ELASTIC-PLASTIC ANALYSIS OF UNDERGROUND OPENINGS BY FINITE
ELEMENT METHOD

Foreword

by Mark Albert H. Zarco
Institute of Civil Engineering
University of the Philippines Diliman

As an engineer and an educator, Salvador F. Reyes has made an indelible mark in Philippine
Engineering. He started teaching in 1952 immediately after completing his Bachelor of Science
in Civil Engineering. He earned a Certificate in Highway Traffic from Yale University, and
Master of Science in Civil Engineering and Doctor of Philosophy in Civil Engineering from the
University of lllinois Urbana-Champaign. He then returned to UP to continue his teaching career
until his retirement in 1995. During this period, he assumed the post Director of Graduate
Studies of the UP College of Engineering, and was instrumental in setting up the Transport
Training Center. Even after his retirement, he continued to lecture on CE courses until 2000, and
is still actively involved in geotechnical consultation work up to the present. Reyes had an
illustrious career as a practitioner in various fields which include being a structural
engineer/consultant to the Mount Samat Shrine's Dambana ng Kagitingan, Hotel
Intercontinental, and Metrobank Building; being dam designer and materials specialist for the
Magat Dam, Pantabangan Dam, and Pagudpud Impounding Basins; consultant for slope stability
and related problems of the Ambuklao Dam Spillway, Caliraya Dam, Semirara Coal Pit,
Tagaytay Highlands and Vista de Loro Heights; and geotechnical and foundations engineering-
consultant of the Mandaue Opon Bridge, San Juanico Bridge, Marinduque Nickel Project, MWSS
Water Supply Project, and Subic Naval Base, to name few. For his achievement, Dr Reyes
reccived the UP Professional Award in Engineering and the Outstanding Civil Engineer Award
Jfrom the Professional Regulatory Commission.

The following article entitled “Elastic-plastic analysis of underground openings by finite
element method” appeared in the proceedings of the 1 Congress of the International Society of
Rock Mechanics held on September 1966 in Lisbon Portugal. The paper was based on Dr. Reyes’
doctoral dissertation, which was conducted under the supervision of Prof. Donald U. Deere. This
paper was among the very first applications of the finite element method in area of rock
‘mechanics and geotechnical engineering, and became the motivation for application of the finite
element method to the solution of elasto-plastic problems. The paper is considered a seminal
work, and has been widely cited in numerous authors, most notably Zienkiewicz, Valliapan and
King (1969), and Desai and Christian (1977).
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Summary

A method of analyzing stress concentra-
tlons and displacements around cavities of
arbitrary shape was developed, wherein the
plasticity of the material was assumed to

governed by paramecters analogous to
angle of internal friction and cohesion.
The yield function plots as a cone in principal
S"CS_S space; the stress-strain relations were
O:t“'.“"d by regarding the function as a
&.‘“:if.t?owntial. The displacement method
ﬂeme;it: Clcmtfm ;ma_lysns (with mangular
was cm. Ian(:l l{ncur displacement funf:uo.ns)
of load P/&Y‘d‘ln a step by step application
memt “-,hiCheach.stcp, increments of displace-
mined by a sausfy cqunlnbnun? were deter-
trations yar Tecursive process. Siress concen-
infinite mc‘?und circular opznings in an
values of um were analyzed Ic?r.a.rburary
of stress R)"Cld parameters and initial state
and rcﬂéc; eshulls appear to be fmrly realistic
sion acce the gﬂ‘ccts. of‘ volume!nc expan-
the suessmpm_'lymg yielding, as implied by

-strain relations used.

Résumé

Les auteurs développent une méthode
d’analyse de la concentration des charges
et déplacements au voisinage de cavités de
formes arbitraires, pour lesquelles ils admet-
tent que la plasticité du materiau est gou-
vernée par des paramétres de méme nature
que l'angle de frottement interne et la
cohésion. La fonction de passage a I'état
plastique a la forme d’un cone dans I’espace
des contraintes principales; les relations con-
traintes-déformations ont ¢té obtenues en
considérant la fonction comme un potentiel
plastique. La méthodc de déplacement de
'analyse d’éléments finis (¢léments trian-
gulaires et fonctions de déplacement li-
néaires) a été utilisée avec application discon-
tinue et progressive des charges. A chaque
palier, I'accroissement de déplacement satis-
faisant 3 un nouvel état d'équilibre a été dé-
terminé par récurrence. Les concentrations
de contraintes autour d’ouvertures circulaires
dans un milieu infini ont été étudiées pour des
valeurs arbitraires des paramétres de plas-
ticité et des conditions initiales de contraintes.
Les résultats apparaisscnt bien conformes
a la réalité des phénomeénes et rendent compte
des effets d’expansion volumétrique accom-
pagnant la déformation plastique, confor-
mément aux relations contraintes-déforma-
tions utilisées.

Zusammenfassung

Die Verfasser berichten iiber eine von
ihnen cntwickelte Methode fiir dic Analyse
von Druckkonzentrationecn und Druck-
verschiebungen um Hohlungen von willkirli-
cher Form herum, wobei sic annechmen, dass
die Stoffplastizitdt von Parametern beherrscht
wird, welche dem Winkel von Reibung
und Kohision analog sind. Die Ergebniss-
Funktion zeichnet sich aus als cin Kegel
im Hauptdruckraum; dic Verhiiltnisse zwi-
schen Druck und Spannung wurden erhalten,
indem man die Funktion als einc plastische
Leistungsfihigkeit betrachtet. Die Methode
der Verschicbungen-Analyse durch begrenzte
Elemente (mit dreieckigen Elementen und
Funktionen von linciren Verschiebungen)
wurde angewandt durch schrittweisen Zusatz
von Ladung. Der jewcilige Zunahme von
Verschiebungen nach ecingetretenem Gleich-
gewicht wurde durch cinen ricklaeufigen
Prozess bestimmt und festgesetzt. Die Druck-
konzentrationen um kreisfoermige Offnungen
herum in unbegrenzten WMilieu wurden
analysiert fuer willkiirliche Werte von
Stoffplastizitiit-Parametern und Anfangssta-
dium von Druck. Dic Ergebnisse scheinen
der Wirklichkeit ziemlich zu entsprechen,
und geben die volumetrische Ausdehnung
wieder, welche das Ergebniss begleitet, so
wie ¢s durch die angewandten Druck- und’
Spannungsverhiiltnisse angedeutet wird.

Introduction

One of the common problems in rock mechanics is
that of estimating stress concentrations and displacements
that occur around cavities formed in a rock mass. Obser-
vations in the field indicate that the use of classical solutions
from the theory of elasticity can be quite unrealistic, par-
ticularly if the rock is weak or extensively jointed. On the
other hand, reduced tangential stresses near the walls of the
cavity suggest that an elasto-plastic analysis may provide

solutions which are in better agreement with actual field
measurements.

~ Because of the very considerable amount of computations
involved in the numerical solution of the problems, not
many published results are available at the present ’time
The classical papers of ALLEN and SoutHweLL [1] and of
Jacoss [9], in which tension plates with holes and notched
plates are considered, represent pioneering efforts on the
numerical solution of elasto-plastic problems in accordance
with the incremental theory of plasticity. ANG and HARPER
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(2] considered similar problems w'ith the help of a physical
model of the governing finite difference equations. More
recently, Pore [10] used the finite element method to solve
for stresscs in tension plates subjected to edge loads. Other
éxamples of the use of the finite element method appear
to be based on the deformation theory of plasticity (14].
In all of the foregoing investigations, the Mises criterion
of yielding (8] was used.

Because the use of large electronic computers is now
becoming quite common, routine elasto-plastic analy51_s of
practical problems in rock mechanics may soon be feasible.
For such a general usage, the numerical procedur‘e‘should
have the capability of handling boundary conditions of
practical interest. Also, the yield criterion used must account
for internal friction in the rock.

The object of the present study was to develop a numcrigul
method for the analysis of two-dimensional (plane strain)
problems concerning stress concentrations and displz‘xcc-
ments in the rock mass around an underground opening.
By adopting thg finite element method Lo a stcp-by-sFep
analysis [3] and employing the generalized Mises criterion
[6] which accounts for both internal friction and cohesion,
the method can be used for openings of arbitrary shape
with any selection of elastic constant, yield parameters,
and initial state of stress. Typical solutions were obtained
for the purpose of assessing the possible practical value of
the elasto-plastic idealization as applied to rocks.

Yield criterion and stress-strain relations

The yield condition used is the following generalization
of the Mises criterion for a perfectly. plastic material [6]:

[=xdy = LNk (1)

Wwhere J, and J, are, respectively, the first invariant of the
stress tensor and the second invariant of the stress deviator
tensor. The yield parameters, « and & » may be related to
the Mohr-Coulomb parameters, cohesion (c) and angle of
internal friction (#). Since Eq. 1 plots as a right circular
<one in principal stress space, whercas the Mohr-Coulomb
plots as a pyramid, such relations must pertain to specific

stress states. For example the following have been developed
for plane strain [6]:

o = &_ k —_ _*3_ (___ 9
(9 + 12 tan $) 12 (94 12 tan ¢)12 )

In the elastic range (f << k or f= k and f<0inEq. 1),
Hooke's law appliés. Expressed in terms of the stress rate
(e)

tensor, o;; and the elastic strain rate tensor, <, it may

be written as [12]:

I R v o,
Eij = —E % T E Sik O

(i,j =1,2,3) 3)

where v and E are, respectively, Poisson’s ratio and modulus
of elasticity; 3;; is Kronecker’s delta; o,
=06y + 0y + a;.

In the plastic range (f = k and f = 0), perfect plasticity
is assumed and the plastic strain rate is obtained from the
yield criterion as follows:
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where X is a positive scalar function of the sttess and stress
rates; s;; is the stress deviator tensor; a;; is the total stress
tensor. Then, the total strain rate is

@
& = ij o+ & (4)

By combining Egs. I. 3 and 4 to climinate the scalar
parameter i, the stress-strain relations in the plastic range
can be expressed in the form [11]

T35 . . . -
E = g —a S;j—brx,',' (3)

9!

where a and b are the following functions of the current
stresses and the matcrial constants:

3K« J,
. . Ix W G 3‘,2ml __h I
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| -~ 9 a® —
G
. 1 J,
_ﬂ K_._ L W x— _jll/T
£ (| 49 -,K) k 62
j;) = < —
2 + 9 G B
JKa Jl_ . T
s w G 3R |, w
EREACH I S I < R
- 1 +92 — -
G
with

W=cz,~,~ ég,‘ and K = 3(1_—-2‘!) ’

. . stress-
For plane strain, it is convenient to €xpress the

strain relations in matrix form

. . (6)
xa = DE
where & = [ 6, 5,. 1], o =<0 &, 7)-
D is the 3%« 3 symmetric stress-strain matrix.
In the elastic range
1 —vy v 0
D = E v | —v 0 ™

_— =
(1 +v) (1.—2v)

._va
2

. .. le-
which is constant. However, in the plastic range, the ihe
ments of the stress-strain matrix, D, are functions of
current stress components, as follows
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Doy = 2G (1 — hy — 2y 0y — g 5,

Dyy = 2G (12— hy =3 (8)
Dyy = Dy = —2G (hy + by {0 + 0y} + hy 50 ay)
Dy = Dy = —2G(hy = + hy o, 7)
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in which the explicit forms of the stress invariants are

"l = 6, + 04 + O

Jy = — (oo — ay)? i {0y — a2 + (6: — op) + T2,

6

The finite element method

Inasmuch as the derivation of element matrices involved
in the finite element method are completely discussed else-
where [3, 12 and 14], only the essential features and modi-
fications will be mentioned herein.

The problem is set up for analysis by superposing a
model consisting of triangular elements on an arbitrary por-
tion of the extendend medium surrounding the cavity, as
shown in Fig. 1 (for a circular cavity). Only one quadrant
is considered herc because of symmetry of geometry and
loading (body forces are neglected). Within each element, the
displacement field is assumed to be linear; hence the stress
and strain fields in the element are constant. By interconnect-
ing the triangles at the common nodes or vertices, conti-
nuity of displacements across common boundaries is auto-
matically satisfied. It is then supposed that the model simulates
the continuum sufficiently closely provided the triangular
elements are made small enough.

The use of a non-uniform mesh of elements makes possible
the distribution of smaller elements at locations where stress
gradients are expected to be high. By using triangular ele-
ments, no difficulties arise from boundaries of irregular
shape. It will usually be possible to generate all required
matrices* automatically from prescribed coordinates of
boundary nodes and the desired distribution and number
of elements, thereby avoiding much manual work [11].

The generation of the stiffness matrix of the system
requires two transformation matrices for each element.
If a generic element, m . has its vertices incident on nodes
ny, ny, and ay with global coordinates (x,, Y1) (xa, ya),
and (x3, yg), respectively, the geometry of the element is
specified by:

Yz 0y 0y 0

1
Ny=——"77"7¥——7—7-—10

X O
X1 Va1 Va1V

X3 0 x| (9)

X2 Yuz X3 Y31 Koy

where

Xoyp = Xp— Xy, Vg = Y3 — V1. elC

The connection matrix of the element is described by
a (3°< N) partitioned localization matrix, L., which contains
a (2%2) identity matrix at positions (1, n), (2, n,), and
(3, ny), with zeroes elsewhere.

The stiffness matrix of the system is then given by

K= (10)

TRCES

A [L:. Ny Dy Nim L,.].
L

where A4,, is the area of the element; M is the number of
elements in the system.

The elements of D,, are given by Eq. 7 or 8 depending
on whether the mth element is in the elastic or plastic state.
Assuming that one or more of the elements are in the
yielded state, it follows from Eq. 8 that the stiffness matrix
of the system is a function of the stresses in the yielded ele-
ments. Therefore, the load must be applied insufficiently
small increments. The response of the model to each incre-
ment can then be determined by solving the equation of
equilibrium of the stiffness method of analysis [4] which, for
the vth stage of loading, can be written in the form

Ag“’) = Kw—1) Aq(") (1)
where A g™ and Ag™ are, respectively, the load and dis-
placement increment vectors, and K®=1) is the stiffness
matrix calculated from stresses at the (v—I)th increment.

The manner of support of the model fixes certain com-
ponents of the displacement vector. For example, in Fig. 1,
normal components of nodal displacements at the lines of
symmetry are zero. Hence, for a prescribed load increment
vector, the unknown components of the displacement incre-
ment vector can be solved from a subset of the system of
equations in Eq. 11. In the present study, the system of
equations was solved by the method of systematic over-
relaxation [13]. Convergence to the solution is assured
because the stiffness matrix corresponding to the sub-
system of equations is positive definite [11].

The increments of strain in a generic element, m , can
be calculated from the displacement increment vector by
means of the transformation matrices of the element:

Agy = Ny L, Aq(v) (12)

To determine the new values of the stress components in

the element, it is first assumed that the element deforms elas-
tically. Theréfore, the stresses are given by

on = 0n®"N + DA, (13)
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where D is the elastic stress-strain matrix (Eq. 7). The stresses
are then substituted into the yield function, Eq. 1. If the
criterion is satisfied, the stresses are recorded. If not, the
stresses are recalculated, using Eq. 5, provided the given
- element was plastic during the previous load increment.
In explicit form, Eq. 5 can be written as

6, =0,V +2G Ae, —2Ga— 2 Gbo, ')

— S — ir -1)
oy, =06, +2G Aey —2Ga—2Ghoy! a4
o, = ¢,Y~V —2Ga — 2Gbho,\" 1

£ = 0D —Gy—2Ght N

and solved for stresses by -successive substitutions [7]. The
functions, a and b, are calculated from the stresses obtained
at the (r — 1)th cycle of substitutions. Usually three subs-
titutions suffice.

If the element was previously elastic, the transition to
the plastic state must be accounted for. Accordingly, a pro-
portional part of the strain incremen‘t, Ae,, is used to cal-
culate the elastic part of the stress increment such that the
total stresses just satisfy the yield criterion. The remaining
components of Ae,, are then used in Eq. 14 to determine the
plastic part of the stress increments.

In general, the stresses calculated in the manner descri-
bed will not satisfy equilibrium because of the linearization
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in Eq. 1. Therefore, an equilibrium check is made, as Illustrative problems
follows:

The problems solved in the present study were llm:ltlf::

M . to circular openings for convenience, although the cort?irt)rary
F=gW— % 4,| Ly Ny om™ | (15)  program has the capacity to treat openings- OfdalrShOWn

met shapes. Results of two problems, wherein the mo ?ee field
in Fig. | was used, are briefly described. Wlth a Ir - alues
vertical stress of 1.0 ksi (kips per square inch), (;25 and
(ratio of horizontal to vertical free field stress) OfO l;si Y=
for corrective nodal displacements, 8q, using Eq. 11. The 0.4 were used. Material properties were, £ = 50 ’
strain increment vector is then corrected by adding 8g to = 0.2, ¢ = 0.280 ksi, $ = 30 degrees.
it, and the process of obtainin

Then, the unbalanced force vector, F,is used to compute

. ses
g the stresses followed by an Computations were initialized by seumg. t]hisstiids
cquilibrium check is repeated. In the problems solved in the clements equal to the assumed free ficld:ydlu ._;ilibralc
herein. threc cycles of computations sufficed to make the on the curved boundaries were then calculated to eq
unbalanced force components sufficiently small.

. ise reduction
these stresses. The model was «loaded» by stepwis
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of loads along the face of the cavity, in which horizontal
and vertical loads were reduced proportionately.

Plastic zones on complete unloading are shown in Fig. 2,
which illustrates very extensive yielding for K, equal to 0.25.
However, in both cases, the yield zone does not surround
the cavity completely. on account of the low values of K,
used.

Normal and tangential stresses along the horizontal at
various stages of loading are shown in Fig. 3 and 4. In both
cases, the peak tangential stress occurs within the plastic
zone. Fig. 5 shows the displacements of points along the
face of the cavity for X, equal to 0.25. Displacements for the
clastic solution are also shown for comparison. As may be
cxpected, yielding results in considerably greater displa-
cements. Particularly notable are the large inward displace-
ments of points opposite the yielded zone resulting from
the expansion of the yiclded material as predicted by the
plastic potential theory for frictional materials [6].

Contours of principal stresses and principal stress direc-
tions in the vicinity of the cavity are shown in Fig. 6. Fig. 6(a)

References
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