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Abstract — Benthic habitats are one of the most productive ecosystems in existence. Unfortunately, they are 

declining in coverage globally due to natural and anthropogenic factors. Mapping and monitoring the status of 

these coastal ecosystems is critical for their protection. One of the tools capable of mapping such habitats is 

LiDAR remote sensing.  This research aims to evaluate different object-based classification methods for 

classifying benthic habitats in Manicani Island, Guiuan, Eastern Samar using LiDAR derivatives. The 

bathymetric LiDAR data used in this research was obtained using an Optech Aquarius ALTM sensor. Before 

classification, LiDAR derivatives such as digital surface model (DSM), depth, plan curvature, profile curvature, 

rugosity, slope, slope of slope, broad-scale and fine-scale Bathymetric Position Index (BPI), and fractal 

dimension were extracted from the raw data. Principal components analysis was applied to eliminate redundant 

information. To classify the benthic habitats, an object-based image analysis (OBIA) approach was performed 

using eCognition. Training and validation data sets utilized in classification and accuracy assessment were 

gathered in the field using a handheld GPS receiver and video tows geotagged using a dual-frequency GPS 

receiver. The overall accuracies achieved in mapping benthic habitat from LiDAR derivatives were as follows: 

Hierarchical – 77.4%, Nearest Neighbor – 88.3%, Feature Space Optimization (FSO) – 82.4%, and SEparability 

and Thresholds (SEaTH) – 81.9%. 

 
Keywords — benthic habitat mapping, bathymetric LiDAR, OBIA, hierarchical classification, nearest neighbor, 

FSO, SEaTH 

 

 
I. INTRODUCTION 

 

Considered as one of the countries with the longest coastlines, the Philippines houses 

and supports diverse marine ecosystems that provide shore protection, nutrient cycling, and 

valuable economic goods. It is an archipelagic country with the second most extensive coral 

reef area in Southeast Asia covering about 25,000 square kilometers [1], [2]. Many of its people 

depend on coastal resources for daily necessities such as food. Due to population growth and 

industrialization, the coastal environment and its resources are being threatened. 

Approximately 70% of the municipalities in the Philippines are in the coastal area accounting 

for anthropogenic activities and vulnerability to disturbances, natural phenomena, exploitation, 

and pollution of the coastal zone causing threats to marine biodiversity and coastal resources. 

Integrated coastal management is widely recognized as the basis for sustainable use and to 

achieve this, evaluation and mapping of the resources are needed. Inventory of these resources 
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provides important baseline data for resource management which can help in decision making, 

planning, and development.  With this, the development of methods for mapping and 

establishment of the coastal resources’ geographic location and extent is important to aid in 

the assessment,  monitoring, and management of marine ecosystems effectively [3].  

 

Part of these marine ecosystems is the benthic community.  They are biological 

communities thriving on the seafloor which include seagrasses, seaweeds, and corals [4]. 

Benthic habitats are the bottom substrates which shelter these benthic communities. They 

support a diversity of marine life by providing shelter, nursery, and food. Coral reefs typically 

grow in shallow, sunlit waters [5] while seagrasses and seaweeds thrive in intertidal zones [6]. 

Mapping these coastal habitats is essential in creating coastal resource management plans [7], 

[8]. Benthic habitat maps can support in creating guidelines for the establishment of marine 

protected areas and marine spatial planning. Furthermore, it can be used in the status 

assessment of benthic resources,  detection of changes in spatial cover and species abundance, 

habitat delineation, and offshore engineering [9]. These maps can also provide better insights 

on ecological patterns and processes across the seabed [7], [8]. To monitor and map benthic 

habitats, research papers have identified remote sensing as an efficient and effective tool for 

such purposes [3], [9]–[11].  

 

LiDAR, which stands for Light Detection and Ranging, is an active remote sensing 

system that operates in the infrared, visible, or ultraviolet wavelengths of the electromagnetic 

spectrum [12].  Airborne LiDAR for bathymetric and topographic mapping has gone through 

considerable advancement and improvement since the early 1970s [13]. Through time, the cost 

of airborne LiDAR mapping systems lessened along with the availability of more compact and 

lightweight systems which led to the technology being more commercially viable. LiDAR is 

capable of rapid collection of highly accurate elevation data over a large area for a short amount 

of time [14]. It emits its own laser pulse and measures distance by determining the time 

between transmitting and receiving the laser pulse signal [15]. The distance between the sensor 

and the surface object is calculated by multiplying the return’s signal elapsed time by the speed 

of light and dividing it by two to account for the roundtrip travel it made (Equation 1) [16]. 

The output of a LiDAR system is not an image but a collection of points called the “point 

cloud” [17]. Each point contains 3D coordinates of the target object which are calculated from 

the distance and angle traveled by the laser pulse. There are two general types of imaging 

LiDAR, topographic and bathymetric. The bathymetric LiDAR systems are designed to 

penetrate water surfaces. They emit a short green pulse in order to maximize penetration in 

water for different water types [18]. On the hand, topographic LiDAR systems are mainly 

utilized for terrestrial mapping applications and they usually emit pulses in the near-infrared 

range. 

 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑡𝑖𝑚𝑒𝐿 ∗ 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡

2
 

Equation 1. Distance between sensor and the surface object 
 
 

The bathymetric LiDAR is a relatively new technology introduced in the Philippines. 

An extensive LiDAR survey of the country was started in 2011 and approximately two-thirds 

(1) 
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of the Philippines was surveyed using LiDAR technology. This task was accomplished by 

utilizing four LiDAR sensors, three of them were topographic LiDAR and one was a 

bathymetric LiDAR. The data from the bathymetric LiDAR were used in this research to 

determine its capability for mapping coastal resources such as benthic habitats. The 

quantitative high-resolution information on coastal elevation derived from LiDAR has vast 

potential in coastal research and resource management. In the Philippines, where the majority 

of the population lives in the coastal zone, accurate and updated coastal topographic and 

resource extent maps and are essential and necessary because they are the basic requirements 

utilized by policy and decision-makers, planners, managers, and researchers for their 

respective purposes. Usually, these maps are prepared using data from in situ surveys. 

 

Traditional in situ surveys are challenging, time-consuming, and labor-intensive. Thus, 

throughout the years, satellite and airborne remote sensing methods have been optimized in 

mapping and inventory of shallow benthic habitats. [19], [20].  With LiDAR technology, data 

and information can be collected rapidly offering high resolution, high accuracy 

measurements. And over the years, its scientific uses have continued to evolve. Zavalas et. al. 

(2014) demonstrated the potential of utilizing bathymetric LiDAR for the effective 

classification of benthic habitats in shallow water (< 30m). A study by Wedding et al. (2008) 

found that LiDAR provides an effective measure for rugosity on a coral reef in Hawaii. Results 

suggest that LiDAR-derived rugosity may be used as a surrogate for various fish measures of 

fish assemblage structure which implies that LiDAR data may be used to assist in prioritizing 

areas for conservation and management [18]. This was also established by Brock and Purkis 

(2009) when they reviewed various articles on the role of LiDAR remote sensing in coastal 

research and resource management. They presented studies on how LiDAR can be utilized to 

examine the geomorphic structure and change in shallow benthic environments [2]. Moreover, 

LiDAR data can provide information about the topography, physical structure, and complexity 

of the seafloor. Some studies utilize this information to analyze the benthic terrain and 

distribution of benthic habitats. Examples of topographic information which can be derived 

from LiDAR data are the mean depth, standard deviation of depth, curvature, plan curvature, 

profile curvature, rugosity, slope, slope of slope, broad-scale and fine-scale bathymetric 

position index, and fractal dimension [21]  Furthermore, according to Collin et. al. (2011) [22], 

an object-oriented segmentation that considers the spatial context may be better than traditional 

pixel-based classification in mapping shallow water seabed. 

 

Several studies have compared various classification algorithms in mapping benthic 

habitats using remote sensing datasets. Hasan et. al. (2012) assessed four supervised learning 

methods – Maximum Likelihood (MLC), Quick, Unbiased, Efficient Statistical Tree 

(QUEST), Random Forest (RF) and Support Vector Machine (SVM), in classifying habitat 

classes using multi-beam echosounder backscatter data [23] while in the study of Wahidin et. 

al. (2015), object-based classification methods such as SVM,  Random Tree, k-Nearest 

Neighbor, Bayesian and Decision Tree were utilized for mapping using Landsat satellite data 

[24]. Moreover, Collin et. al. (2011) assessed benthoscape (i.e. benthic habitats and their 

associated communities) discrimination by object-oriented classification of bathymetric 

LiDAR. They utilized twelve (12) bottom descriptive statistics such as mean, variance, 

skewness, kurtosis, etc. and compared an unsupervised classification method, K-means, and 

supervised classification method, SVM.  
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Advancement in remote sensing technology, increase in computation capability, and 

availability of high-resolution imagery prompted the emergence of object-based image 

analysis (OBIA) [15]. OBIA has been a tool for the classification of benthic features and 

considered to be more accurate than the pixel-based technique [25], [26]. Classifying various 

landforms using OBIA of high-resolution imagery has been proven more superior than pixel-

based classification [27]–[29]. The approach uses objects as the processing units to classify the 

image. The objects are created by segmenting the image into regions based on the different 

criteria for homogeneity [30]. OBIA starts with the generation of segmented objects at multiple 

levels of scales [27] and builds on edge detection, feature extraction, and classification 

concepts [31]. This classification method is tested in this research for classifying benthic 

habitats from LiDAR data. 

 

This relatively new technology may be the key to improving the baseline mapping of 

coastal resources in the Philippines. Although satellite images have been widely used in the 

country for benthic habitat mapping, additional information from LiDAR surveys may be 

proven useful and may provide supplementary data for existing methods. The objective of this 

research is to evaluate object-based classification methods, specifically, Hierarchical 

Classification, Nearest Neighbor, Feature Space Optimization (FSO), and SEparability and 

Thresholds (SEaTH) in mapping benthic habitats from LiDAR derivatives. 

 

 

II. MATERIALS AND METHODS 

 

A. Study Area 

The study area is located in Manicani Island, Guiuan, Eastern Samar, Philippines 

(Figure 1). This island is found in the Leyte Gulf and is situated at 10.93°N and 125.63 °E. 

Manicani Island is dominated by corals and seagrasses. Eastern Samar’s coast is covered by 

fringing coral reef [32] and seagrass meadows.  

 

The benthic habitats in Manicani Island which were included in the classification were 

corals, dense seagrass, sparse seagrass, seaweeds, sand, coral rubbles, and dead corals (with 

algae). Corals make up a coral reef and they consist of thousands of individual polyps [33]. 

They thrive in clear, shallow, and warm water. On the other hand, seagrasses, flourish in the 

intertidal zone. They are flowering plants that can live entirely submerged in water [6]. 

Moreover, seaweeds, also known as macroalgae are free-floating plants [34]. 
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Figure 1. Map showing the location of  the study area:  

Manicani Island, Guiuan, Eastern Samar 
 

B. Data  

The LiDAR dataset of Manicani Island (Figure 2) is a missioned flight using an  Optech 

Aquarius ALTM sensor which utilizes green laser (532 nm wavelength). The resolution is two 

points per square meter and it was preprocessed using the LAStools software. 
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Figure 2. The extent of the extracted bottom of the bathymetric LiDAR data  

(yellow polygon) in Manicani Island 
 

 

 LAStools is one of the fastest and memory-efficient solutions for batch processing of 

LiDAR data [35]. It was utilized to separate the surface points from the bottom points. Water 

depths can be calculated by getting the distance between the sea surface and the bottom. The 

green laser utilized by the bathymetric LiDAR is partially reflected from the water surface to 

the bottom as seen in Figure 3. The water surface points were eliminated to create the bottom 

surface. Other unnecessary points were also cleaned out such as land and noisy data. The digital 

surface model (DSM), a spatially continuous digital product [15] extracted from the bottom 

surface discrete points, was created by performing interpolation. 

 

 

 

Water surface 

Bottom 

Figure 3. Surface (gray line) and bottom (brown area) bathymetric LiDAR data points where 

green laser utilized by the bathymetric LiDAR is partially reflected from the water surface to 

the bottom.   
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The digital surface model (DSM) of the water bottom provides valuable information in 

producing benthic habitat maps. Aside from depth information,  it can also be utilized to extract 

information about the seafloor’s topography and physical structure [21]. Moreover, different 

terrain variables can be derived from the DSM such as mean depth, standard deviation, 

curvature, plan curvature, profile curvature, slope, slope of slope, rugosity, broad-scale and 

fine-scale Bathymetric Position Index (BPI), and fractal dimension. The mean depth and 

standard deviation of the depth are depth summary statistics which are useful predictors in 

understanding the benthic zones, particularly in habitat classification.  The mean depth is the 

average water depth while the standard deviation of depth describes the amount of dispersion 

of water depth values about the mean [21]. Aside from depth summary statistics, bottom terrain 

parameters can also be derived from the DSM. 

 

Terrain parameters such as curvature, slope, rugosity, broad-scale and fine-scale BPI, 

and fractal dimension can provide information to characterize the seabed. They are valuable 

information to define areas of continental slope that are highly probable for supporting certain 

fauna and thus provide a distinct habitat [36]. Curvature is the rate of change in curvature 

across the surface which highlights ridges, crests, and valleys. Moreover, plan curvature is the 

curvature of the surface perpendicular to the slope direction, while profile curvature is the 

curvature of the surface in the direction of the slope. In curvature and plan curvature, negative 

values denote concave and positive values are convex surfaces. However, for profile curvature, 

negative values are convex and positive values are concave [21]. Slope, on the other hand, is a 

measure of steepness while the slope of slope is a second derivative of the bathymetric height. 

It can capture fine-scale topographic complexity for predicting both fish and coral metrics [37]. 

Rugosity is a measure of surface roughness and is described as the ratio of surface area to 

planar area [21].  It can be used as a predictor of fish species richness and abundance, as well 

as seagrass distribution in different bottom type variations. It can also be a way to distinguish 

coral-dominated habitats. Slope and rugosity are considered as potential proxies for benthic 

biodiversity by defining the structures on the seafloor [38]. BPI is a measure of the relationship 

of a certain location with a defined elevation in relation to the overall landscape. Positive 

(negative) values represent cells that are higher (lower) than the neighboring cells, whereas 

near-zero values depict flat areas or areas with a constant slope. Broad-scale BPI analyzes a 

larger neighborhood while the fine-scale BPI detects smaller and localized terrain variations. 

Lastly, the fractal dimension indicates how the surface roughness changes over space. Values 

range between 2 for smooth and 3 for rough surfaces [39]. All of these datasets were derived 

from the DSM. 

 

Since the derivatives all originated from the DSM, there was a high possibility of 

redundant information in each of these surfaces. Thus, to reduce the likelihood of redundancy, 

the derivatives were stacked together and Principal Components Analysis (PCA) was applied. 

This procedure transforms the highly correlated bands into uncorrelated output bands. PCA 

transformation is a multivariate statistical technique that chooses uncorrelated linear 

combinations of variables to generate principal components (PC) which has a smaller variance 

[40]. The number of bands produced by PCA is similar to the number of input bands, subject 

to selection based on the eigenvalue. 
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C. Data Processing 

The capability of mapping benthic habitats using LiDAR data was analyzed using the 

bathymetric LiDAR flight of Manicani Island. After cleaning the data, eleven (11) LiDAR 

derivatives such as mean depth, standard deviation, curvature, plan curvature, profile 

curvature, slope, slope of slope, rugosity, broad-scale BPI, fine-scale BPI, and fractal 

dimension were produced using LandSerf and the Benthic Terrain Modeler in ArcGIS 10 

(Figure 4). PCA was then applied to remove the redundancy of information.  

 

 

 

 
Figure 4. Derivatives of the bathymetric LiDAR data of Manicani Island  
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The PCA raster and the LiDAR derivatives were imported to the eCognition software, 

which was used to perform OBIA. To delineate the different benthic habitats in the data, 

multiresolution image segmentation was employed. One of the first steps in every remote 

sensing image analysis is the image segmentation [41], [42]. It is a basic and critical task in 

image processing as it effectively partitions an image into different meaningful regions or 

objects [41], [42].Each region is homogeneous in some sense, e.g. parts of the region have the 

same brightness, color, or texture. The eCognition software creates the segments based on three 

parameters: scale, shape, and compactness. The segmentation commences by initially 

recognizing each individual pixel in the image as one segment. These single-pixel segments 

are then successfully merged into larger segments using pair-wise clustering processes [43]. 

Several combinations of these criteria can be made to obtain different results. Scale dictates 

the relative size of the regions while shape and compactness determine the smoothness and 

optimizes the regions’ spatial complexity. As an example, a small-scale value of 10 produces 

small segments while a large-scale value of 100 produces large segments. A low shape value 

of 0.1 places high emphasis on color which is normally the most important factor for creating 

meaningful objects [43]. Higher compactness weightings of 0.9 result in more compact object 

boundaries, typical for crop field or building extraction. The best segmentation for each set of 

data was selected using a trial-and-error approach. It was determined based on the resulting 

habitat delineation’s closeness to field data and image interpretation findings. The final 

parameters chosen were as follows: scale parameter of 5, shape of 0.2, and compactness of 0.9. 

A sample area of the result of the multiresolution image segmentation is shown in Figure 5.  

 

 

 
Figure 5. Results of the multi-resolution segmentation showing different regions  

 

 

After segmentation, the benthic habitats were classified. Different object-based 

classification methods were performed such as Hierarchical Classification, Nearest Neighbor, 

Feature Space Optimization (FSO), and Separability and Thresholds (SEaTH). Hierarchical 

Classification is a rule-based classification method and two important features are needed for 
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this kind of classification. The first is the attribute to be used to create the most efficient split, 

and the second is the threshold at which to split the attribute. For the first level, benthic habitats 

were split into shallow and deep regions. Depth is a crucial parameter in the split between 

shallow and deep regions. This is because depth determines the amount of light reaching the 

sea bottom and benthic habitats need light to survive. Only corals are most likely to survive in 

deeper waters.  For the second level, the shallow region was then further classified into sparse 

seagrass, dense seagrass, seaweed, and corals. Textural information such as fractal dimension 

was determined useful in splitting the classes at this level.  The last split includes separating 

the coral class into coral, sand and dead coral.  

Figure 6 shows the levels of the hierarchical splits. Aside from Hierarchical 

Classification, semi-automated object-based classification methods such as Nearest Neighbor, 

FSO, and SEaTH were also implemented. 

 

 

 
 

Figure 6. Levels of the Hierarchical Classification of Benthic Habitats from LiDAR 

Derivatives 
 
 

Nearest Neighbor classification in eCognition is a supervised classification algorithm 

that searches for the closest sample image object in the feature space of an object to be 

classified. The process consists of using training data as samples to teach the algorithm and 

classifying image objects based on the nearest sample neighbors [44]. The mean and standard 

deviation of the input image layers were used for the training and classification. On the other 

hand, Feature Space Optimization (FSO) function is used in conjunction with the nearest 

neighbor classifier, which performs a mathematical computation in order to determine the best 

combination of features that will be used for separating classes [43]. Moreover, a feature 

analyzing tool called Separability and Thresholds (SEaTH) was also used to determine a 

separate combination of features. SEaTH identifies the pairwise separability of the classes 

among each other and then determines the thresholds that define the maximum separability of 

the features [45]. To assess the accuracy of the classification, error matrices were produced 

based on field survey data. 

 

An error matrix is a means of quantifying the performance of a classification [46]. It is 

a square matrix (E) which consists of N x N elements, where N is the number of classes in the 

LiDAR 
Derivatives

Deep Water

Corals Sand

Shallow 
Water

Dense 
Seagrass

Sparse 
Seagrass

Seaweed
Corals/Sand/
Dead Corals

Corals Sand Dead Corals



11 
 

Copyright 2020 | Philippine Engineering Journal  Phil. Eng’g J. 2020; 41(2): 1-18 

 

A. Tamondong, et al. 

classified image. The number of pixels known to belong to class i, placed in row i and the 

classified as belonging to class j, placed in column j, is the element Eij [47]. The user’s 

accuracy (shown in Equation 2), also called consumer’s accuracy, is examined from the user’s 

perspective [48] and it is calculated by dividing the number of correctly classified pixels in 

each category by the total number of pixels that were classified in that category [49].  On the 

other hand, the producer’s accuracy (shown in Equation 3) is examined from the analyst’s point 

of view [48] and it is computed by dividing the number of correctly classified pixels in each 

category by the number of test pixels used for that category [49].  

 
𝑬𝑖𝑖

∑ 𝑬𝑗𝑖
𝑁
𝑗=1

 

Equation 2. User's Accuracy 
 

𝑬𝑖𝑖

∑ 𝑬𝑖𝑗
𝑁
𝑗=1

 

Equation 3. Producer's Accuracy 
 

From the error matrix, the overall accuracy, shown in Equation 4, can also be calculated. 

The overall accuracy is the simplest and most widely used accuracy measure in remote sensing 

and it is computed by dividing the total number of correctly classified pixels by the total 

number of reference pixels [49]. In this research, the error matrices were calculated using data 

gathered in the field. 

 

∑ 𝑬𝑖𝑖
𝑁
𝑖=1

∑ ∑ 𝑬𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1

 

Equation 4. Overall Accuracy 
 

During the field survey, GPS data, photos, and video clips of the benthic features found on 

the seabed were collected. Samples include sparse and dense seagrass, seaweed, sand, dead 

coral with algae, corals, and coral rubble. The total points were divided into training and 

validation points which were used for classification and accuracy assessment, respectively. A 

summary of the workflow performed to classify benthic habitats from LiDAR derivatives is 

shown in Figure 7. 

 

 

(3) 

(4) 

(2) 
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Figure 7. Workflow for extracting benthic habitats from LiDAR data 

 

III. RESULTS AND DISCUSSION 

 

Through the years, airborne laser scanning systems such as LiDAR are evolving and 

have been opening additional possibilities for surveying the coastal ecosystem. Such systems 

produce data that can be characterized as sub-randomly distributed 3D point clouds. The first 

step in processing laser scanner data is removing unwanted measurements [50]. In the case of 

bathymetric LiDAR for benthic habitat mapping, these unwanted measurements include the 

water surface, marine organisms, and floating objects. Eliminating erroneous points from the 

data is crucial in generating correct LiDAR derivatives. Aside from cleaning the data, checking 

the quality of the acquired points is also highly recommended. This may include inspection of 

the correctness of the elevation and positional information of the LiDAR points. These steps 

are included in the preprocessing stage of the LiDAR data to prepare it for classification. 

 

After preprocessing, the LiDAR derivates such as DSM, mean depth, standard 

deviation, curvature, plan curvature, profile curvature, slope, slope of slope, rugosity, broad-

scale and fine-scale BPI, and fractal dimension were produced. Depth statistics are 

advantageous parameters in separating the benthic habitats because generally, coastal 

ecosystems have natural zonations [51], [52]. For example, seagrasses are known to commonly 

thrive in the intertidal zone where the waters are shallower compared to where corals live. 

Corals act as wave buffers for seagrasses because the latter is susceptible to uprooting due to 

strong currents. Texture information such as rugosity is also beneficial in separating the classes 

because it depends on the complexity of the surfaces. Seagrasses, corals, sand, and seaweed 

have distinct textural surfaces which helps separating them into classes. Even though LiDAR 

data lacks in spectral information, LiDAR derivatives can be extracted and utilized to map 

different benthic habitats. 

 

To assess the potential of bathymetric LiDAR for benthic habitat mapping, different 

object-based classification methods such as Hierarchical classification, Nearest Neighbor, 

FSO, and SEaTH were applied to the LiDAR data of Manicani Island and the results were 

assessed for their accuracy. It was classified into seven classes: corals, coral rubble, dead coral 

with algae (DCA), dense seagrass, sand, seaweed, and sparse seagrass. The result of the 

classification is shown in Figure 8. Overall accuracies ranging from 77-83% were achieved in 

classifying the stacked image of LiDAR derivates which shows the potential of bathymetric 

LiDAR for mapping benthic habitats.  
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Figure 8. The classification results of the Manicani Island LiDAR data using (1) Hierarchical 

– 77.4%, (2) Nearest Neighbor – 88.3%, (3) Feature Space Optimization – 82.4%, and (4) 

SEparability and Thresholds – 81.9%  

  

 

In the Hierarchical Classification approach, the first PCA band and fractal dimension 

were the two attributes used to split the different classes. This method produced an overall 

accuracy of 77.4%. Meanwhile, using Nearest Neighbor, all layers were included in the nearest 

neighbor feature space which attained an overall accuracy of 83.3%. For the FSO, a total of 30 

layers, including the mean and standard deviation of the derivatives, were selected which 

obtained the best separation distance of 0.364 resulting to a feature combination consisting of 

the mean of the second band of the PCA raster, the standard deviation of DSM, BBPI, FBPI, 

and slope. The overall accuracy obtained using FSO was 82.4%. Moreover, using the 

SEparability and THresholds (SEaTH) tool, the following features were identified to be useful 
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in classifying the benthic habitats: BBPI, curvature, DSM, fractal dimension, depth, the first 

three PCA bands, plan curvature, profile curvature, and rugosity. These features were then 

selected in the standard nearest neighbor feature space and applied to the classes. An overall 

accuracy of 81.9% was obtained in this technique. From the four classifications, corals class 

was delineated best with producer’s accuracies ranging from 78-94% and user’s accuracies 

from 93-100% (Table 1). The producer’s accuracy shows the correctly classified objects based 

on the ground truth information. The resulting producer’s accuracies explain that 78-94% of 

the validation data for corals are labeled correctly as corals on the benthic habitat map. On the 

other hand, the user’s accuracy represents the classification from the perspective of the map 

user. The resulting user’s accuracies explain that 93-100% of the corals depicted on the map 

actually represent corals on the ground. The class that was mostly misclassified is seaweed, 

which was misclassified as DCA or seagrass. Among the four, Nearest Neighbor achieved the 

best overall accuracy with 83.3%. 

 

 

Table 1. Producer's, User's, and Overall Accuracy Results of Hierarchical Classification, 

Nearest Neighbor, FSO, and SEaTH. 

 

 

LiDAR classification highly depends on the textural information of the habitat. Low 

accuracies due to misclassification are mainly caused by the similarity in the texture of some 

classes such as sparse and dense seagrass, corals and dead corals, sand, and coral rubbles. 

Among the lowest user’s and producer’s accuracy is the seaweed class. This is because 

seaweeds thrive in the habitats of both seagrasses and corals. They are usually seen floating on 

top of seagrass meadows and coral reefs. Seaweeds also look like seagrasses which may have 

  Hierarchical 

Classification 

Nearest 

Neighbor 
FSO SEaTH 

Producer's 

Accuracy 

Dense Seagrass 63.50 81.33 78.22 76.89 

Sand 93.10 90.47 92.82 92.82 

Corals 78.64 92.14 86.38 94.10 

Coral Rubble 92.22 75.29 81.98 84.73 

Dead Corals with 

Algae 
65.12 86.24 84.59 79.20 

Sparse Seagrass 88.44 85.70 83.63 86.53 

Seaweed 64.50 70.17 75.35 64.05 

User's Accuracy 

Dense Seagrass 91.56 85.90 95.70 95.89 

Sand 81.73 74.22 61.77 72.64 

Corals 100.00 93.61 98.81 96.64 

Coral Rubble 50.50 53.58 58.28 52.90 

Dead Corals with 

Algae 
82.24 79.50 71.20 62.50 

Sparse Seagrass 79.98 88.37 93.98 93.00 

Seaweed 56.26 89.67 69.90 71.95 

Overall 

Accuracy 
 77.44 83.32 82.40 81.95 
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caused misclassifications. The lowest user’s accuracy for all the four classification methods is 

the coral rubble class. Coral rubbles are easily misclassified as sand if they are small fragments 

while they may also be mistaken as corals if they are stacked together.  

 

 

IV. CONCLUSIONS 

 

This study shows that object-based classification of bathymetric LiDAR derivatives 

can be utilized in extracting the benthic habitats. These derivatives are DSM, depth, standard 

deviation, curvature, plan curvature, profile curvature, slope, slope of slope, rugosity, broad-

scale and fine-scale BPI index, and fractal dimension. They were proven useful in the analysis 

of the seafloor and identifying the habitats present. An object-based image classification 

approach has been advantageous in mapping benthic habitats using bathymetric LiDAR as 

shown in the results. Classifying the Manicani Island bathymetric LiDAR data, overall 

accuracies achieved were as 77.4%, 88.3%, 82.4%, and 81.9% for the Hierarchical 

Classification, Nearest Neighbor, and SEaTH, respectively.  

 

It is recommended to apply the methodology in other sites in the Philippines with a 

larger study area and examine the accuracy of the results in different coastal environments. 

Moreover, the resolution of the LiDAR data used in this study is two points per square meter. 

It would be interesting to investigate in future studies the accuracy of classification if the 

number of points per square meter is increased or decreased. Furthermore, the classification 

techniques not applied in this research may also be tested in future studies to determine the 

best classification method for benthic habitat mapping using bathymetric LiDAR. 
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