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ABSTRACT

An analytical building model that illustrates non-linear effects caused by gravity is introduced in this paper.
Governing equations for the motion of one-story shear-flexural building subjected to earthquake-induced
horizontal ground motion were developed taking into account large displacements. The response of typical
structures subjected to harmonic ground excitation was expressed in exact and approximate formulations.
Numerical examples show that large amplitude motion contains sub-harmonic components and increasing the
amount of damping significantly decreases the higher mode contribution on the response. It was also shown
that gravity generally decreases the natural frequency of elastic systems and that the apparent natural frequency

further decreases with ground motion amplitude.
Keywords: shear-flexural building, gravity-effect, non-linearity
1. INTRODUCTION

The dynamics of structures is usually studied using shear building model that is based on the
assumption that displacements are small and gravity effects are negligible. When structures are
subjected to strong ground motions, however, large displacements are exhibited as a consequence of
yielding, and gravity becomes the dominant force in causing the structure to c_ollapse. In light of this
fact, the authors propose a building model that can be used to study the nonlmez}r effects caused by
gravity, and can describe more realistic response of structures undergoing large displacements during
severe earthquake loading. )

Several models, similar to that shown in Fig. 1, have been used to investigate the effect of gravity
on the seismic response of flexural building models1-9. Jennings and Husid1 reported the increase in
the natural period of elastic single-degree-of-freedom (SDOF) system compared to when gravity is
ignored. Because of the assumption that yielding occurs when displacements or rotations are
generally small, governing equations of motion are linearized and takes the form of Duffing
equation. Duffingl1 reported the jump phenomenon on amplitude response curves by studying a
nonlinear differential equation that physically can be thought of as a fc.)rc.ed v1brat|9n of a damped
mechanical oscillator having a nonlinear spring. Although, the charactenstn_cs of motion of a flexural
building model may be studied, according to the solution of Duffing equation, we note here that the
solution is good only for relatively small values, say 15 degrees, of .rotat.lon angle. Hence, similar
analytical procedure using perturbation methods will not be discussed in this paper.
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In pursuit of taking into account gravity force, the flexural building models mentioned above
express the deformation of the column in terms of flexural (or rotational) deformation and
assume that no shear deformation occurs. While it is difficult to distinguish between the shear
and flexural rigidity of an actual building, a theoretical consideration is deemed important. This
paper introduces a building model that can illustrate the coupled effect of shear and flexural
rigidity on the response of a building undergoing large displacements. Seismic response analysis
of typical buildings is presented in exact and approximate forms and solutions to governing
equations are proposed. In orgler to investigate the effects of gravity on the dynamic properties of
buildings, the shear-flexural building is compared with an equivalent flexure building and shear
building models.

2. FORMULATIGN OF EQUATIONS

A simple building model that takes into account the effect of gravity is shown in Fig. 1. This
model is subject to four assumptions: (1) the mass of the building is concentrated at ihe. floor
level; (2) the column of the building is inextensible axially; (3) the effects of axial force on the
column’s shear and flexural rigidity are negligible; and (4) shear deformations do not have
influence on flexural rigidity, and vice versa. The path of the mass simplifies the complex
horizontal and vertical motions of the deformed columns of a building. This model, herein named
as a shear-flexural building, may exhibit significant vertical accelerations beéause of large
displacements that are ignored in the shear building.

Considering the dynamic equilibrium of the mass and by using D’Alembert’s principle we can
derive the governing equations of this two-degree of freedom system, see Appendix Expressed
in terms of a generalized coordinate vector o defined as '

- o
8 (1)

— P(1)

Fig. 1- One-story shear-flexural building subjected to lateral force P()
and earthquake-induced horizontal ground motion x,(s).

then we can write
Mo+Co+F, =(—m\‘g +P)Io )
where

o) (32)

mh  mh® +0°2 )J
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o[; 2]

k& —mé6* - mgsiné "
F,=15. .. 3c)
k6 +2m556 — mg(hsin 6 + & cos 6 )

| = cos & . Gd)
hcos @ - Ssin 8
And when displacements are small, the equation reduces to
Mé + Cé + Ko = (- nsi, + P)t @
where
] mh
= . Sa
M [nzh mh '] (52)
c - [ 0 } (5b)
0 ¢
_ k - mg (SC)
“l-mg k- mgh

.={L} (5d)

It should be noted that when the rotational stiffness & is infinitely large, i.e. @is very small, then
Eq. (4) reduces to the governing equation of a shear building. And v\./he.n kis l'c}rge, the same
equation reduces to the governing equation of the flexural building subject to small

displacements,
mit6+c0 +(k —mgh)ﬁ =-mhi, (6)

The exact equation for the motion of a flexure building obtained as a special case of Eq. (16) is

0 + T O+ k6 — mghsin@ =—-mhcosfx,,. N

3. EARTHQUAKE RESPONSE

motion of one-story shear-flexural building subjected to

earthquake-induced horizontal ground motion is given by Egs. (2) and (4) with P = 0. Response
history analysis, however, cannot be easily performed since integration methods like Runge-
Kutta-Gill12 cannot carried out directly because of the fact that the mass matrix Mo involves
linearly dependent rows. To be precise, row 2 is a multiple of row lin Eq. (3a) and in Eq. (5a)
when & equals zero, i.e., determinant is equal to zero and Mo is singular. Here, we propose

methods to obtain the response.

The governing equation for the
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3.1 Exact solution
In order to examine the dynamic properties of the building undergoing large displacements, the

motion associated with the solution of Eq. (2) must be studied. The second-order differential
equations can be transformed into four first order differential equations by using a state vector

v - { 4 } ®)
(/3
whose time derivative can be written as

; ¢ , .
Y={Ma—lfy}’ f}’ =_”lxg(t)'a —Co—Fa' (9)

Since the linear system in terms of & can not be solved directly, i.e. My does not exist when &
= 0 or & is very small to cause significant loss in precision, we propose a method to obtain a
smooth response. First, we use small Af such that ¥(r) can be approximated as

7)) Y(+ AAz?— ¥() (10

And we can rewrite Eqgs. (2) and (10) as

r o o+ dAtl
[0 M,,]'Y(”A')z{M,hf,m} an

where I is a 2x2 identity matrix. Then, we introduce weight matrix W such that when & becomes
small, the following conditions are imposed

Wolt + At) =~ Wor) (12)

Here, W is a 2x2 diagonal matrix whose nonzero elements are the 5-dependent weights w, and
w,. Egs. (11) and (12) form 6 linear equations in terms of 4 unknowns and can be written as

I 0 o+ dAt
0 M, |- Y(@+A1)={M_ 6+ fy At (13)
0o w Wa

Using the principle of least squares, we minimize the sum square of the errors
E=|fy - M @) +ws() (14)

and the state vector ¥(t + Ar) can be solved giving us

y('+A’)={- ( i } (15)

6+\m? +W2)—'M6fyAt
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It is apparent from Eq. (15), that when W is zero, the solution obtained will be the same as the
solution of Eq. (11). But when W is not zero, the difference will be minimized by selecting small
values of weight functions w, and w;, thereby enforcing Eq. (12). The weight function w; will be
selected to be small and decreases exponentially with & so as not to drastically modify Eq. (11).
Here we propose the following functions:

W =, exp(— 5%/52 ) (16a)
Wy, =p-wh (16b)

When using double precision, the smallest value of w, that can be used in ﬂoatisng point
operations to obtain a nonzero determinant of M2+ W* when &= 0 is (Wo)min = 10°mh. The
parameter &, controls the degree of flatness of wy, S0 (J)min = 10*A'? is the smallest value of &,
that can be used to obtain a nonzero determinant when w;~0. We suppose that small value§ of Wi
and w, will give smooth results and that when the amplitude of response is large, arbitrarily
values of parameters wo, &, and p may be used without causing significant effects on the steady-
state response amplitude.

3.2 Small displacement approximations . .
Because of the aforementioned problem with the direct integration of Eq. (4), we will propose to

obtain the steady-state response analytically. If, as an example, the structure is subjected to a

harmonic ground motion
X, (t)= X0 sin(a)t) )

then the particular solution of Eq. (4) can be assumed as
o = Asin(wr)+ Bcos(wt) (18)

where 4 = {4, 4,}7 and B = {B, B}’. Substituting Eq. (18) into Eq. (4), and equating
coefficients of sine and cosine terms on both sides of the equation, we can solve the unknown

constants 4 and B as :
A=motx - [r@)+orcr@) el (19a)

B=-o0-Y(@)'(cA) (19b)

Where ¥(w) = K - &*M. Therefore, the response history of shear and flexural deformations can
be expressed as

5()=6, sin(wt ~¢5) (20)

6(r) = 6, sin(wt - #5) @1)
where

Sy=A +B b5 =tan”'(- B,/ 4) (22a)

o =V4 +B; , ¢y = tan” (- B,/ 4)» (22b)
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The relative and absolute displacement of the floor, and their corresponding phase, are therefore

u(t) = uy sin(er - é.) (23)
.\‘(1) =X, sin(a)l - ¢,,) (24)
Where
ty = /() + hy ¥ +(B, + h, )} (25a)
B < _ B+ 4B,
9. = tan ( AI, +hA, ] (25b)
X = ‘\/(Al +hd, ""“go)2 +(B, + hB,)’ (25¢)
B, +hB
=t S S TAD,
f = tan [ Xgo + A + hA, ] (25d)

4. NUMERICAL ANALYSIS

To study the characteristics of response as wel! as to establish the reliability of the proposed
numerical technique in the previous section, we investigate the response of an example of shear-
flexural building whose mass " is 104 kg and height / is 5 m.

4.1 Effects of gravity on natural frequency ,

As with the previous flexural building models"**, we first take note of the effect of gravity on the
natural frequency of the shear-flexural building and then compare it with the natural frequencies
of the equivalent shear building and flexural building models. The natural frequency wspg of
shear-flexural building, obtained from the free-undamped vibration associated with Eq. (4), is

Wy = \/ lc(}c~ - mgh)— (mg)2

m([ +mgh + IJZH

The subscript SFB is used to differentiate the natural frequency of the shear-flexural building
with that of the shear building (SB) and flexural building (FB). The natural frequency of the
shear-flexural building model is plotted, in Fig. 2, against flexural stiffness & for different
values of shear stiffness k and acceleration due to gravity g equal to 0 and 9.81 m/s?. The natural

frequency of the flexural building wrg with the same flexural stiffness, obtained from Eq. (6) and
given here as

(26)

k - mgh
mh? 27)

can be interpreted as the intersection of the surface with g = 9.81 m/s’ and the vertical plane
parallel to wspp-k plane for a large value of £, e.g. plane defined by c-d-e. The corresponding
plot for the natural frequency of the shear building, i.e., o, = Jk/m , can be interpreted as the
intersection of the surface with the vertical plane parallel to @y.4 — k plane for a large value of
k , e.g. surface defined by a-b. As shown in this plot, when % is large the effect of gravity on
natural frequency is negligible, hence the model is basically a shear building.

Oy =
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Fig. 2. Natural frequency of shear-flexural building model with m = 10*kgand A=5m.

We can observe from Fig. 2 that for any two plots with the same values k and &, natural
frequency is lesser when g = 9.81 m/s? than when g = 0. Hence, we can conclude that gravity
generally decreases the natural freczluency of the shear-flexural building. Fl.thhem}ore, we can
also observe that when g =9.81 m/s?, natural frequency is zero (or imaginary in a strict sense) fqr
some values of k¥ and  as shown by surface a-g-d-e-f. But when g =0, the natural frequency is
always greater than zero which implies that the structure is always dynamically stable regardless
of the value of ¥ and k. Hence, we can say that gravity may cause a shear-flexural building to
become unstable depending on the values of & and k. Eq.. (2§) suggests that the natural
frequency is positive real number only for values of & and k satisfying

~ (mg)
k>=—"— (28)
k>mgh, k> pp—

The elastic stiffness will be approximated from a choice of gravity-effect parameter « given by

a= '"—ff (29)
This dimensionless parameter is similar to the parameter used by Sun, et.al? to describe the
increase in elastic natural period of flexure building due to gravity. F}lnhermore, if we assume
that a building of given mass m and height 4 modeled as a shear building and a flexure building
behave similarly when they undergo small displacements, then we can relate the shear and
flexural stiffness, k and k , using a stiffness ratio 7 that we define here as

k
=— 30
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The natural frequency of the system, given by Eq. (26), can be expressed as

_|g. . 1-a-a’y
@ sr dh a(l+n+an) D

When 7 = 1, the natural frequency is always positive for values of o < 0.618. The natural
frequency of the flexural building expressed in terms of a becomes

Dpp = =N (32)

And when g =0 and 7= 1, Eq. (31) reduces to the natural frequency of the shear building

_ _ ’k
Dpy =Wsp = ™ (33)

Eqgs. (31)-(33) correspond to surfaces h-g (for 7 = 1), c-e, and a-b in Fig. 2, respectively. As
previously observed', the decrease in natural frequency when gravity is taken’ into account. are
shown by the plots corresponding to the flexural building and shear building (flexural building
with g = 0 and 7 = 1). In other words, gravity causes the decrease in the value of natural
frequency as shown by curves c-d-e and c-e. If the flexure building model exhibits shear
deformations, the frequency further decreases with & as shown by corresponding plots for the
shear-flexural building, e.g. curve g-h.

4.2 Characteristics of large-amplitude motion

The characteristics of response can be studied using the same shear-flexural building (m = 10" k
and h = 5 m) subjected to harmonic ground motion given in Eq. (17). We investigate th%
response as the building undergoes small and large displacements by using groundg ti
amplitudes xg equal to 0.2 m and 0.8 m, respectively. Here, we assume that the gravity-r::;)fcalt(:)tn

parameter defined by Eq. (29) is equal to @ = 0.1 and that the stiffn i
damping ratio & defined as €ss ratio 7 equal to 1. The

~

c c

2may Imiag, (34)

g

will be assumed equal to 2%, 5%, and 10%.

The steady-state response in terms of shear and flexural deform
displacements assumptions will be obtained using Eqgs. (20)-(22) an
solution. The exact solution using least squares will be computed usin
=10%, 10, 1. The time histories of steady-state response will be showngi

ations, subject to small
d plotted with the exact
P=1,6,=0.1 m and wo
n Fig. 3 for ¢ = 195-200s.

Copyright © 2008 Philippine Engineering Journal
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Fig. 3. Steady-state response history of shear-flexural building for (&= 0. land- n=1) subjfcteczi t0 Xg = Xgp
sin(2.81), where (a) x,= 0.2 m and (b) X = 0.8 m. Exact solution computed using wy = 10, 10%and 1 (p =
1,8,=0.1) and compared with the solution subject to small displacement assumptions.

We first establish the reliability of the numerical method proposed hfare by looking at the
response shown in Fig. 3(a). This figure shows that when response is small, the value 9f
parameter w, is important and must be selected to l?e r.elatlvely small. A_Iarge .value. will
significantly affect the original equations, thereby resulting into a different motion which will be
considered here as a ‘numerical error, e.g. plots corresponding to wy = 10". The value of w, is
insignificant when response amplitude increases as evidenced by the agreement of results for all
values of w, used in Fig. 3(b). In the succeeding examples, a value of 1 will be used for w.
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Now, with reference to Fig. 3, we take note of the characteristics of response of the building
subjected to small and large amplitude ground motions. When displacements are small the
response is harmonic with the same period as the ground motion, but when amplitude of response
goes large the response contains sub-harmonic components. The amplitude, frequency and phase
of the simple harmonics constituting the periodic large amplitude response can be obtained using
Fourier series expansion. The Fourier amplitude plot for the response shown in Fig. 3(b) is
shown in fig. 4. In this figure, the effect of damping on the contribution of higher modes on the
response is apparent. Damping significantly decreases the amplitude of higher mode response,
e.g. for shear deformation, changing the damping ratio from 2% to 5%, resulted to 25% decrease
in amplitude of second mode compared to only 4% decrease in fundamental mode amplitude.

i

a

2 | T
[
o~ . i * =
o 3 6 =] 12 15
w,, rad/s
as ?
>
g, 225 [
’
@ -
o x Mo >
o 3 6 o 12 15
W,, rad/s
Legend: [ i A : i
e awmBl % O 1y X

Fig. 4. Fourier amplitude plots corresponding to the responses to x, = 0.8sin(2.8¢) for 2%. 5%

. - and
10% damping ratios.

Finally, by considering only the amplitude of response corresponding to the fundamental
mode, we can show in Fig. 5 the nonlinearity of response as amplitude of motion increases

4.3 Effects of ground motion amplitude

It is a well-known fact that the actual natural frequency of buildings depends on the amplitude of
ground motion. This amplitude-dependence cannot be observed in the shear building model or
analytical models undergoing small displacements, but in nonlinear building models that exhibit
large displacements, such as the flexure building whose equation is governed by Eq. (2), and of
course, the shear-flexural building. We first note that for the flexural building, when Eé- (7) is
transformed so that it includes the third-order term, solution to the corres,ponding Duffing

equation suggests that the apparent natural frequency will increase with ground motion
amplitude. This nonlinear stiffness is said to be of hardening type''" 4,

Copyright © 2008 Philippine Engineering Journal Phil. Eng’g. J. 2008; 29:67-80
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To investigate how the natural frequency changes as ground motion amplitude increases, we
compute the frequency response of the shear-flexural building subjected to harmonic excitation
for increasing values of ground motion amplitude. Here we use, as an example, the same
building model (m = 10" kg, 5 =5 m, and = 9.1) subjected to ground motion amplitudes equal
t0 0.2 m, 1.0 m, and 2.0 m for damping ratios cqual to 2%, 5%, and 10%.

16 2
xg(ls m
Legend N . ;
%,. %l . Fxact. .. " Small .
——, S — — l
0 i' ———— R el |

Fig. 5. Nonlinearity in steady-state response amplitude &, and 6, using the
fundamental mode.

The exact equation of motion of the system given in Eq. (2) will be solved numerically and the

steady-state response will be estimated after several cycles. The response in terms of rotation
angle (flexural deformation), shear deformation, relative and absolute displacements and their
corresponding phase lags will be compared with the solution subject to small displacements
assumption, i.e., Eqs. (23)-(25). The resulting frequency response curves corresponding to the

fundamental mode are plotted in Fig. 6. o )
We observe from Fi[t)g,. 6 that while the natural frequency of the shear-flexural building subject

to small displacement assumptions does not change with grognd motion arqphtude, exact
solutions show that the apparent natural frequency decreases with ground motion amplitude.
Hence, in contrast to flexure building, the nonlincar effective stiffness is of softening type. We
also conclude here that using practical values of forcing frequency @ (not completely shown in
Fig. 6), the building exhibits no secondary resonance. )
Fin)ally, it is al;:o interesting to note that wher.l Xp=20m and & = 2% and 5%, there is a
sudden increase in response amplitude when forgng frequency is increased from. 2.55 to 2.575
rad/s. This discontinuity is due to the superposition of ground displacement as evidenced by the

phase reversal in absolute and relative displacement plots.

0o 0. (7.
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Fig. 6. Frequency response of SDOF shear-flexural building with m = 10* kg, h=5 m, and gravity-effect
parameter a = 0.1 and 77 = 1. For all cases, the building is subjected to harmonic ground motion x,(f) =
xgosin(ar) at different values of ground motion amplitude xg equal to 0.2 m, 1.0 m, and 2.0 m. Damping
ratio £ is assumed to be 2%, 5% and 10%.

5. CONCLUSION

The fundamental equations governing the motion of an elastic shear-flexural building subjected
to earthquake-induced ground motion and lateral loads are presented in this paper. Numerical
examples of a one-story shear-flexural building subjected to large amplitude harmonic ground
motion, show that the resulting motion contains sub-harmonic components and increasing the
amount of damping significantly decreases the higher mode contribution on the response. It was
also shown that gravity generally decreases the natural frequency, predicted by small
displacement approximations, of elastic systems when compared with an equivalent shear
building or flexure building. Exact solution shows that the apparent natural frequency further
decreases with ground motion amplitude and that the nonlinear effective stiffness is of softening

type.
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APPENDIX

Derivation of Motion Equations
Considering the dynamic cquilibrium of the mass and by using D’Alembert’s principle we can derive the
governing equations of this two-degree of freedom system. With respect to the given x-y coordinate system
shown in Fig. 1, the position of the mass can be expressed as

x=x,+u, u=hsin@+5cos@ (A.1)

y=v=hcos@-Jsinf (A2)

Differentiating these equations twice with respect to time we obtain the components of the acceleration as

X= g; x, +(hcos6)6 - (5sin6)6 + (c056’)$]

=%, +h(— sin@ 6’ +cos<9§)+ (cos¢93 —sinﬁé‘é)
- [5(005 66 +sin 6[9)+ (sin 0)95]
=¥, +v0 +c0s68 - ub® - 25in 656 (A3)
y= % [— (hsin6)o - (5 cos 68 +sin 195)]
= —h(cosetﬁ"2 +sin 65)— (cosHéS +sin 65)
- [5(— sin66° + cos 06 )+ cos«96"5]
= -u6 -sin65 - v6? - 2c0s 058 (A4

Considering the dynamic equilibrium of the mass and by using D’Alembert’s principle we can write,
N —mgcos@ — m(xsin@ + jcos@)+ Psind =0 (A.5)

S —mgsin@ - m(jsin 6 - ¥cosf)- Pcosd =0 (A.6)
H-Sh-N&§=0 (A.7)
Subject to the conditions that the net restoring forces are

S=kS+cé (A.8)
H=ko+6 (A.9)

The governing equations of this two-degree of freedom system are obtainefi by solving S and H from
Egs. (A.6)-(A.7) then setting up conditions given in Egs. (A.8) and (a.9). Substituting Eqs. (A.3) and (A.4)
to Eqgs. (A.5) and (A.6) and simplifying we have

N =mgcosé - Psin6 + m(¥sin6 + j cos)
=mgcosé - Psin @ + m(vsin - ucosé?)é

- m(usin 0+ vcosé?)oé2 —~2méf + mix, sin@

=mgcosf - Psin@ — m50 — mh&? - 2m30 + miiy sin 6 (A.10)

Copyright © 2008 Philippine Engineering Journal Phil. Eng’g. J. 2008: 29: 67-80
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mgsinf + Pcost9+m(jisin0—icose)

=mgsin@ + Pcos @ + m(usin@ +vcos6)d —-ms

—m(vsin —ucos 0)6* - mi, cos 6

=mgsin0+Pcosﬁ—mhé—n15+m5€'2—mjg cosd (A.11)

Substituting Egs. (A.10) and (A.11) into Eq. (A.8), we can solve for A as

H =\mgsin@ + Pcos@ - mhé —mé + mo6* - mx, cos 0)[1
+ (mg cos@ — Psin@ — mS6 — mh6® — 2mé6 + mi, sin )5
= mg(hsin 6 + 6 cos 6)+ P(hcosé? - &8sin#)
—m(hz+52)§—mh3—m(hcost9—5sin9)5c'g -2méssé (A.12)

Egs. (A.11) and (A.12) can now. be set-up using Egs. (A.8) and (A.9) giving us,

mh8 +md — m56* +cb + k& — mgsinf = (- m,, + P)cosé (A.13)

m{b? + 52)6 + mh +2m680 + 56+ K6~ mg(hsin 6 + 5 cos 6 )

= (h cos@ — dsin GX— mjc'g + P) (A.14)

These equations govern the motion of a shear-flexural building and are written in compact form in Eq. (2).

10.
11.
12.
13.

14.
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