PHILIPPINE ENGINEERING JOURNAL
PEJ2011; Vol. 32, No. 1: 27- 44

OPTIMIZING A 32-BIT ARM7 MICROPROCESSOR

J.T. Delarmente, L.A.P. Gahol, C.E.L. Paragas, J.R.E. Hizon, and A.P. Ballesil
Electrical and Electronics Engineering, University of the Philippines, Diliman

ABSTRACT

The ARM7 belongs to the Advanced RISC Machines (ARM) family of general-purpose 32-bit
microprocessors. Its architecture is based on Reduced Instruction Set Computer (RISC) principles, and
employs a three-stage pipeline which results in performance speedup by increasing the microprocessor’s
throughput.

A previous high-level implementation of the base ARM7 at the Intel Microprocessors Laboratory has
a maximum usable clock frequency of 10MHz which is quite slow for a 32-bit processor. The goal of this
new implementation was to improve processor speed of the original ARM?7 via four techniques, namely:
changing the coding style, using one-hot encoding, applying slack borrowing, and adapting architectural
modifications.

As with the original, the implementation employed two levels of abstraction, namely Behavioral Level
and Register Transfer Level (RTL). The RTL model was synthesized using standard cells on a 0.25um
CMOS process. Synthesis and verification was performed using Cadence Design Systems Software. The
performance of this new implementation was evaluated not only for speed but also for area and power
consumption. Power measurements were done using Synopsys PrimePower. The maximum clock
Jrequency is 40MHz, area is measured to be 0.99570 mm’, and observed maximum power is 43.58mW.

1. INTRODUCTION

The ARM7 microprocessor is a RISC machine having a load-store architecture and fixed-length 32-
bit instructions having 3-address instruction formats. Its instruction set can be cgtegorized into three main
types — data processing, data transfer and control flow instructions. Arlthmetlc apd logical operations,
multiplies and PSR transfers are the three main types of data processing instructions while single data
transfer, block data transfer and swap fall under data transfer instructions. Control flow instructions, on
the other hand, consist of branch instructions and the supervisor Ci:.lﬂ. (1] . . .

. The ARM7 processor core employs a simple three-stage pipeline with the folloyvmg pipe stages:
Instruction fetch (IF), instruction decode (ID), and execute (I?XE). Iq the IF stage, the instruction is read
from the memory and then placed in the Instruction Pipeline Register. The Instruction Decoder then
decodes the fetched instruction and the datapath control signals are prepared for the next stage. In the
EXE stage, register operands are read. One operand is shifted and 'then sent to the ALU,.whlle the other is
fed directly to the ALU. After performing the desired operation, the result is written back to the

destination regjster. [2]

\y o g
Correspondence to: Institute of Electrical and Electronics Engineering, University of the Philippines, Diliman

Copyright © 2011 Philippine Engineering Journal Accep’f:;f’;ﬁ:,‘;t’;y |5 2006

28 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

The previous implementation of the ARM7 has a maximum usable clock frequency of 10 MHz and
an area of 1.78mm by 1.17mm. Its observed maximum power is 6.115 mW while the observed minimum
power is 2.197 mW. [3]

2. DESIGN OPTIMIZATION

In this section, a general overview of the optimization techniques used in the design will be given.
The blocks that composed the new ARM7, as well as the optimizations done for each block will also be
explained.

2.1. Optimization Techniques

The design of the ARM7 microprocessor made use of four techniques namely: changing the coding
style, using one-hot encoding for finite state machines (FSMs), implementing certain architectural
changes and using slack borrowing.

The coding style used can affect the performance of a design especially when it is translated into its
generic components. Thus, different styles were explored to determine the optimal design for speed
and/or area. [4] One-Hot encoding is implemented by assigning each state to one bit. Its advantage is that
it reduces the next-state and output logics for the FSMs. Since only one bit is needed to represent a state,
lesser gates are needed and the computation of the signals is faster. The downside here is the increase in
area since N states must be encoded in N registers. Different topologies for certain blocks were explored
and then characterized also in terms of speed and area. This approach made way for a more structural
implementation of the design. [5] Slack-borrowing is the phenomenon in latch-based systems wherein it
is possible for a logic block to utilize time that is left over from a previous logic block. This concept was
used in changing the signal timing of the design, producing the final block diagram of the ARM7
microprocessor shown in Figure 1, showing the phase transparency of its blocks. Compared to the
original design, the produced ARM7 has more components and buses that are trar{sparent at phase 2
rather than at phase 1. Consequently, more control signals are now generated during phase 2.

r' t Rog Humemet DATAOUT
1 B Bus
i mule_shiftval
11

Barrel
Shifter
R v

ALU Bus

Figure 1. Base ARM7 Block diagram

Copyright © 2011 Philippine Engineering Journal
Phil. Eng’g, J. 2011; 32: 2744

ARM7 MICROPROCESSOR 29

2.2. Clock and Timing
The ARM?7 design is based around 2-phase non-overlapping clocks, which are generated internally

from a single input clock signal. This clocking scheme allows the use of level-sensitive transparent

latches. Data movement is controlled by passing the data alternately through latches that are open during
phase 1, and latches that are open during phase 2. The non-overlapping property of the phase 1 and phase

2 clocks ensures that there are no race conditions in the circuit.

The transparency of the components in relation to different operations done in the execution of an
instruction is briefly discussed below:

e Register read operation: The register read buses are updated at the start of phase 2. The read buses
send the registers’ data through the datapath, and the data arrives at the input of the ALU latches at
the end of the phase.

Shift operation: The 2™ operand passes through the barrel shifter at phase2.

ALU operation: The ALU has two input latches, both open in phase 1. This allows the ALU to begin
processing the operands at phasel as soon as valid data is available from the ALU latches. They close
at the end of phase 1, so that changes in the datapath at phase2 do not affect the output of the ALU.
The result is then latched in the destination register at phase 2.

2.3. Component Blocks
The blocks that are introduced first starts with the internal clock generator, then the blocks that
comprise the three pipeline stages: the IF stage, the ID stage, and EXE stage. After this, the components

of the datapath are discussed.

2.3.1. Clock Generator

For this implementation, a clock generator was used (instead of two input clocks) to produce the two-
phase non-overlapping clocks from a single input clock signal mclk. It makes use of two cross-coupled
NOR gates and several buffers which determine the two clocks’ non-overlap time.

2.3.2 IF Block
O _laack!_eastls 1D_uat
IF Phase2 Dooad wenel
Control T3 pl_owee IF_arall
Signals @1 _p1_due ek
IF_srasebarch ;
have Prapetercin]
2 { | o Ikl
HIK]
Y«
| &
IF Phasel
Coatrol T
Signals I7_wah?_snshle
Datain —1 32 1P_tmeht | =2 ot } £} New
L Tndex lateh | 12 New
Index T *
—+ Dxcoder) *1 u'u.n} U SWI sugnal
Ploex > of l.rwol.-:ﬁ1) UND wgnal
—1 ’
...

Figure 2. Components of the IF Stage Block

The Instruction Fetch Stage (IF stage) Block shown in Figure 2, performs the fetching of instructions
from the external memory unit, as specified by the memory address provided by the address register in the
ARM?7 datapath. The IF stage Block accepts a 32-bit input data from the memory that contains the new
instruction, and a 1-bit prefetch abort signal that tells the ARM7 processor if a pre-fetch error has

Copyright © 2011 Philippine Engineering Journal Phil. Eng’g. J. 2011; 32: 27-44

30 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

occurred. The IF stage also performs pre-decoding of the instruction type before the instruction is passed
to the ID stage. Pre-decoding is performed during the IF stage to lessen the delay incurred in the decoding
of the instruction in the Instruction Decoder (ID) Block.

2.3.3. Index Decoder Block

The Index Decoder Block shown in the lower part of the IF stage performs the decoding of the type of
the instruction from the 32-bit data input. It assigns a 10-bit one-hot code, the instruction index, to
indicate the instruction type. One-hot encoding is chosen to represent the instruction index because it
decreases the complexity of both the encoding of the instruction types and the EXE control unit, making
the generation of control signals faster. The instruction index and SWI decoding follow the truth-table
shown in Table 1, and the undefined instructions are shown in Table 2.

Table 1
Index Decoder Block, and SWI Decoder Truth-Table
32-bit ARM?T Instruction bits sw1 Instruction Index [9:0)
¥ 23 24 23 2 20 16 7 4 signal ° L] 7 6 s 4 3 2 1] o
©o 0o 06 1 0 0 0 - - oO o o 0o o o o o o o
0o o o 1 0 1+ @ 0 - o o O 0 0o o o o o o
o 0 1 1 0 - 0 - - - o © 0 0o 0 o o o o
o 0 0o 1 0 1 0 1 - o© o 0 0 0o 0o o o ¥ o o
o 0o 6 060 0 - 0 - - o© o 0 0o 0o o o oo o o [i
o 6 6 0 0 - 1 - - o o 0 0 0 0o o0 oM o o o
o 0o 0 0o 1 - 0 - - © 0 0O 0 0 0 o o o o o
6 0 0 0 1t - 1 - - o ° 6 0 o o o ofBlo o o
o o 0 I O - 1 - - o o 0O 0 0o 0 oo o d o o o
o 0o 06 1 1 - 0 - - o ° © 0 o o o of o o o
o 0 06 1 1 - 1 - - o© o O 0 0o 0o o oB¥ o o o
o o1 0 0 - 0 - - - o 6 0 0o 0 o o fo o o
o 0 1 0 0 - 1 - - o 0 0 o o o oo o o
o o 1 0 1 - 0 - - =« 0 0O u 0o 0o o oMo 0 o
o o 1 O 1 - 1 - o 0O 0 o o o oo o o
o 0o 1 1 0 - 1 - - o o 0o oa o o oo o o
o 0o 1 1 1 - 0 - . . ° 6 0 0 0o o ol o o
o 0 1 1 1 - 1 - = =« ° o 00 0 o ol o o o
©6 06 0 - - - - - 0 1 ° o 0o v o oo o o o
o o o o - - - 1 o 0o 0 o ofAMO o o o ¢
6 0o 0 1 - - - Vo 0 o o oMo o o o o o]
6 1 0 - - - - - - ° © oo o o 0o o o o [
o 1 v - - - - - o o o oMo o0 o o o o o E
B B . s R R
O 0 0 0 0 0 0o o o !
o1 o1 - - © 0 0 6 0 0o o o 01
Table 2
Undefined Decoder Truth-Table
32-bir ARM?7 Instruction: bits [27:0)
272625 34 23 2221 20 19 18 17 16 13 14 13 12 10 10 9 8 7 6 3
ooo0
o 11
110
(U |

[N-N-N-N-N-N-N-]

100000000 ¢

-0 00000020000 COOO0O0O0CO0C
OO0O===000000000CC0O00000CO

00~

Copyright © 2011 Philippine Engineering Journal
Phil. Eng’g. J. 2011;32: 2744

ARM7 MICROPROCESSOR 31

2.3.4. Main Control Unit

The Main Control Unit is the primary block that controls the operation of the ARM7 microprocessor.
It is composed of 6 blocks: the Condition Checker block, the Block Data Transfer Block, the Interrupt
Handler Block, the Execute Cycle FSM block, the Phase2 Control Unit Block, and the Phasel Control

Unit Block.

2.3.4.1. Condition Checker Block
The function of this block is to check whether the CPSR status flags satisfy the condition provided by

the instruction in the id cond field. This block is designed using combinational gates, which is
implemented using an if-else statement, and the results of the optimization will be discussed later.

2.3.4.2. Block Data Transfer (BDT) Block
Block data transfer instructions consist of store multiple and load multiple instructions. The first cycle

is the same for either instruction wherein the memory address offset is calculated. The additional cycles
are needed to calculate the next memory address for each transfer by incrementing the current by four.
For store multiple instructions, the data from the register file is latched to the memory during phase 1
whereas the data is written to the memory at phase 2. For load multiple instructions, the data from
memory is latched during phase 2 and is written to the designated register during phase 2 of the next
clock cycle.

The bdt_offset block is composed of 5 levels of adders and a 5-bit 4-input multiplexer. All of the
adders except the 5-bit ripple carry adder are used to calculate the number of 1’s in the register list,
equivalent to the number of registers that will be used for data transfer. The 5-bit ripple carry adder is
used to subtract 1 from the total register count. The resulting difference and the total register count are
used as some of the inputs in the multiplexer which determines the address offset for the block data
transfer instruction. The select signals of the multiplexer are derived from the updown and prepost bits of
the instruction opcode. The total register count is also used as one of the inputs in the BS multiplexer

when a base register write-back is required.

Pl PP iR FPEOGROEE OB 2 oBE
ff ____ 1§I """ I fi fl O O R !
A AT A A
P4l
\L i,.,mj N 2-&-!;CAT/ X;-mfc.«l/ \ lZ&erA$ V4
)
—— 3.6it RCA / 3-5it RCA /
4 i 4 I | !
\ 4huRCA ’ /
S-bit RCA /
T fe T fmmen
S SRS S
el - T o _sel(0)
I

Figure 3. Block Data Transfer Offset Block

Copyright © 2011 Philippine Engineering Joumnal Phil. Eng’g. J. 2011; 32: 27-44

32 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

There are several differences between the old implementation and the new one. The old
implementation uses a for-loop to calculate the total register count and a to_vector function to convert it
into binary form. It can be seen that the newer implementation is simpler and more structural than the old
one. Note that the conditions for the multiplexer used in the new implementation are still the same as that
of the old one. For simplification, the BS multiplexer and immediate multiplexer in the execute stage
controller produce shifted versions of the base write-back value and address offset respectively. The shift

done is equivalent to multiplying the input by four, thus the shift value of the barrel shifter is fixed to zero
for a block data transfer instruction.

reglist_mx_cn register_hiat

ne o el e [pem

Gl
]

bdi_regaster_dest

bdt_doue bdi_doue_lached

Figure 4. Block Data Transfer Block

The bdt_block is composed of 16 4-bit 2-input multiplexers, -bit 2-j i -bit
latch, 6 4-bit latches, 2 1-bit latches, a 4x16 decoder, and gome logaicll?lct::::(s2 iltl%itter:n::gsslegeer,sc?u:febc:r
destination registers needed for transfer. The register priority used in the.old implementation is still
applied to the new one. This priority scheme is implemented by the 16 4-bit 2-input E)nulti lexers and the
4x16 decoder which determine which register is next for data transfer. The 4?bit latchzs are used to
indicate the current register for transfer at the correct cycle depending on whether it’s a load or a store

operation. The 1-bit latches and logic blocks are used to determine when th i
. . . tion
is done. Compared to the old implementation where there is a uni © block data transfer opers

depending on which registers are included in the register list, th
state to a fixed value. This fixed cycle state is only ‘unlocked’
decoding logic indicates that the block data transfer instruction i

que cycle state for each single transfer
e new implementation locks the cycle

and thus will go to a new state when the
s finished.

Copyright © 2011 Philippine Engineering Journal
Phil. Eng’g. J. 2011; 32: 27-44

ARM7 MICROPROCESSOR 33

2.3.4.3. Interrupt Handler Block

swi_sandl

I3 2 122 3 2 3 Ty = 9
I IF_block | L }"‘5 3 B, :i el & 5
- 55 E - | 5 [

2 h | .' o' E

g 2 i

Figure 5. Interrupt Handler Block

The Interrupt Handler Block shown in Figure S processes the interrupts detected by the ARM?7
microprocessor, using a priority list provided in its datasheet. The final interrupt mode is encoded in a 3-
bit binary code. Two sets of interrupt vectors are then stored, the first interrupt vector is latched during
phase2, and the output of this latch is then stored during phasel. These are sent to the control unit to be
used in performing the necessary interrupt routines.

Here, the interrupt handler block is not fully asynchronous, although most of the interrupt signals
(like FIQ and IRQ) are. It assumes that most of the interrupts can be detected during phasel. Only the
external reset is treated as an asynchronous signal. The interrupt handling routine is similar for the FIQ,
IRQ, SWI, undefined, and pre-fetch abort interrupts. Their routines follow a three-cycle operation: In the
first cycle, the contents of the PC are saved into the register R14 of the interrupt mode, and the CPSR is
saved into the SPSR of the interrupt mode. Also, the next address is forced to the exception address. At
the second cycle, the address stored in R14 is modified into the correct return address, and the instruction
at the exception address is fetched. At the last cycle, this instruction is decoded and is passed to the
control unit to be executed in the next cycle. The difference in the reset interrupt routine is the continuous
fetching of instructions while the external reset is asserted. When de-asserted, it resumes a three-cycle
operation similar to the one mentioned above.

The difference in the handling of data abort interrupts depends on the instruction. For a swap, the
instruction is immediately aborted. For a single data transfer, the instruction will also be aborted
immediately, but the base register will be modified when write-back is enabled. For a block data transfer,
the instruction will resume until it is finished, but register writing is prevented. After these, it does a four-
cycle operation. In the 1st cycle, the contents of the base latch (the original data from the bgse: register)
are transferred back to the base register. The next three cycles then follow the same process similar to the
other interrupts.

Copyright © 2011 Philippine Engineering Journal Phil. Eng’g. J. 2011;32: 2744

34 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

These changes in the interrupt handling routine that were added to correct the previous
implementation, and the separation of the interrupt detector as a new block, are the major changes from
the previous implementation.

2.3.4.4. Execute Cycle FSM Block
The EXE Cycle FSM Block contains the finite state machine that controls the operation of the

datapath during each clock cycle. The states are encoded in a one-hot-code to reduce the complexity in
the generation of the datapath control signals.

Table 3
Execute Cycle FSM Truth-Table
-
] .E - X 82 E Z B _ T G
3 25% § 23fiirigliiz s s zzoog
' - { = B B ; o ; 2P L E R O Cunem ¥ 3 = Z = e
¥ g E - E 5 =g £ PN E e 2% & 5 ExE = = I Z
& 5 £ e . E ¥ o :
B2 5 o 'y oo 3 § = Ovae
Sl . R S
g 23 2 tonmcrn iz 3 @3 8 8 J N: tt EXE_eyele [5:0)
2 23 24 28 22 21 20] > 4+ 2 1 o
{+r - - - 0 - L S S S T - | ¢ o o o o=F
] o - - -9 - - - - - - - - - - - . . ExE ffl 0o 0o 0o o olfiy
] o o 1+ - o - C e e e e o e Lo R o o o o ol
] o v+ o o 1 - - - - - - - - - - - - - EXEl © o o ofiAdo
o 1 [d 0 1 - - - - - - - - - - - - - EXE2 - o o o F—l‘j ° °
o 1 o0 1 0 - - - - - - - - -« - - - - ExElt || 0o v o };_;3 o o
o 1 o - o - - - s - s s - - - - - ExEd [l o oo o o
o 1 (] - o - - - - - - - - - - - - . EXE4 o ° ° ° ° 'M‘:’.‘
] o1 1 0 0 BBL - . . . - Exp o o o o Fg(°
1 o 1 1 o o BBL - - - - - - - - - . - - EXEF2 o o a m-‘ °o o
{ o 1+ 1 o o BBL - . - . - _ _ . Exge: o o o o ofFgyl
Ho 11 00 s - - - - . - _ px; 6 0 06 o o "1.(‘1
0o 1 1 0 0o MFRI - - - - - _ _ Exp1 °© 0o o o o i
0o 1 1 0 0 MSR - - - - - - - . _ o . | EXEl o 0 o o o l«iﬂ
6 1 1 0o @ BDT - - - - - 1 .« - <« . . . ExEl © o o o KEE o
o 1 1 0 0 BDT - - - - - © - - - 0o . . EXEL o UBMo o o
v,
o 1 1 0o o BDT - - = =+ =« 0 - - -« 1 . . EXEI 0 0o 0o o [
© 1 1 0o o BODT - - - - - O - - . 0 . . EXE2 © o o ofiHo [
6 + 1 0 o BDT - - - - - 0 - - - 1 . . EXE2 o o ofi¥ o o
o 1 1 o o© BDT - - - - - 1 - - < . a . Exe2 o a0 o l’“l&‘ o ol
0 1 1 0 0 HBDT - - - - - 01 - - . . 1 . pxpa o oP®o o o |
2]
o 1 1 o0 O BDT - - - - - 0 - - - . . . EXEA 0O o o o o ﬂ_ﬁ
o 1 1 o 0o BOT - - - - - 1 . - . . 0 . EXE} o o ofk@o o |
6 1 1 o0 o0 BOT - - - - - 1 - - - . 1 . EXE3 ° o BEEO o o
o 1 1 0 o BOT - - - - - 0 - EXEs o o u oBIYo
o 1 1 0 o BDT - - - - - 1 1 -« - - . . EXE4 0O 0 0 o o kn
6o 1 1t 06 0o BDT - - - - - 1 0 - 0 - . . EXEs 0 o o o o
6 1 1 o0 o BODT - - - - - - 0 - 1 - . . EXE4 oFido v o %
o 1 1 o o0 BDT - - - - - - - - - - - . EXEs /PRS0 o0 o o o
o 1 1 o o© BDT - - - - <+ -+ Exms o o o o oW
© + 1 0 o DPLIS - - - - - - -1 - - - - Xl {0 0 o oRFo |
o 1 1 o o DRIS - - . - - - . 0 . - . . exeill o o o o5 Yy
0 1 1 0 0 DPLIS - . - - - - - . - . . . pEXE2 °© o ofd) o “-‘;\-
0 1 1 0 0 DPIIS - - - - - - Exes o o o % o pEs
o 1 1 o o DFR§ - - - - - - - - - . . - exer | o o o o E“L
o 1 1 o o DP&?i - =m0 - - - - exe2 H 0o 0 o o 0% zH
© 1 1 © 0 DPRS . - - . . - .y . - . ExE2 ° o oo th :
6 1t 1 0 O DPRS - - - - . o o . . gl A ea 0 O
0 1 1 0 o DPRS - - - - - _ _ _ Exps °© o o o opEEl
0 1 1 0 0 MULT - - - - - - - . . . _ . gy © o o ok&J oﬁ
0o I 1 06 0 MULT - - - - - _ o gpxps © o o o i
o 1 1 0 o MULT - - - - _ _ | pips o o0 o |
6 1 1 0o o swaP - - - - _ _ _ _ ol °o o o g e g
0 1 1 0 0 SWAP - - - - - - - - EXE2 0 o a F."L! o o ‘
o 1 1 0 0 SWAP - - - - . . o . . _ . ExEs o op A :
0 1 1 0 0 SWAP - - - - . . 1 paly . . r_-.(_; o g o f
6 1 1 0 0 SWAP - . - - _ _ _ O oo o o o o0 %3 y
o 1 1 o0 ¢ SDT s - - - - - - - - . . . EXE1 o
o 1t 1 o o SDT - - - -« < o0 0 0 o o nﬁ 0
i 1 06 0 SDT - - - - - a4 T T T T - Exe 0o 0 0 o0 o '!_‘.j;] |
°) -t - - - EXE2 0 o oXfio ol
o 1 1 o o SDT - - - - - - - 0 - - . . rxpa o 0 o nl.)-J . o .
0 1 1 o 0 SDT . - - - . . 0 1 Exme o ° En
6 1 1 0 0 SDT - - - - - - 1 1 - . . . Exes o o mo., o o
- - - - .. o ;
o 1 1 o o SDT - - - - . ExEs o BT o BIg
o 1 1 0 0 SDT - - - - . o o . o _ . Exes B o o o o
. 0 © o |
Otherwise o
o 0o o o ﬂ

Copyright © 2011 Philippine Engineering Journal

Phil. Eng'g. J. 2011;32: 2744

ARM7 MICROPROCESSOR 35

2.3.4.5. Phasel Control Unit Block
For the phasel control unit block, the output signals are sent every phasel, and remain valid for one cycle.
Discussed below are the output signals generated by the phasel control unit block and their usages.

Table 4
Output Signals of the Phase 1 Control Unit Block
Output signals Description
if flush fFlushe§’ or resets the IF latches. This happens whenever a system reset or an interrupt occurs, or a branch
- instruction.
int_flush Resets the latches within the interrupt handler block after the necessary interrupt routine finishes execution.

abort latch enable

Enables the abort latch within the interrupt handler.

int_disabler signal

Disables FIQs and IRQs in the CPSR during reset.

vbit_in

Enables the storing of the overflow (V) bit into the CPSR flags.

storedata_tocpsr

Enables the storing of a 32-bit data into the CPSR.

storedata_tospsr

Enables the storing of a 32-bit data into the active SPSR.

storeflag_tocpsr

Enables the storing of only the flag bits, or the 4 most significant bits in the 32-bit input, into the CPSR.

storeflag_tospsr

Enables the storing of only the flag bits, or the 4 most significant bits in the 32-bit input, into the active SPSR

change mode

Enables the storing of the new operating mode into the mode bits of the CPSR.

cpsr_set Enables the setting of the CPSR flags using the flags sent by the ALU block.
inputmux_ Selects the input multiplexer before the CPSR, which selects what type of input passes into the CPSR: the 32-
tocpsr bit input of the PSR block, or the 32-bit data from the active SPSR.

. inputmux_tospsr

Selects the input multiplexer before the SPSR, which selects what type of input passes into the SPSR: the 32-bit
input of the PSR block, or the 32-bit data from the CPSR.

output select

Selects the output of the PSR block: the data within the CPSR, or the data stored in the active SPSR.

Selects the destination register for the current instruction cycle.
00 - id_regopRd_pl

mdex_desit_ 01 —*“1110”
mux_se 10 - id_regopRn_pl
11 —bdt_register_dest_signal
Determines which mode the register should be in.
Reg_mode 00 — psr_mode_bits)
~ - 01 —“10011” or“11011” or “10111” or “10010” or “10001” or *“10000” (depends on interrupt vector)
mux_sel « b
= 10 —+10000
11 -10000"
we_reg Indicates if the register is to be written or not.
we PC Indicates if a write is to be done on the PC.
PCin sel Selects from which block the PC will get its value. The inputs are either from the incrementer or from the ALU

block.

datain_reg_in

Enables the Data in Register to accept the data present in the external data bus. This signal is gated with the
phase2 clock.

base latch in

Enables the Base Latch to accept the data present in the ALU bus. This signal is gated with the phase2 clock.

alu_opcode_
mux_sel

Selects the ALU opcode that determines the operation that will be done in the ALU block.
00-“1101"
01 -+0100”
10-+0010”
11 —id alu opcode pl or booth logic

address_mux_sel

Selects which address should be sent to the address register.
00 — data in incrementer latch
01 — data in PC register
10 — result of ALU block
11 — output of exception mux

address_reg_in

Enables the address register to store its 32-bit input coming from the address multiplexer. This signal is gated
with the phase2 clock.

Output signal of the ARM7 core. It tells the external memory managemenf unit that a memory access is

nmreq_signal required in the next phase. It is low-asserted.
. Output signal of the ARM7 core. It tells the external memory management unit that a read or write memory
nrw_signal e s h Itis low-asserted
operation Is required in the next phase. It is low-asserted.
. Output signal of the ARM?7 core. It tells the external memory management unit that a byte or word memory
nbw_signal L. L hase. It is low-asserted
transfer operation is required in the next phase. It is low-asserted.

Copyright © 2011 Philippine Engineering Journal

Phil. Eng’g. J. 2011;32:27-44

36

J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

2.3.4.6. Phase2 Control Unit Block

For the phase2 control unit block, the output signals are generated at phase2, and remain valid for one

cycle. Listed below are the output signals generated by this block, and their usages.

Table §
Output Signals of the Phase 2 Control Unit Block

QOutput signals

Description

booth mux_select

Signals the booth multiplier block to accept the multiplier coming from the A bus.

reglist_mux_en

Selects from which component the BDT block should use as its input. The BDT block may get its input either
from the latched register list from the instruction bit code or from the decoded register list the BDT block
generated.

mode_out_sel

Used for post-indexed single data transfers during privileged mode, when the write-back bit option is set. It
forces non-privileged mode during the data transfer.

index_opA_mux_sel

Used to select the multiplexer that outputs the operandA source register index for the register file.
00 - id_regopRn_p2 or id_regopRd_p2
01 —id_regopRm_p2 or id_regopRs_p2
10-“1111"
11-“1110"

index_opB_mux_sel

Used to select the multiplexer that outputs the operandB source register index for the register file.
00 — bdt_register_source_signal or id_regopRm_p2
01 — id_regopRn_p2
10 - id_regopRd_p2
11-id regopRs p2

dataoutreg_in

Enables the Dataout Register to accept and store its 32-bit input. This signal is gated with the phasel clock.

loadbyte_cnable

Enables a latch in the load byte block to accept the last 2 bits of the computed effective address for a load-byte
operation. This is also gated with the phasel clock.

Bbit_mux_sel

Used to select the multiplexer in the load byte block.
0-°0
1 —id_bw_psr_bit p2 signal

Bbus_mux_sel

Used to select the B-bus multiplexer.
00 — Operand2 from the register file
01 — PSR 32-bit output
10 — Immediate value from ID
11 — Data from Datain register

BS_mux_sel

Used to select the BS multiplexer.
00 —*“0000_0000"h
01 -*000_0000"h & bdt_b_wb[4:0] & “00”
10 - data from B-bus
11 — data from BS latch

sval_mux_sel

Used to select the sval multiplexer.
00 - “00000000”
01 - shift value form booth multiplier
10 - shift value from ID
11 — shift value form BS latch

ALU_mux_sel

Used to select the ALU multiplexer.
00 - output of Barrel Shifter
01 -*0000_0004"h
10 -*0000_0000"h
11 — output of Base Latch

shifttype_mux_sel

Used to select the multiplexer which outputs the fF:
0— 00"
1 —id_shifitype

BS_latch in

Enables the BS latch to accept the data present in the B-bus. This signal is gated with the phasel clock.

Copyright © 2011 Philippine Engineering Journal

Phil. Eng’g. J. 2011; 32: 27-44

ARM7 MICROPROCESSOR 37

2.3.5. Datapath optimizations
The ARM?7 datapath consists of the Barrel Shifter, the Booth Multiplier Block, the ALU block, the

Register File, and several latches and multiplexers.

2.3.5.1. Barrel Shifter

The shifter was designed by using cascaded multiplexers, both for the data and the carryout. The
ARMY is able to perform a maximum of 8-bit shifts for four types of shifts, namely Logical Shift Left
(LSL), Logical Shift Right (LSR), Arithmetic Shift Right (ASR) and Rotate Right (ROR). Figure 6
shows the block diagram of the cascaded multiplexers used for the LSL operation. As an example, for a
required shift value of 21, multiplexers 1, 3 and 5 would produce values shifted by 1, 4 and 16
respectively, producing a total shift value of 21. The bits of the shift values are directly used as the select
signals for the muxes, eliminating the supposed need for a decoding logic in the shifter. For the carryout,
9 muxes were cascaded instead of 8. This is in order to account for the special cases in the carryout as

required by ARM?7.

-—:J 1
L4[13.0).
W‘

0C00C000’

Led4
r12s

—
se00

i)

Figure 6. Shifter Components for Logical Shift Left (LSL)

The same principle of cascaded multiplexers is also used for the t.hree o?her shift types. For ROR
however, an extra multiplexer was needed to select the final output. This was in order to account for the
special case of Rotate Right Extend (RRX, denoted by RORO). Also, another extra multiplexer is used to
select the final carryout value for ROR32, which is another special. case for rotate. At the end of these
cascaded multiplexers is a final mux whose select signal is the shift type. This selects the final output

depending on the desired shift type.

2.3.5.2. Multiplier Block

Figure 7. Multiplier Block

. il. g J. ;32:2
Copyright © 2011 Philippine Engineering Journal Phil. Eng’g. J. 2011; 32: 27-44

38 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

The multiplier block accepts a 32-bit input from the Abus (the multiplier) and a mux_select control
signal from the control unit. The mux_select enables the mux to accept the multiplier from the Abus, and
also serves as the reset of the latch succeeding it. This block sends out signals to other parts of the
datapath depending on the resulting encoding as dictated by the Modified Booth Algorithm. It has three
parts, namely, the counter which keeps track of the number of partial products, the mult_done block
which determines if early termination of the instruction is to take place, and the booth block which shifts
the multiplier two bits to the right, reads its 3 LSBs then uses combinational logic to select the appropriate
shift value.

For the booth_encoder, combinational logic is used in order to create the select signal for the
multiplexer and the mult_opcode. The mux chooses among the three possible shift values that the
multiplicand can assume. For a multiplicand of 0xM, mult_shiftval should be 32 as to produce a zero. For
+1xM, mult_shiftval assumes a value of two times the count value, in accordance to the two shifts as
dictated by the modified Booth algorithm. Lastly, for £2xM, mult_shiftval takes on a value of twice the
count value plus 1, where plus 1 accounts for the required multiplication by 2. The encoding used for this
block is shown in Table 6.

Table 6
Booth Encoding
r\gﬂ?l?all:r Bit on Right | Multiplicand | opcode_slice sval_sel
00 0 0xM 10 o1
00 1 +1xM 10 00
01 0 +1xM 10 00
0l 1 +2xM 10 10
10 0 -2xM 01 10
10 1 -1xM 01 00
11 0 -1xM 01 00
11 1 0xM 01 o1

Originally, the goal was to remove the counter in the multiply block. How i

| the . e ber of
cycles in the multiply block have to be tracked, this was not done. (The contrc:,le:,ninc?:lthgl;ﬁ for 2
states in the multiply instruction, hence there is no way of knowing the number of cycles);hat has taken

place.) The original counter which made use of the plus operator was replaced with a combinational
counter. This can be done with the number of bits being fixed. This resulted to a small reduction in area-

2.3.5.3. Register File

The optimizations performed on the register file are: the removal of the d i i iginal
. . S : na
implementation, which is placed between the 32-bit input and the latchese r::clitlliJsle:g; tlrr:) ltll-::i Olglyg]the

destination index, since this is not needed when all the latches ar
. L. . e gate-en : he
registers’ indices decoders to get the fastest implementation. & abled, and the recoding of t

2.3.5.4. PSR Block
The major change in the PSR Block is the reorganization of the des;

In the original implementation, the CPSR and SPSR blocks are :odzsc;gi‘r]l "o gt & more structureq s

design, the component bits of the CPSR and SPSR are broken down int

Figure 8 and Figure 9 respectively. Note that the CPSR and SPSR bjoc

latches whose outputs are appended to produce a 32-bit output.

a behavioral manner. In th_is
o different latches, shown 11
ks are composed of a block of

Copyright © 2011 Philippine Engineering Journal
Phil. Eng’g. J. 2011;32: 27-44

ARM7 MICROPROCESSOR 39

&atiin 32y ; T S —
H BERR .]
; {258 e e |
! AR EEEE B1:23) G2 |
v | € =. - o cpur_dawont N]
3|3 HEED 13129 a :
3 81732 0 datain 1 pr_
3, 3| N|Z]|C _3bits > dnow
dxain_pre fags 4 > 1310 ' 310}
- (3 38 bit Latch !
danin spa_ :
—*o . epir_danacut{28) i _3bin dasnt E
\Y ' 027:0) 27:0) 1
dsum_v_flag — |1 E _____________________________________
! '
! 1
H]
' N cpst_datsout ' .
bos, >0 1 e e Figure 9. Structure of the SPSR Block
diam_new_mode v aa . 2 1 | F > duoxt
rq_fig_diuble B LA | {310)
change_mode_ea ~
cpu_diow
) 130]
1 5-bit Latch y
cpse_dataont H
[222]]
=
of 151t | Pt

Figure 8. Structure of the CPSR Block

2.3.5.5. ALU Block

The main modification made in ARM’s ALU is changing the adder from a 32-bit Carry-Select to a 32-
bit Parallel Prefix Kogge-Stone Tree Adder. This adder makes use of Lookahead Logic, making it
significantly faster than most adders. This increase however, comes at the expense of area since it
occupies an area almost two times than the CSA.

3. METHODOLOGY

The design flowchart starts with the design code, implemented using VHDL syntax. The code is
compiled and tested using the software NCLaunch from the Cadence Design System Software. The
verified code is then synthesized using the Ambit BuildGates tool, where a gate-level design is generated.
This tool produces the VHDL netlist, the GCF file, and the SDF file, taking into account the standard cell
library (which specifies the format of each cell) and the clocking constraints (set by the user). After
synthesis, simulation is redone to test the functionality of the generated netlist, and to check the timing
parameters of the generated schematic. Synthesis is repeated in case timing specifications are not met.

Once the results of the synthesis are satisfactory, the generation of the physical layout is performed
using the Silicon Ensemble Ultra (SE-Ultra) tool. SE uses the standard cell library to automatically
construct a layout from the netlist generated by Ambit. The metal layers, cell sizes, and other pertinent
data for layout are specified in the standard cell libraries. NCLaunch is again used to verify that the layout
is functioning, since the netlist generated from SE takes into account the delays introduced by routing.

Copyright © 2011 Philippine Engineering Journal Phil. Eng’g. J. 2011; 32: 27-44

40 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

Last in the flow is power estimation, and this done through the use of Synopsys’ PrimePower. This
tool provides a detailed account of the power consumption per component block, and gives a breakdown
of the total power into its components, namely leakage and dynamic power. Furthermore, dynamic power
is broken down into its subtypes given by switching, internal, x-tran and glitch. With speed being the
primary concern of this project, power is only measured at the end of the design flow. However, when

power is of the utmost concern, the designer should go back to coding, synthesis or place and route if
power constraints are not met.

l Verilog or VHDL Desxign Code |<=

u Tool Used

3 d Verification of NCSim
Fu::ﬁnnamy @ (Cadence)

]

...................
Ambit Buildgates :
(Cadence) 3

29900000000 000 s0ss0e

Resimulation of Physzical
Layout

g

[Power Estimation j ; (Synopsys) >

....................

Figure 10. Project Flow
4. RESULTS

From the four design optimization techniques discussed briefly in Section 2.1 only the effects of
change of coding style and architectural changes were quantified. Given the original’ARM7 and with the
modifications performed, particularly in the control unit for the EXE stage, it is quite impossible t0
produce an accurate comparison for the effects of the One-Hot Encoding technique. The effects of using
slack borrowing can not be easily measured since the contribution of the change in the timing of the

blocks on the effect in the speed of the processor cannot be easily separated from the effects of the other
techniques.

4.1. Coding Style Changes

With multiplexelfs peing one of the most numerous components, the group explored several ways in
implementing it. This included using conditional signal assignment, buffers, and purely combinational

logic blocks. Each buffer needed an enable for its input, thereby resulting to an area almost two times that
of the other two implementations. AmbitBuildgates recognized the conditi

select statement) as a multiplexer, and transformed it as such.
implementation was transformed into a multiplexer, resulting to the same area. Clearly, the combinational
implementation would be more complex than the with-select (especially for numemus,signals) e efore,
conditional signal assignment was chosen. Shaded rows in tables repr -
) . esent block es chosen
in the final design of the ARM7. P s and techniqu

onal signal assignment (with-
Similarly, the combinational

: ight © 2011 Philippine Engineering Journal
Copyright ilippine Eng g Journa Phil. Eng’g. J. 2011;32: 2744

ARM7 MICROPROCESSOR 41

The group also looked into the effects of different coding styles on the area and the resulting number

of glitches for a certain test sequence. The condition checker block was implemented using four different
coding approaches, namely: the original which made use of nested case and if-else statements, a single if-
else statements, combinational logic, and using conditional signal assignment. Table 8 summarizes the
results.
The if-else implementation and the conditional signal assignment produced the same hardware
implementation in AmbitBuildgates. Such an implementation produced a fairly small area and minimum
delay even with a considerable number of glitches. The group then elected to make use of the if-else
coding style for the condition checker and other larger blocks, such as the EXE control units.

Table 8
Effects of Different Coding Styles on Area,
Delay, and Number of Glitches

Table 7
Area Comparison Between
Multiplexers and Buffers

Component Area (;lm:) “ Maximum i
Code Type Area (um°) . Glitches
Buffer (32bits, dimput) 516096 Delay (ns)
C&&W‘S@n.lAssxgnment
R e iy | 307008 Nested 66240 29053 4
Buﬂ‘er 4bits. dinput) _ 635, 13 _Case - If-else B et
S0 Spmal s ety $92.:7 [(2 T S RO TR T o) e L el Ao eIy
‘ Combmanonnl Muxgllng, Zmput) 46.6-81'] Coql!wmatxogal 714.24 1.5504 8
Buffer (1bit, 2input) 80.64 Conditional Signal 685.44 13865 15
- RS ASERBEE. | (T a2 08 5. Assignment M -

4.2 Area and Delay of ARM7 Components
Table 9 shows data comparing area for components in both the original and optimized ARM7, with

the optimizations as described in the design section. Table 10 on the other hand, shows data comparing
observed maximum delay for the original and optimized components. Delay comparison per block was
not done since most of the blocks are changed in such ways (for example, the removal of the BDT Block
in the control unit) that accurate comparison with the original is not possible. Note that these figures were

taken after the synthesis stage.
Table 9

Area Comparison Between Original and
Optimized ARM7 Components

Table 10
Delay Comparison between
Original and Optimized ARM7 Components

. Observed
Component Area (um’) Component Maximom
79,943 04 Delay (ns)
IR AR DT Original Shifter 7.42
9,492.48 . HIP . .' i : !
E L Carry-Select Adder 8.94
558 122.88 BrentKung 437
& [T171.118:08 . i Kbpge-Stoney . wa L Y36 s
K ' Ongmal BDT Oﬂ’set 19.77
lock: -1 bo/g39:88 i et A9
| _11,508.48 1.541/2.101
S BlodE 1030464 L IZrE2089
15,454.08
5 |173.048.28

Copyright © 2011 Philippine Engineering Journal

Phil. Eng’g. J. 2011; 32: 27-44

42 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

4.3. ARM7 Power and Delay Results

It was discovered that data processing instructions proved to be one of the major bottlenecks in the
processor’s datapath. This is because this type of instruction makes extensive use of almost all the
components in the datapath, incurring a large amount of delay. Therefore, two versions of the ARM7
were created: one using a Brent-Kung Adder and another using a Kogge-Stone Adder. The latter proved
to be faster, but has greater area due to wiring overhead. Power was analyzed for both, each using two
cases: one for their respective maximum clock frequencies and at 100MHz to enable comparison with the
original ARM.

Table 11
Power (in mW) of Two Optimized ARM7 Processors per Instruction Mix
. ARMY7 with | ARM7 with | ARM7 with [ARM7 with
1“5‘;;;“"“ BKadder | BKadder | KSadder | KS adder
(26ns) (100ns) (25.5ns) at (100ns)
GCF 245, 252 35.82 9.973 42.63 10.52
GCF 110,111 | - -34.84 - 9:896 43.58 10.60
Cuberoot 216 32.94 9.294 33.02 8.766
Cuberoot 1 31.19 8.705 24.76 7.854
Strcmp neg 33.97 8948 30.12 7.955
Strcmp neglb 33.50 9.216 25.72 7.969
Blockcopy 1 28.44 7.690 2421 6.861
Blockcopy3 | ~25.68 -~ 6822 23.17 4.600
Factonial 12 | 43.38 11.40 4317 11.09
Factorial 1 33.29 9.235 2531 8.189

Table 11 shows the power consumption of the optimized ARM?7 for all the instruction mixes tested-
The mixes were chosen in such a way that their results would substantially vary from each other, enabling
the group to acquire the observed maximum and minimum power consumption. Also ’s,ince the
PrimePower tool measures average power, the test values in the mixes were chosen to requi;e short and
long simulation times.

The mixes which yielded the most power were Factorial 12 and the GCF of 110 and 111, while the
least was given by Blockcopy3. The two mixes are dominated b ’
making extensive use of the shifter and ALU. Also, the two mix
registers, thus consuming large amounts of switching power.
whose majority consisted of data processing instructions, the m
KS combination.

y data processing instructions, thus
es repeatedly use a small number of
It is interesting to note that for the GCF
easured power was larger for the ARM7-

, c on Table 12
ower Consumption (in mW) of Different A
Component Original ARM7 | ARM7 wit}l}hg;CO_nA]goMngnivil:OIikSs
ARM7 6.115 11.40 11.09
Register File 1.262 2.604 2411
Shifter 0.2539 2215 2110
IF 0.2398 0.4374 0.4335
1D 0.1499 0.6496 0.6190
EXE control 1.626 0.7265 0'6326
ALU Block 0.7925 1378 1.881
Adder 0.1629 0.4079 0.5922
PSR Block 0.3914 05107 | 04155
Multiply 0.2181 04618 m

ight © 2011 Philippine Engineering Journal 4
cope Phil. Eng’g. J. 2011;32: 2744

ARM7 MICROPROCESSOR 43

. Table 12 gives the power consumption of the major components of the three ARM7 versions. It is
important to note that data for this table are taken for the instruction mix Factorial 12 which yields the
maximum power. Also, the optimized versions of ARM7 were taken at a frequency of 10MHz. This is in
order to es'tablish a comparison between the original and the optimized, in accordance with the equation
for dynamic power. The “others” consists of the remaining components of the processor: multiplexers
(ALU, BS, Sval, Exception, Bbus and Addr), latches (Incrementer, Datain, Dataout, Base, BS, Address
and Carry) and other blocks (Incrementer, Load-Byte and Store-Byte). Also, it is beneﬁci’al to, mention
that the incrementer used in this case is also a Kogge-Stone adder without the carryin.

'The bulk of the original ARM7’s power was consumed by the EXE_control block, followed by the
register file then the ALU. The top power consumers of the optimized version however, are the register
file, shifter and the ALU. The EXE_control block now only consumes a mere 6% of the processor’s
power.

Table 13 now compares power consumption per component at the observed maximum clock
frequency of the processor. Notice that the distribution is not much different from the power measured at
10MHz. The register file still consumes the most power, followed by the shifter and the ALU. Also note
that the other blocks also consume a significant part of the total power. It is quite surprising though, that
tl}e power consumption of the clock generator (with its switching probability being 100%) is: not
Slgmﬁcant. This can be attributed to the fact that the clock generator only has a 1-bit change, as opposed
to majority of the blocks possibly having 32.

Table 13
Power Consumption (in mW) Between ARM?7 with a Brent-Kung Adder
and ARM7 with a Kogge-Stone Adder

ARM7 with | ARM?7 with | ARM7 with | ARMY7 with

Component | BK (26ns), | KS(25.5), | BK(26ns), | KS(25.5),

minlimum minimum maximum m:\ximum
ARM7 25.68 23.17 4338 4317
Registes File 4.682 1436 0880 9.818
Shifter 3.723 3.269 8.256 8.185
IF 0.7396 0.6524 1.671 1.605
D 1197 0.9737 2.453 2215
EXE control 2.021 1.714 2.784 2.380
ALU Block 1.927 2236 5.222 7.597
PSR_Block 1.619 1.452 1.884 1.508
Multply 1.661 1.657 1.753 1.764
Clock 0.6603 0.722 0.6604 0.7223

Generator

Others 7.4501 6.0579 £.8166 73757

Data for the table above was taken for the instruction mixes which give the minimum and maximum
power for both cases. Minimum power is given by the Blockcopy 3 instruction, while maximum is given

by Factorial 12.
Table 14
Comparison of Performance Metrics
. . Observed | Observed
A.rerzn Mazimum Clock Mipimum | Maximum
(mm°) Frequency Power Power

Oniginal ARM7 (0 | 5 g6 | 10 MHz (100ns) | 2.197mW | 6.115mW
clock generator)

Optimized ARM7 | oe5s9 | 45.5MHz (22n) | 24.88mW | 44.44mW

(no clock generator)
Optimized ARM?7 099570 | 40 MHz (25.5ns) [23.17mW [43.17mW

Copyright © 2011 Philippine Engineering Journal Phil. Eng’g. J. 2011; 32: 27-44

44 J.T. DELARMENTE, L.A. P. GAHOL, C.E. L. PARAGAS, et al.

Table 14 shows data from the original, the optimized ARM?7 without the clock generator, and the
final optimized ARM7 with a clock generator. The maximum clock frequency for the version without the
clock generator was measured as to provide a fair comparison with the original. It was found that this
optimized version of the ARM increased maximum clock frequency by more than fourfold.

The version with no clock generator (hence gets ideal clocks) had a higher clock frequency than the
final version because producing the two clocks proved to be another bottleneck in the design process.
Using too many buffers produced a very short phase 1, while using too little produced a very small non-
overlap time.

Increase in speed for the final ARM7 proved to be very substantial. Power however, also increased
by a large amount. With the extensive use of combinational logic and multiplexers, switching for majority
of the blocks was frequent. This resulted to dynamic power comprising almost 100% of ARM?7’s total
power consumption.

S. CONCLUSIONS

The optimizations utilized in order to increase speed in the original ARM?7 are the following: change
in coding style, use of one-hot encoding, use of slack borrowing and architectural modifications. These
optimizations resulted to a much faster and hardware oriented implementation. Speed increase was
fourfold and area decrease to about half the original. This, however, came at the expense of a substantial
increase in power, which increased by around 7 to 10 times.

For further study, the group recommends the following:

1. Testing with a significant number of benchmarks to provide a more stable basis for comparison:

2. The addition of a coprocessor to complete the whole ARM7, since the base is now pOptimiz’ed for
speed;

3. Performance evaluation of the base processor with the inclusion of instruct; :

4. The application of different power- uction and data caches; and

reduction techniques, since the powe i i
' . , r in
The ap tion of differen p consumption of the resulting

6. REFERENCES

1. ARM Limited. ARM7 Datasheet. Document No. ARM DDI-0020C
http://www.arm.com/techdocs/56QGGJ/$File/ ARM7vC pdf, 1994 .
S. Furber. ARM System Architecture. New York: Addison-Wesle '
J. Delarmente, et.al. High-Level Implementation of the 4
Electrical and Electronics Engineering, University of the Philippi ili

4. R. Airiau. Circuit Synthesis with VHDL. The Netherlands, Kllppmes, Diliman, March 2004.

. uwer Academic Publish 1994
C. Hamacher, Z. Vranesic, and S. Zaky. Comput P o ishers, .
McGraw-Hill, 2002. ky puter Organization, St edition, New York, NY:

wW N

y Longman., 1996.
RM7 Microprocessor. Department of

b

7. ACKNOWLEDGEMENTS

The group wishes to express their gratitude to Intel Manufacturin
Advanced Science and Technology Research and Development
of Science and Technology (DOST) for providing the resources

g, Philippines, the Philippine Council fof
(PCASTRD-DOST), and the Department
needed in completing this project.

Copyright © 2011 Philippine Enemeering Tournal
Phil. Eng’g, J. 2011:32: 2744

	2021_01_14_13_19_24_001
	2021_01_14_13_19_24_002
	2021_01_14_13_19_24_003
	2021_01_14_13_19_24_004
	2021_01_14_13_19_24_005
	2021_01_14_13_19_24_006
	2021_01_14_13_19_24_007
	2021_01_14_13_19_24_008
	2021_01_14_13_19_24_009
	2021_01_14_13_19_24_010
	2021_01_14_13_19_24_011
	2021_01_14_13_19_24_012
	2021_01_14_13_19_24_013
	2021_01_14_13_19_24_014
	2021_01_14_13_19_24_015
	2021_01_14_13_19_24_016
	2021_01_14_13_19_24_017
	2021_01_14_13_19_24_018

