supplement cross validation with deterministic 
approach. 

 
Landslides are significant geomorphologic threats to lives and property. Annually, these 

phenomenon damages forests, agricultural land, residential and industrial areas. In Antipolo City, there 
is a current estimation that 40% of the total area are inhabited or developed. Despite the presence of 
steep slopes on mountainous regions, the development of the remaining area in the future, whether 
nearby or distant, is inevitable. The generation of a site-specific landslide susceptibility study will be 
beneficial to identify potential landslide event in particular locations. Planning control and effective 
zoning of the city may also be accomplished.  

 
 

II. METHODOLOGICAL FRAMEWORK 
 

2.1 Digital Elevation Model 
 

The digital elevation model (DEM) used in this study is obtained from the DOST Disaster Risk 
and Exposure Assessment for Mitigation (DREAM) Project. This DEM, which was post-processed by 
the UP Training Center for Applied Geodesy and Photogrammetry (UP-TCAGP), was generated from 
Synthetic Aperture Radar (SAR). It has a 10-meter resolution and 10x10km tile size. The 
morphometric factors considered in this study are derived from the DEM.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Digital Elevation Model of Antipolo City, Rizal  
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2.2 Landslide Causal Factors  
 

This study considers the following landslide causal factors related to Antipolo City, Philippines. 
Parameter maps for 2.2.1 to 2.2.8 are derived from the digital elevation model through raster analysis 
in ArcGIS [3]. 
 
2.2.1 Slope Angle 
 

Slope gradient is commonly viewed as a major contributing factor in landslide formation. It is 
the most important factor that needs to be taken into account as the principal factor in landslide 
susceptibility assessment [4].  
 
2.2.2 Elevation 
 

The relationship of elevation and landside occurrence have been discussed and cited in several 
studies [5]. It is because elevation is attributed to other factors such as slope, lithology, weathering, 
precipitation, ground motion, soil thickness, and land use.  
 
2.2.3 Curvature 
 

Landslide occurrences have also shown strong relationship with surface curvature. Curvature of 
an area may be categorized as planform curvature and profile curvature. It affects the convergence and 
divergence of flow across the surface. [6] 
 
2.2.4 Slope Aspect 
 

The exposure of slope, which may be described with respect to the cardinal directions, may 
affect the distribution of landslide occurrence. The facing of the slope affects hydrologic processes thus 
affecting weathering processes and vegetation and root development, especially drier environments [7]. 
 
 
2.2.5 Topographic Wetness Index 
 

The effect of topographical characteristics of the area and run off generation may be described 
by the topographic wetness index (TWI). The use of TWI provides a mean of quantitative simulation 
the soil moisture conditions in a watershed [8]. High TWI values represent drainage depressions (steep, 
convex areas will shed water). Low values represent crests and ridges (concave, low gradients areas 
will gather water). 

 
 
2.2.6 Stream Power Index 
 

The stream power index (SPI) measures the potential erosive power of overland flow and it is 
considered as one of the factors affecting landslide occurrence [9]. High SPI values indicate a high 
likelihood of erosion in that area. Data above the 85th percentile is considered high and can identify 
areas of overland erosion. 
 
2.2.7 Road Network and Distance to Roads 
 

Roads on slopes may be treated as discontinuities and may constitute a barrier or a corridor for 
water flow and may induce instability. There is a significant correlation between the extent and 
frequency of landslide, and the distance to regional road system [10]. A constructed road beside slopes 
will decrease the load on both the topography and on the toe of the slope hence increasing the stress on 
the back of the slope. The decrease of load on slope toe may also result to the development of tension 
cracks. 
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2.2.8 Distance from Water Body 
 

Previous studies [11] stated that there is a close spatial relation between landslides and the 
presence of watercourse or dense drainage lines. The degree of saturation of the materials on the 
bottom of the slope is one of the controlling factors of the stability of the area. 
 
2.2.9 Soil and Geology 
 

Soil characteristics are major factors contributing to slope stability. Surface soils factors are 
treated as independent causal factors that lead to landslide occurrence. The various structures of earth 
materials tend to lead to a variation in the stability, strength, and texture of rocks and soil [12]. 
Moreover, the underlying bedrock present in a site shows direct association with the site’s stability [7]. 
Unstable bedding sequence is often a point of concern in landslide hazard analysis.  

 
Soil and geological data were obtained from the Bureau of Soil and Water Management. 

 
2.3 Landslide Inventory 
 

Except for highly broadcasted and fatal landslides that occurred in the city (i.e. Cherry Hills 
landslide tragedy), very little data were available from the local disaster risk, reduction and 
management (DRRM) office of Antipolo with regard to past landslide incidence in the city. Most 
available records were those that resulted to fatalities and/or property damage. To properly understand 
landslide occurrence, landslides that occurred on uninhabited places such as forests and mountainous 
regions are also considered.  
 

The landslide inventory data used in this study were obtained from two sources. The first source 
is the available landslide information from the Project Nationwide Operational Assessment of Hazards 
(NOAH) under the Department of Science and Technology (DOST). The second is from a landslide 
inventory data sourcing from independent interpretation of aerial photography (Google Earth [13] uses 
the GeoEye-1), satellite image evaluation and digital elevation analysis [14]. The union of the two sets 
were used and crosscheck was also performed to investigate possible overlaps. There were 1580 
landslide events considered in the analysis. However, only spatial distribution is considered in this 
study. Temporal distribution is not considered. The mapping by grids resulted to 10,781 landslide 
pixels distributed to the study area. The total number of pixels for the whole study area is 3,527,765. 

 
2.4 Statistical Approach – Logistic Regression Model 
 

In multivariate logistic regression, the normal distribution of the dependent variable is not 
required. It assumes a linear relationship between the outcome and the logit of the independent 
variables. Also, there are no assumptions required with regards to the homogeneity of the variance and 
normally distributed error terms [14]. 
 

Various input for the independent variable considered in the analysis are allowed. It may be 
discrete, dichotomous, continuous or any combination of these, while the dependent variable is 
dichotomous [15]. The two possible values of the dependent variable may be regarded as presence/
absence, success/failure, or an event occurring/not occurring. The output prediction value is then 
represented as a probability between 0 and 1.  
  

The logistic function f(z) [16] is defined as: 
 

 
 

where z is defined as the linear sum of the product of the independent variables and their 
respective coefficients, and a constant.  
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where βi(i=0,1, 2,…,n) are the coefficients, xi (i=0,1,2,…,n) are the values of the independent 

variables, and α is a constant. The value of f(z) varies from 0 to 1 since z varies from -∞ to +∞. 
 

The independent variables are the physical controlling factors that affect the instability of an 
area and the dependent variable is the presence or absence of landslides. Because of the binary 
response, two alternative groups are established; mapping units free of landslides, and mapping units 
having landslides. 

 
The dependent variable, which is the observed landslide occurrence (1580 landslide events), is 

coded as 1 and 0 for presence or absence of landslide respectively. The statistical analysis was 
performed using randomly selected training data sets with equal number of presence and absence of 
landslide value. A total of 17320 cases were chosen as subsamples for determining the relationship of 
the dependent to the independent variables.  
 

Multicollinearity tests were also done on the set of independent variables by computing 
tolerance and variance inflation factor (VIF) values. An evidence of presence of multicollinearity is 
tolerance value of less than 0.2, and consequently, a variance inflation factor of greater than 5 [17]. The 
VIF reflects how multicollinearity inflates the variance of the coefficient estimates. As an example, the 
standard error would be three times as large if the VIF for a variable is 9.  
  Before performing the regression analysis of the datasets, dummy variables for the 
categorical variables were created. Since some of the variables will be insignificant in the model, it is 
much easier to remove it by means of the generation of dummy variables. Dummy variables were also 
used as binary representation of categorical data (e.g. soil type, lithology) based on the presence (1) and 
absence (0). These were implemented in ArcGIS [3].  
 
 The data were then exported to SPSSTM [18] for logistic regression analysis using the binary 
logistic tool. The analysis was repeatedly performed as the insignificant variables were removed. 
Insignificant variables were determined as variables exceeding the threshold value of 0.05 (level of 
significance) [19]. Variables exceeding the tolerance value accept the null hypothesis thus affecting the 
model insignificantly. The coefficients of the variables in the model were identified after all the 
variables portray significant influence in the occurrence of the event. 
 
2.5 Modelling and Validation Scheme 
 

There was a total of 10,781 landslide pixels covering the study area. To eliminate bias, 
uniformly sampled non-landslide points are paired with equal number of landslide points as test data 
set [5]. From this total, the test data set that was used in the modelling consists of 8600 randomly 
selected landslide pixels (80% of the total landslide pixels) and an equal number of randomly selected 
non-landslide pixels. The non-landslide pixels were sampled from the study area considering a 50-
meter buffer from identified landslides.  
 

To assess the predictive performance of a generated model, K-fold cross validation scheme was 
used. Considering the bias of the technique, a usual choice of the number of folds, k, is 5 or 10 [20]. 
The set of 17,200 selected cells was divided into 5 subsets (k=5), wherein each set has equal number of 
landslide (LS) and non-landslide (NLS) cells (LS:NLS=1). This scheme resulted to five models 
estimating landslide susceptibility of Antipolo City. Model 1 for landslide susceptibility was generated 
by using the first four subsets as the training data and the remaining subset as independent validation 
data. Model 2 was generated using the 1st, 3rd, 4th and 5th subset as training data and the 2nd subset as 
validation data. The process was continued to generate Models 3 to 5.  

 
In order to determine the variation of regression results based on the input data, a sensitivity 

analysis was done by using input training data sets with a landslide to non-landslide event relationship 
of 2, 3 and 4. Random sampling was done while maintaining the total number of calibration set and 
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data set as that of LS:NLS of 1. The same process for estimation of the coefficients was implemented.  
 
2.6 Measures of Model Performance 
 

The performance of each model was measured using the corresponding test data set by creating 
a confusion matrix. The coefficients of the model were used to manually compute the predicted 
probability of each case of the test data set. A cut-off value of 0.5 was used for the predicted 
probability. The predicted probability of each case is then compared to the observed outcome of the 
landslide occurrence. The correctly predicted and wrongly predicted cases of occurrence and non- 
occurrence of landslide were tabulated to compute for the overall correct percentage of each model. 
Moreover, the usefulness of a logistic regression model is characterized by a 25% increase in the 
accuracy compared with proportional by chance accuracy [21]. 
 
 The measure of how well each model classifies each landslide used in model training is called 
success rate. To assess the predictive capability of the model, receiver operating characteristic (ROC) 
curves were plotted. The curve is a plot of the proportion of objects correctly classified (true positives) 
vs. the proportion of the objects wrongly classified (false positives) [22] 
 
 In addition to evaluating AUROC (area under ROC), standard error and root-mean-square error 
have been used as standard statistical metrics to measure model performance [23]. 
 
2.7 Comparison with Deterministic Approach 
 

The deterministic approach of evaluating landslide susceptibility is governed by using slope 
stability models in determining a factor of safety of the area. These models provide valuable 
quantitative data in landslide risk analysis. The main disadvantage of performing deterministic analysis 
is the amount of input data required, mostly coming from actual field measurements and laboratory 
tests. Because of this requirement, this approach is generally applied on site specific, large-scale 
analysis covering a relatively small area [24]. Stability Index Mapping was performed in parallel to the 
statistical model as mean of cross validation. This approach uses a GIS-based methodology 
implementing the slope stability model coupled with a hydrologic model for rainfall induced landslide 
susceptibility assessment. Infinite slope stability model was implemented with the following input: 
recharge and transmissivity, soil density, angle of internal friction, and cohesion. To perform the 
comparison, the six standard SINMAP predicted states are reduced to four susceptibility classes based 
on quantiles (similar to the logistic regression approach) [25] [26]; low, moderate, high and very high.  
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III. RESULTS AND DISCUSSIONS 
 

3.1 Parameter Maps 
 
3.1.1 Morphometric Preparatory Factors  

Figure 2. Thematic factor maps of morphometric variables related to landslide occurrence: elevation, slope, 
profile and planform curvature, flow direction and aspect raster maps of Antipolo City. 
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Figure 2 (continued). Thematic factor maps of morphometric variables related to landslide occurrence: SPI, and 
TWI raster maps of Antipolo City. 

 

 

3.1.2 Non- morphometric Preparatory Factors 

Figure 3. Non-morphometric factors considered in this study: Distance to river, Distance to road, Soil and 
Geology raster maps. 
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3.3 Statistical Analysis – Logistic Regression 

 

The estimated regression coefficients for Models 1 to 5 are summarized in Table 1. The results 
of multi collinearity tests show that there is strong interdependence among slope, stream power index, 
and topographic wetness index, as exhibited by tolerance values of less than 0.2 (VIF > 5). The 
summary shows only factors that were found to be effective in determining the landslide occurrence. A 
positive coefficient indicates a positive relationship between the probability of landslide and the factor 
involved. Factors that were identified to be ineffective for the prediction were those with significance 
values greater than 0.05. A coefficient of zero has a transformed log value of 1. It means that this 
coefficient does not affect the odds of the event. It can be seen that that slope and erosion potential is 
the strongest contributor in landslide occurrence. 

 

Table 1. Summary of Regression Coefficients for Models 1 to 5 

 

 

 1:1 (LS:NLS) 

Paremeters/ Coefficients Model 1 Model 2 Model 3 Model 4 Model 5 

SPI 0.025 0.045 0.000 0.034 0.000 

Flat -2.854 -2.591 -4.457 -2.890 -2.361 

North -1.032 -0.803 -0.782 -0.789 -0.736 

Northeast -0.991 -0.972 -0.903 -0.831 -0.890 

East -0.700 -0.580 -0.520 -0.610 -0.490 

Southeast -0.272 0.000 0.000 0.000 0.000 

South -0.281 -0.281 0.000 -0.263 0.000 

West -0.860 -7.330 -0.686 -0.790 -0.671 

Northwest -1.910 -1.950 -1.713 -1.885 -1.668 

Oligocene-miocene -2.393 -2.200 -2.317 -2.518 -2.226 

Paleocene-eocene -2.268 -2.272 -2.086 -2.235 -2.302 

Oligocene -2.680 -3.103 -2.783 -2.621 -2.524 

Neogene -2.999 -2.766 -2.923 -2.362 -2.790 

Upper miocene-pliocene -0.702 0.000 -0.803 -0.964 -0.713 

Pliocene-quaternary 0.590 0.671 0.596 0.650 0.640 

Pliocene-pleistocene -1.976 -2.121 -2.034 -1.771 -1.949 

Cretaceous-paleocene 0.705 0.782 0.681 0.823 0.806 

Plan convex 0.169 0.000 0.213 0.000 0.252 

Antipolo soil -0.907 -0.923 -0.967 -1.115 -0.908 

Antipolo clay -1.556 -1.668 -1.551 -1.721 -1.593 

Binangonan clay -1.950 -2.141 -2.075 -2.225 -2.065 

Binangonan clay (lowland) -2.594 -3.699 -2.749 -3.522 -2.600 

constant -9.145 -9.026 -9.371 -9.076 -9.352 
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The success rates of all models are found to be greater than 90%, as shown in Table 2.  Chance 
accuracy is still expected even if there is no relationship between landslide occurrence and the 
independent factors. The chance accuracy rate is computed as the sum of the squared percentage of 
landslide and non-landslide events. Since the input training data set contain equal landslide and non-
landslide events, and imposing a 25% increase in chance accuracy rate, the resulting rate is equal to 
1.25* (0.52 + 0.52) = 0.625 or 62.5%. All model success rates are greater than 62.5%, which signifies 
that the models are not based on random fit.  

 

Table  2 . Success Rate for Models 1 to 5 

 

The four cases considered in creating a confusion matrix are correctly predicted landslide 
occurrence, correctly predicted landslide presence, landslide event is predicted but not observed, and 
landslide absence is predicted but not observed. As an illustration, the confusion matrix corresponding 
to Model 1 is presented in Table 3. 

 

Table  3. Confusion Matrix For Model 1 

 

The results of analysis for overall accuracy, AUROC with standard error, and root-mean-square 
error (RMSE) is presented in Table 4. It can be seen that Model 1 generated the highest overall 
accuracy and AUROC with corresponding lowest RMSE, suggesting that this model is the best 
estimator among the five trained models. 

 

Table 4. Summary of Model Performance Assessment for LS:NLS =1 

 

The results of final run for training of Model 6 (LS:NLS=2) to 8 (LS:NLS=4) are summarized 
in Table 5. I can be observed that as the landslide to non-landslide ratio increases, the overall accuracy 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Success Rate 90.7% 90.8 % 90.7 % 91.1 % 90.7 % 

 PREDICTED 
Percentage Correct 

OBSERVED Absence Presence 

Absence 1515 205 88.08 

Presence 82 1638 95.23 

Overall Accuracy 91.66% 

 Model 1 Model 2 Model 3 Model 4 Model 5 

AUROC 0.908 0.887 0.907 0.903 0.907 

Standard Error 0.002 0.003 0.002 0.002 0.001 

RMSE 0.2478 0.2937 0.2540 0.2650 0.2545 

Overall Accuracy 91.66% 88.49% 90.20% 89.88% 90.29% 
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decreases. This is also reflected by the decrease in AUROC from model 6 to 8, with a corresponding 
increase in RMSE. Hence, increasing the landslide to non-landslide ratio in the input training data also 
makes the generated model more unreliable. 

 

Table 5. Summary of Model Performance Assessment LS:NLS =2,3 and 4 

 
Based on the above performance assessment, Model 1 is implemented as the final model in 

generating a landslide susceptibility map for Antipolo City using logistic regression. The computed 
probabilities were classified into four susceptibility classes (low, moderate, high, very high) using by 
natural breaks. 

 
Based on the above performance assessment, Model 1 is implemented as the final model in 

generating a landslide susceptibility map for Antipolo City using logistic regression. The computed 
probabilities were classified into four susceptibility classes (low, moderate, high, very high) using by 
natural breaks. 

 

Figure 4. Final Landslide Susceptibility Map Using Statistical Approach 

 Model 6 Model 7 Model 8 

AUROC 0.889 0.881 0.877 

Standard Error 0.001 0.001 0.001 

RMSE 0.3296 0.3278 0.4152 

Overall Accuracy 85.18% 84.26% 81.26% 
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3.4 Multi Method Comparison 

 

The distribution of the total area with respect to the four susceptibility classes for the two 
methods is presented in Table 6. It can be seen that logistic regression identified a larger area that is 
highly susceptible to landslide occurrence with 30.43%. However, considering the total high and very 
highly susceptible areas, there was no significant difference in the assessment of both methods; at 
37.94% and 37.65% of the total area for the statistical and deterministic approach, respectively.  

 
 

Table 6. Area Distribution Among the Susceptibility Classes 

The complete landslide inventory map was overlaid to each susceptibility map and the 
classification of each landslide pixel with respect to each model was identified, as presented in Table 7. 
The statistical model had a better performance in classifying the landslides having less than 15% of the 
total landslides being assigned to area of low to moderate landslide susceptibility, while the 
deterministic model 20.76% for these classes.  

 

 

Table 7. Landslide Distribution Among the Susceptibility Classes 

 

 

 

 

 

 

 

 

  Statistical Approach (Logistic Regression) Deterministic Approach (SINMAP) 

Class Total Cells % of Total Total Cells % of Total 

Low 1,900,847 53.89 1,465,905 41.56 

Moderate 288,463 8.18 799,321 22.66 

High 1,073,473 30.43 470,882 13.35 

Very High 264,752 7.51 791,427 22.44 

 
Statistical Approach 

(Logistic Regression) 

Deterministic Approach 

(SINMAP) 

Class LS Pixels % of Total LS Pixels % of Total 

Low 305 2.83 691 6.41 

Moderate 901 8.36 1,547 14.35 

High 5,640 52.31 5,123 47.52 

Very High 3,935 36.50 3,420 31.72 
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IV. SUMMARY AND CONCLUSIONS 

 

The logistic regression modeling implements a statistical approach based on maximum 
likelihood of landslide occurrence based on combinations of identified causative factors. K-fold cross 
validation approach required generating five landslide susceptibility models, which are based on input 
consisting of one to one relationship between landslide and non-landslide pixel. A positive regression 
coefficient indicates a positive relationship between the probability of landslide and the factor 
involved. Among the five models, designated Model 1 was chosen as the best predictor model, with 
corresponding success rate of 90.7%, 91.66% over-all accuracy, AUROC of 0.908 (standard error = 
0.002), and lowest root mean square error (RMSE) of 0.2478. Sensitivity analysis was also performed 
using input data with LS:NLS values of 2, 3 and 4. Based on the analysis, increasing this ratio results 
to a decrease in accuracy resulting to lower AUROCs. There was also a significant increase in RMSE, 
making the models more unreliable. For a relatively large area of assessment, it was shown that 
statistical methods perform better than data-intensive slope stability modeling. This study provides a 
platform to perform a city-wide landslide hazard and risk assessment of Antipolo City. The results 
provide an opportunity to prioritize critical structures (i.e. schools, hospitals etc.) in site specific and 
detailed slope stability assessment. 
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