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ABSTRACT

This paper presents a new design and implementation of an interrupt driven control system for a Puma
560 robot, which will provide the facility to implement true real-time control on a PC. In the new controller
design, the paper discusses the new hardware configuration, control system adopted, and software design
implemented for the Puma robot. Also, a controller tuning procedure was developed for robot joint de
motors to avoid oscillations and overshoot in their response. The inverse kinematics implementation to the
software controller will also be explained. Finally, the paper also describes a Jorce sensor integration that
will be used together with the new controller for uncertainiy (error) identification task. This will include a
discussion on the force sensor and ity use, the safety system including watchdog timer and crash protector and
some experimerits to test the eﬁectiven_ess of the force sensor in uncertainty (errvor) identificaiion.

1. Introduction

Most of the products involved in the manufacturing processes are produced in batch type
processes. An increasing number of researches are moving towards the replacement of dedicated
workstations by programmable ones. The replacement of the usual pick and place unit to a highly
flexible robot is an example of this trend. The robot is vsually a single mechanical arm with the
movements controlled and programmed through a computer.

Assembly robots with high dexterity are indispensable in highly automated manufacturing
systems. Some examples of the assembly robots used in industry are the PUMA, SCARA and the
STANFORD robots. The Programmable Universal Manipulator for Assembly (PUMA) robot (see
Figure 1) is one of the specialised robots designed for assembly application. General Motors
Corporation and Unimation, Inc. developed the PUMA robot arm for the purpose of robotic
assembly. Its relatively smaller frame and lighter weight compared to other industrial robots,
makes it more adaptable to small and medium scale assembly processes. Tt could carry a mass of
up to 2.5 kg., can apply a static assembly force of 60 N and has a location repeatability of +/-
0.Imm.

One of the outstanding characteristics of the PUMA robot is that its task could be
reprogrammed unlike other robots that has a specific task within its lifetime. The current trends
leans toward the development of a single station that could assemble different products at the touch
of a button. The only barrier to this implementation is that the amount of time spent in
programming might make the robot uneconomical.
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Figure 1. PUMA 560 robot {Craig]3])

To reduce the programming time required, the National Bureau of Standards proposed the
use of the concept of hierarchical control. With this system, programming time is reduced by
creating a modular programming structure to fulfill a given task. The programming scheme is
schematically shown in Figure 2.

VAL software was used in the original robot control for the Puma robot. However, there are
constraints in the VAL software that makes the implemeéntation of modern contrel methods
difficuli. The new control system adopted in the PUMA robot removes this constraint by making
use of an IBM-compatible PC to run new control software. First, the new hardware configuration
will be described. This is then followed by a discussion of the control system adopted for the joint
controls that will also include a new controller tuning procedure to facilitate faster tuning. Finally,
the software design implemented for the robot together with the inverse kinematics is explained.
To improve the capability of the Pumna robot, a force sensor is integrated to the end-effector. This
integration process will provide the robot to with force measuréments that could be applied in
different force control sitwations. In this paper, the application of the new controller with the
integrated force sénsor in the robot will be for an uncertainty (error) identification task. An error
identification strategy using the Kalman filter and a force/moment sensor is being proposed to
solve for the uncertainties.
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Figure 2. Five-level robot control hierarchy (Adapted from A.J. Barbera, National Bureau
of Standard Special Publication 500-523, Dec, 1997)

IL. Puma robot controller hardware

An important aspect in the design of the new controller is that it should facilitate flexibility
in the implementation of software based control strategies. To conform to this specification, the
new system makes a clear distinction between the motor driving hardware and the motor control
hardware, whereas the original system contained both hardware devices in the Puma Unimate
computer/controller box. The new controller hardware consists of three distinct pieces of hardware
(see Figure 3) namely: the original robotic arm; the new motor driving hardware, and the new
motor controller hardware, in the form of an IBM-compatible PC.
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Figure 3. Schematic diagram of new system hardware

The controller was implemented entirely on a PC and the original Unimation Controller box
contains various interfacing devices like: brake actuation, PWM amplifiers, line receiver boards,
filter boards and power supply. This is a total replacement of the original controllers. Two-pulse
width modulation (PWM) Motor Drive Boards are used as the new motor driving hardware with
each board capable of driving four DC servomotors (four channels, one motor per channel). The
first board is used to power joint 1, 2, and 3, the second board powers joints 4, 5, and 6. The PWM
is a form of digital voltage control made popular by its simplicity in drive electronics and computer
interfacing. In general terms, the voltage across the ontput terminal of one channel is controlled by
electronically adjusting the duty cycle, i.e., the width of the pulse. The line receiver boards were
uged to validate the encoder signals so that noise glitches can be climinated. While the filter

oards were installed to filter the potentiometer signals coming from thé robot joints.
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2.1 The new PC controller hardware

The implementation of control software routines for each joint was done through the use of

a personal computer (PC). The software routines can be written in any appropriate language (in
this case, Borland C++). Inside the PC, two I/O boards are installed to allow communication
between itself and the controller box, togethier with the watchdog timet/brake control board to
safety actuate the joint brakes.

2.1.1 JS.602 PC I/O Boards

The J5.002 is a multi-functional /O card used to communicate with the PC. The board has
the following facilities: a) Two 24 bit quadrature counter mputs, b) One 16 bit quadrature
counter input, ¢) Six digital index pulse inputs, d) Six bytes of TTL digital output, e) Three byies
of digital /O, f) Eight channels of analogue input to A/D-converter, and g} Timer

2.1.2 Watchdog Timer/Brake control boards

The Watchdog Timer/Brake control board has the purpose of notifying the controller box in.
the event of the PC crashing. It also controls the enabling and disabling of the brakes. This board
sends one control line from the PC to the main connection board in the controller box. This line
will only be activated if both the watchdog and the brake are enabled.

The watchdog timer has the function of periodically checking whether a particular memory
location has been repeatedly read by the PC’s microprocessor. The board was configured to check
the memory location is at least read every 20 milliseconds. If this memory location is not read, the
control line will be disabled. This will cause the controller hardware to apply the brakes and
remove the power for the PWM boards. :

The ‘brake enable’ function of the board controls the releasing of the brakes. The main
connection board produces the 28 V when the control line from the PC is activated. This will then
release the brakes when applied across the brake connections on the arm cable board. The
watchdog timer and the brake enable _should both be enabled for the control line from the PC to be
activated.

ITi. Puma robot control system

The use of the PC for the control and monitoring of this robot has been adopted on the
grounds of flexibility, and the relative simplicity involved with the design of a very robust, high
performance controlier. :

3.1 Position and velocity controllers of the Puma robot

Due to the variation in load conditions of the robot arm, the DC servomotor controls for
each joint call for a control loop that will enable the motor to adjust. Two main loops are
incorporated in the control algorithm of the servomotors of the Puma robot. The inner loop is a
velocity feedback controller, which is used to ensure the motor follow 2 particular velocity profile.
The outer loop, which is the position feedback loop, calculates the velocity profile to be followed
baséd on motor shaft position error,
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3.1.1 Velocity controller

The inner loop of the control algorithm is a Velocity Feedback Loop (see Figure 4) which
attempts to make the motor follow a given velocity profile. The controller compares the velocity at
which we want the motor to travel, with its actual velocity. The difference between these values is
used by the controller to calculate the Control Effort required to drive the motor at the required
velocity.

Bof Velneity  Veloeddy Ewor Contral Velocity
{countsis) {countsks} Effort (roumt sk}

G(s) —> _,]|/_ 3 Gy(s) N

Velocty Control Effort TJoint Transfer
Controller Saturation Function

Valocity Feedbarck

Figure 4. Block diagram of the velocity feedback loop

where G(s) is the transfer function of the velocity controller and G(s) is the joint transfer function
(de motor). The conirol effort saturation ensures that the controller does not ask for a control
effort, which is physically unattainable.

3.1.2 Position controller

The outer loop of the controller'is a Position Feedback Loop (see Figure 5). The purpose of
this part of the controller is to create the desired velocity profile. The velocity feedback loop then
attempts to follow this velocity profile. The input to the loop is the Set Point and is the joint’s
destination in encoder counts. The position feedback loop works by calculating the position error.

Set Point Pagsitiom Evar Sat Yelovity Velocity Position
(coumisfs) (countsfs) (countsfs) (r':du:dsis) (eomnts)
K, = _,Il/_ > Fs) 1z >
Propottional ~ Velocity Velacity Integrator
Gain Saturation Feedback Loop

Position Feedback

- Figure 5. Block diagram of the position feedback loop
where K, is the proportional gain constant which has the effect of increasing the rate at which the
motor renders its maximum velocity and F(s) is the transfer function of the whole velocity
feedback loop discussed eartier.

3.2 Velocity controller tuning procedure

In the course of studying the controller of the Puma robot servomotors, it was found that the
proper knowledge of controlling the position and velocity of a DC motor is important in many
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applications. ~ Although we could find some design guidelines on controlling the motors in
literature [2], they are limited. A PI controller is used in the present Puma robot controller. A
direct way of determining the tuning coefficients of the PI controller will lead to a more efficient
controller design.

This section determines the bounds of the K, and K, coefficients for velocity control of a
given DC motor. This will make the controller design approach a more bounded approach rather
that a trial and error procedure presently implemented in systems. To aid the designer in the
procedure, Matlab codes will be included in the paper. At the same time, the use of Matlab as a
controller design tool will be implemented to test the effectiveness of the method in the design of
the controller.

3.2.1 Modeling the DC motor

According to Golten [3] and Ogata [4], alth_g_)ugh a DC motor is not exactly a purely lﬁlear
system, it could be modeled as if they were. In the continuous time domain (s-plane), it could be
represented by the mathematical equation:

v(t) = v (1— ™) (1)

where v(t) is the velocity at ¢, v, is the steady state velocity of the motor, and 7 is the mechanical
time constant of the motor

The input (driving function) is the applied voltage across the servomotor armature in volts.
The output (response function) is the motor’s angular velocity in encoder counts per second. The
Laplace Transform of equation (1) is of the form found in Figure 6:

Desired A Output
Velocity ™ +1 Velocity

Figure 6. Transfer function of a DC motor

The motor is subjected to step input and the response of éach motor was observed. This was
achieved by applying a step voltage to motor and allowing the corresponding joint to move.
Comparing the actal response to the simulated response verified the validity of the model. When
designing a controller, the objective is to design it such that the physical system responds in a
desired manner. Based on the model, it is possible to predict how each of the motors will respond
to different input conditions in the continuous time domain.

3.2.2 Design of a velocity controller

The velocity controller attempts to make the motor follow a given velocity profile as
specified by the demgner The controller compares the desired velocity with the actual velocity.
The difference is used in working out the Control Effort required to drive the motor at the required
velocity.
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Figure 7. Block Diagram of the Velocity Feedback Loop

where D(s) is the transfer function of the controller (PI) in the s-plane, G(s) is the transfer function
,of the plant (DC motor) in the s-plane, R(s) is the system input, and C(s) is the system output.
Following the modeling process outlined by Golten [3], the experimentally determined transfer
function of a DC motor is given by

G =351 @
The overaii transfer function of a motor control system with PI controller can be defined as
follows:

) 01873K,,s* +01873K, s+ 01873K,
()= R(s)  (1+01873K,)s* +(08+01873K,)s+ 0.1873K,

(3)

The above transfer function can be further analyzed by determining the location of poles and
zeros for different values of K,and K; Figure 8 and 9 show the polés and zero location of T(s)
for different values of K;and K, . It can be observed that for poles that lic on the real axis, the
pole near the origin is approximately on tlie same location as the zero. For large values of K, one
of the poles cancels out with the zero. If controllers will be designed in such a way that one of the
poles cancels out with the zero, the time constant, setting time and rise time will simply depend on
the pole that is far from the origin.

Pole Location Zero Location
, 1 , —
o f
©
i =)
& &
= E
OEF e e
-1 . N .
-800 -600 -400 =200 ]
Real
Figure 8. Pole location of T(s) for different . Figure 9. Location of zeros of T(s) for
values of K and K; K1=76 and for different values of K,
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To ensure that oscillation is avoided, the dominant poles should lie on the real axis. The
chart shown in Figure 10 shows the minimum K, for a given K, that will ensure the poles to lie on
the real axis. This figure is generated using the Matlab code given below.

k=11;
for ki=1:25:100
clear r;
r=[1;
z=[];
ine=0.1;
for kp=0:inc:100
den=[1 C0.8+0.1873*kp 0.1873%ki]:
r=[r;roots{den)];
end
x=real(xr);
y=imag(x};

fval,indx]=min{abs(y));
k=[k; (indx-1}*inc*0.5];
end;

plot (1:100,k);

For example, for K, = 20 the minimum K, to ensure that poles lie on the real axis is 16.4.

This corresponds to pole location - 1.9753 and -1.8964 and zero at -1.2195.
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323 Experimental Result

The previously éssuin'ed model is*the experimentally. détermined miodel of the motor. To
improve the steady state error, & PI controller is utilized. To verify the validity of the chart shown

in Figure 10, the coefficients K, and K ‘were varied and the corresponding output response are

compared to the simulated response, For- K =10 and K; =40, the chart shown in Figure 10 shows
that the output response will have ah overshoot and this is evident i m the actual/simulated response
shown in Figure 11.
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Figure 11. Input/Output response for Ko = 10 and K1 = 40

To avoid overshoot the chart shown in Figure 10 tells the controller designer to select values
of K,and K, above the curve. Setting K;=20 and K, =20, the corresponding output response is
shown in Figure 12. It can be noted that the steady state error is approximately equal to zero.
Given a velocity profile shown in Figure 13, the output response is plotted on the same figure. It
can be noticed that the output (actual/simulation) response is very closed to the given velocity
profile.
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IV. Puma robot control software design

Implementation of a real-time controller on a PC requires the use of timer interrupts. The
software design process centers on the use of interrupts to implement the sampling time needed for
the controller. The foreground tasks are the inverse kinematics and screen update while the
background task is the Interrupt Service Routine (ISR).

4.1 The use of interrupts

Approximately every 55 milliseconds, the PC timer generates a hardware interrupt, It is
connected to the highest priority line of the Intel 8259A (Interrupt Controller), and has the
interrupt number 0x08. The Interrupt Service Routine (ISR) 0x08 is pre-programmed to do the
following: a) Update the system timing, b) Jump to a dummy interrupt, and ¢) Send the end of
interrupt (EOI) back to the interriipt controlle;.

The ISR can be replaced by a new ISR defined by the programmer. This has the effect of
executing the new ISR code every time interrupt is generated. The following three functions
written in C++ accomplish this task.

First, we need a fur~tion that will store the address of the old ISR and direct the program to
run the new ISR. This process is known as installing the new ISR.

void install {int inum, void interrupt far,K (*new_isr) {..))
{

disable(); _

01ldIsr = getvect (inum);

setvect (inum, newisr) ;

enable({);

The code for the new interrupt routine needs to be written. This code is executed every time
the timer interrupt is generated.

// New interrupt subroutine

void interrupt far NewlIsr(..)

{ .
// Place body of new interrupt subroutine here
outportbh (0x20, 0x20) ;

Just before exiting the robot control program, the original interrupt service routine must be
restored. This is achieved by executing the routipe given below.

void unistall (int inum, void interrupt far (*old_ isr) (..))
{

disablie();

setvect (inum, old_isr)

enable();

The main program that uses these three functions is outlined in the following program
fragment. Quit is a variable defined in the program that sets to 1 to exit the program.

#DEFINE INTR 0x08
void interrupt far (*0ldisr}{..);
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main ()
{

-

install {(INTR, NewIsr);
while (!1Quit{});
uninstall (INTR,0ldIsr) ;

This program installs the new ISR at the position of ISR 08. This new interrupt subroutine
will be run every 55 milliseconds until the keyboard is hit. Once the keyboard is hit, the new ISR
is uninstalled and the old ISR will be returned to its original position. We can also change how
often the PC generates this timer interrupt and so the sampling time can be altered. Figure 14
shows a flowchart of the main program for the joint control with the ISR. The new ISR run every

Begin Main
Program

Reset Encoder

1

Set PWM mode to 2

]

Set interpt frequency

toSms

Topat desired destiration

for joint (it couxls)
Relaase brakes and

 install new ISR 0

Nevwr ISE. 08

FIVE ms.

Figure 14, Flowchart of the main program for joint control w/ISR
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4.2 Implementation of controller for simultaneous control of all Jjoints

There are two types of motion for all six joints of the Puma robot namely: Fastest Motion
and Lipearly Interpolated Motion. The fastest motion will move all the Joints at their top speeds
while the linearly interpolated motion ensures that each joint amives at its destination at the same
time.

4.3 Caklibration Software

The calibration software establishes a reference point or initial absolute position of the robot
for the controller. Therefore, the calibration routine. should be executed before any other action is
performed. The calibration software performs two, tasks: reading of analogue inputs from the
potentiometers, and the'detection of index pulses from the shaft encoders. The robot joints are
slowly turned until the poténtiometer-reading fall within a prescribed range after which the encoder
index pulse is searched: with that range. There is only one encoder index pulse that can be found
within that range and when the index pulse is found, the encoders are reset to 0, thereby
establishing the calibrated zero. point for that particular joini.

4.4 Ilﬁnlg;metation of Inverse Kinematics

Kinematics is '_fhe ,re]at:i_cjh'ship between the positions, velocities and accelerations of the links
of a manipulator, where a manipulator is an arm, finger, or leg [1].

There are two problems present in the analysis of the position kinematics of a given
manipulator, namely: Forward kinematics and Inverse kinematics. In Forward kinematics, the
forward transformation equations “(*Ty) are solved to find the location of the robot end point in
terms of the angles and displacements between the links. The Inverse kinematic involves solving
the inverse transformation equations (*Ty™') to find the corresponding joint coordindtes from the
Cartesian coordinates of the robot end point in space (Figare 15). The angles and displacements
between the links are called joint coordinates and aré described with link variables, while the
location of the robot end in space is described with Cartesian coordinates.

Forward
Kinematics
>
R
Joint RT -1 H Cartesian
Coordinates < H Coordinates
Inverse
Kinematics

Figure 15. Joint and Cartesian space kinematic mapping
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_ The inverse Kinématic equations incorporated in the controiler of the Puma robot was taken
from the derivations given in Craig [1]. There are several solutions proposed fort he inverse
kinematics problem. The method used here is the inverse transforms technique for Euler angles.
The Cartesian coordinate values of the robot are known and the inverse kinematies will

convert them 'to its equivalent joint coordinates. The Cartesian coordinate values are given in

matrix form below: :

fn h: hs P,

0T= 4]

The value of 1)y, rj5, 113, I3y, T2, T23, T31, 39, T35, Py, Py, @and p, are given valves. The dimensional
parameters (a3, d3, a2, d4) are given by the type of Puma robot considered. Below are the
equations of the transformation from the Cartesian to joint coordinates.

Table 1
Inverse kinematics equations
Joint 1: 5)
6 = Atn2(p,,p,) - Atan2(d,.+yp? + p? +d?)
Joint 2: (6)
p4pl+pl-a}—al-d} -
K=
2a,
6, = Atan2(a;,d,) ~ Atan2(K */a? ~d? - K?)
Joint 3: , (7
¢, = cos(6,)
5, = sin(6,)
¢y = cos(f,)
sy = sin(6,)

a=(-a;~a,c;)p, — (ep, + 5D, d, - a,s;)
b={(a,s, —d,)p, +(a; + ayc e p, + slpy)
0, = Atan2(a,b)

6, =0y 0,

Joint 4: | (8
Cp3 = €08(, ) cos(B, ) — sin(6, ) cos(8,)

8,3 = ¢0s(8; }sin(8,) + sin(6, ) cos(6,)

O, = Atan2(=738, + 1€ —13C1C0 = Tyy81Cps + 1338

57




)

Joint 5:
¢, =cos(f,)
s, =sin(§,)

85 = —(1a{0,CpnCy + 5,50) + I (8,C1C4 ~ €,8,) — 113 (855€4))

C5 =y (=€,8p3) + Py (=5,503) + 135 (=€)

6, = Atan2(s;,cs) _

Joint 6: (10)
85 = =1 (€1€354 = 51€4) — Iy (8,Cp38, +€,6,) 73, (555,)

Ce =1y (CI_CBCAI +5,C,)C5 — €1 83355) + 1y ((5,€3C, — €8, )€5 — 5,55355)
=73, (853C,C5 + Cp385)
6, = Atan2(s,,c;)

4.4.1 Kinematic Calibration of the robot

Before the implementation of the inverse kinematics program to the Puma robot controller, a
calibration of centres was done, The calibration of centres will determine the robot kinematic
constants and the proper home position. The home position is the initial joint setting of the Puma
robot based on the deviation of the inverse kinematic equations.

The calibration was done using a theodolite to guarantee the levelness and accuracy of the
robot while turning at each joint. The calibration was mainly done on the first three main joints of
the Puma robot. An approximate starting.point was chosen as the position for calibration of the
robot. From the initial reference position, the theodolite was used to indicate the correction needed
to find the joint centres of the Puma robot. Tn joint 1, an initial marking was done then the joint
was turned, if the mark stays in the location as indicated by the theodolite then centre is found.

With all the centers found in each joint, the kinematic constant are determined by measuring
the displacement from each of the joints. The kinematic constants are shown in Table 2. (Refer to
these constant in the very diagram of the PUMA robot).

Table 2 _
Puma robot constants

Puma ‘560 robot kinematic constants
a3 - | . 19:1mm
d3 125.4 mm
a2 431.8 mm
da 431.8 mm

The home position of the Puma robot was found by moving the robot to the position shown
in Figure 1. Please take note that the home position setting was based on the calibration position of
the Puma robot. The calibration position initializes the position of the joint motors before the robot
does any task. The center point found at each joint was used as the basis. to assure the levelness of
the robotic home position. From this experiment, the joint counts necessary to go to the home
position were found. The values for each joint are given in Table 3.
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Table 3
Values of the Puma Home Position

Home Position (counts)

SetPointl=0;
SetPoint2=27360;
SetPoint3=-12517;
SetPoint4=0;
SetPoint5=-499;
SetPoint6=0;

4.4.2 Forward and Inverse Kinematic Program Simuiation Results

In order to check the inverse kinematics program, a simulation test was done. This test
made use of the corresponding forward kinematics to check the output values of the inverse
kinematic program. The results are shown in Table 4.

Table 4
Resuits of the Inverse and Forward kinematics programs
Input to program Cartesian Inverse Forward
_ coordinates kinematics kinematics
Rot x-axis = 30° rll = 0.492404 0,=0.0218654 rad 111 =0.492404

Rot y-axis = 40°
Rot z-axis = 50°

112 =-0.456826
r13 =0.740843

0,=0.0337389 rad
65 = 0.0149781 rad

r12 = -0.456826
r13 =0.740843

Px=5mm 121 =0.586824 8:=3.02453 rad r21 = 0.586824

Py =10 mm r22 = (.802872 05=2.27754 rad 122 = 0.802872

Pz=15mm 123 =0.10504 0= 0.54031 rad r23 =0.10504
131 = -0.642788 r31 =-0.642788

r32 =0.383022
133 =0.663414

32 =(.383022
r33 =0.663414

Px=5mm Px = 5.00002 mm
Py = 10 mm Py =9.99999 mm
Pz=15mm Pz=15mm

As could be seen in Table 4, the inverse kinematics program worked since the values of the
Cartesian coordinates in column 2 corresponds to the result of the forward kinematics as found in
column 3 with inverse kinematics results as input. The corresponding joint coordinates for the
Puma robot using the gear ratios found in Table 5 will be: Joint 1 = -217 counts, Joint 2 = -577
counts, Joint 3 = -127 counts, Joint 4 = 36680 counts, Joint 5 = 21604 counts, and Joints 6 = 6595
counts.

Table 5
Gear Ratios and Encoder counts/revolution
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Joint Gear Ratio Counts/revolution Ceunts/motor
of joint revolution
1 62:6 . : 62600 1000
2 107.5 167500 1000
3 53.5 53500 1000
4 76.2 76200 1000
5 59.6 59600 1000
6 76.7 76700 10060

V. Force Sensor Integration

5.1 Force Sensor and Data Acquisition Program

A JR3 force-momernt sensor (see Figure 16) was used to measure the necessary forces and
moments for the Puma end-effector. It weights 0.4 ( 180g) and can carry a maximum load of 200
N in the z-axis and 100 N for the x-axis and y-axis. It can also carry a maximum moment of 12.5
N-in in all axes. The force sensor comes with an interface card that links the PC with the sensor
itself. A data gathering and monitoring program was created to gather data from the six-axis force
sensor. The program was written in Borfand C++ and the corresponding built-in commands in the
interface card were use 10 gather the force data.

Figure 16. JR3 force sensor

A force/moment data acquisition program was designed for the robotic contact
experimentation. The data acquisition program of the force sensor consists of four main fasks.

@ The first task initializes the measurement of the force/moment data to a zero initial valye,
It cancels out the noise inherent to the system and sets the initial zero condition for the
force/moment data measurement. This function is usually activated before actual
measurements are acquired using the force sensor.

* The second task displays the different data available in the force sensor interface card at
any point in time. It shows the configuration of the card and displays the results of the
force/moment data at different filtering conditions.




¢ The third task saves a specified number of force/moment data for a given time. It stores
the data to a file specified by the user. These data could then be used for data analysis and
testing, :

¢ The final task takes care of range of force/moment data acquired. Based on the
specifications of the force sensor used, the maximum values of the six force/moment data
are the following Fx=200N, Fy=200N, Fz=400N, Mx=12.5N-m, My=12.5N-m, and
Mz=12.5N-m.

5.2 Force sensor effectiveness testing

To test the accuracy and effectiveness of the force-moment sensor in getting  the |
uncertainties or state variables, a simple set-up was fabricated as shown in Figure 17. The
uncertainties/state variables are quantitics to be identified through the force/fmoment sensor
measurements. Since the force/moment data gathered are noisy we used a filtering technique like
the Kalman filters to compensate for the noise and identify the state variables. The setup consists
of an inclined block and some weights. The force sensor was mounted on the inclined block while
weights were placed on top of the force sensor. Three different state variables were to be found
namely, the angle of inclination relative to the horizontal (theta), the angle of rotation of sensor
(alpha), and the moment arm (r) (Figure 17).

Figure 17. Force Sensor and Kalman Filter Effectiveness Set-up

A program was created using Matlab to find the uncertainties or state variables. In creating
the program, the measurement model of the set-up was solved using basic statics. The
measurement model relating the state variables and measurement data (forces and moments) are
given below.

Fy =—mgSin@ Sinx
Fx=mgSin0Cosa
Fz=—mg CosB

Mx = mgr SinaSin0
My = mgr Cosa Sin0
Mz=0

(11)
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The equations show a non-linear relationship between the variables so the Extended Kalman
filters were used to solve the uncertainties. In the graph, the straight lines indicate the true values
of the state variables used (theta = 7 degrees (0.122 rad), alpha = 45 degrees (0.785 rad), r = 25
mm).

Experimential data were then taken and passed through the Kalman filter program. It
showed a very good estimate with a certain degree of error. The final estimates of the state
variables are shown in Figure 18.
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Figure 18. Estimation using a force sensor

5.3 Crash protection set-up

In order to protect the force sensor in accidental crashes, a crash protection device was
installed with a model OPD-MS-2HD (see Figure 19) which mechanically interfaces directly to the
JR3 force sensor. To provide a more sensitive adjustment in the crash activation, an electronic
moditle (OPD-EM-12) was installed (see Figure 20).
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Figure 19. Overloaded Protection Device (OPD)

Figure 20. Electronic Module (EM) for the OPD

The Electronic module (EM of the crash protection device was incorporated into the Puma
robot controller through its output signal. The vutput of the EM was connected the controller
using the circait given below. The Pin Configuration of the Input/Guiput Box Headers of JS002
PC mterface card is shown together with the connection to the EM terminals for crash detection.
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Figure 21. Crash Protection Signal Interface

‘The program for detecting the crash signal by the controller is shown below:

int NotCrashed = inportb({BASEA+7) & 0x01;

if (!NotCrashed)

{
SetPointl = SAFEL;
SetPoint2 = SAFE2;
SetPoint3 = SAFE3;
// Fastflag

}

The controller looks at an address to determine the NotCrashed condition of the robot, If
the NotCrashed variable is activated, it then drives the joints 1 to 3 of the Puma robot to a specified
safe position (SAFEl, SAFE2 and SAFE3).

VI Conclusion

This paper described a new coritroller hardware and software for a Puma robot. The new
system is shown to be effective in the implementation of new control strategy for robot joints. The
position and velocity feedback loops were implemented to compensate for different loadings on the
robot arm.  Anew tuning procedure was shown to be effective in minimizing the overshoot and
oscillations in the response of the de motors of the robot joints. It could be used in future design
of controllers for a more efficient implementation. The inverse kinematics implemented to the
control software was shown to be effective in moving the arm to a specific Cartesian space point.
Finally, the force sensor system was successfully tested and installed at the end of the robot arm for
future experinientation studies (e.g. uncertainty (error) identification, force control). On the whole,
the new controller design enhanced the capability of the robot in performing tasks and new control
strategies can be tested for further development.
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