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ABSTRACT

We develop a parcel-based spatial land use change prediction model by coupling machine learning
and interpretation algorithms such as cellular automata and decision tree in a Geographic Information
System environment. We collect and process historical land use data and various driving factors that
affect land use changes in Hunterdon County of New Jersey using decision tree J48 Classifier to develop
a set of transition rules that illustrate the land use change processes during the period 1986-1995. Then we
apply the derived transition rules to the 1995 land use data in a cellular automata model Agent Analyst®
to predict the spatial land use pattern in 2004. We validate these by the actual land use in 2002. The
developed decision tree-based cellular automata model has a reasonable overall accuracy of 84.46
percent in predicting land use changes. It shows a much higher capability in predicting quantitative
changes (92.5%) than location changes (74.8%) in land use. With such an encouraging measure of
validity, we use the model to simulate the 2011 land use patterns in Hunterdon County based on the actual
land uses in 2002. We build two scenarios: the “business as usual” scenario and the “policy” scenario
(with imposed government policy). The simulation results show that successfully implementing current
land use policies such as down-zoning, open space, and farmland preservation could prevent 973
agricultural and 870 forest parcels (a total of 2,856 hectares) from future urban encroachment in
Hunterdon County during the period 2002-2011. It becomes a significant policy instrument for

government to reckon with.
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I. INTRODUCTION

Land use in the United States and many other parts of the world has been experiencing
rampant changes over the last several decades because of the impact of social and economic
changes in society (Ojima, Galvin, & Turner, 1994; Irwin & Geoghegan, 2001). In turn, land
use changes bring about significant social and economic changes, often seriously affecting
human health and the natural environment. Urban sprawl provides a perfect example of this
phenomenon. Wealth, growth, and dependence on automobiles in traveling across great
distances result in the spreading of urban development into adjacent rural areas, blurring
rural-urban interface; this is called urban sprawl (Cieslewicz, 2002). Urban sprawl has been
linked to health and environmental hazards such as water and air quality deteriqration,
congestion, increased risks for cardiovascular diseases and stroke, obesity and other diseases
associated with beirig overweight (Ewing, et al., 2008; Patz, Campbell-Lendrum, et al., 2005;

Jackson, 2003; Frumkin, 2002).
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Due to the serious effects of urban sprawl, substantial research has been conducted to
predict how land uses and the interfaces between urban and rural (and/or between high intensive
agriculture and non-commercial farms) will shift and change over time so that these impacts can
be anticipated and addressed appropriately through policy intervention (Briassoulis, 2000;
Veldkamp and Verburg, 2004). Since such changes result from the interplay of complex
socioeconomic and biophysical processes, they are virtually impossible to duplicate through
experiments or analysis by empirical observation (Baker, 1989; Walker, 2003; Veldkamp and
Verburg, 2004). One approach to solve this difficulty is through land use change modeling
(Baker, 1989; Briassoulis 2000; Chen et al., 2002). Appropriately calibrated computer-based
models can provide a systematic and accurate way to predict future land use changes (Verburg,
Schot, et al., 2004). Aside from forecasting, models can be used to explore land use system
response to policy interventions through “what-if” scenarios. Predictions of land use changes
based on scenario analysis are frequently used in the context of policy making affecting local
and regional issues (Klostermann, 1999; van Ittersum, Rabbinge, & van Latesteijn, 1998). At a
larger, more far-reaching scale, this method can have vital use in the pressing issues that come
with global climate change (Riebsame et al., 1994; Pielke et al., 1999; Kalnay, 2003; Reid et al.,
2004; Ramankutty et al., 2002; Salmun and Molod, 2006).

Land use change modeling has reached sophistication because of substantial advances in
spatial science and technology. Verburg, Schot, et al. (2004) reviewed the theory, rationale, and
implementation of past land use models and identified four research priorities for future land
use models, which are also echoed by others in this field of research. First, a future modeling
approach should better address the multi-scale characteristics of land use systems including
scale dependency, scale-up effects, and interactions of processes operating at different scales
(Briassoulis, 2000). Second, the future modeling approach should be an integration of multiple
disciplines in methodology, evaluation of the impacts caused by land use changes, and analysis
of urban-rural interaction (Lambin et al, 2000). Along this line, Geoghegan, et al. (1998) called
for land use change models that can integrate the social sciences with geographic and ecological
models - “socializing the pixel and pixelizing the social”. Third, the future modeling approach
should pay explicit attention to the temporal dimension of land use change, influence of
non-linear pathways of change, feedbacks, and time-lags. Fourth, more sophisticated methods
should be developed to avoid subjectivity bias from the experts, and to better assess and
quantify neighborhood effects in land use change models (Torrens, 2000; Verburg, de Nijs, et
al., 2004;).

Cellular automata (CA) has emerged as an effective tobl that addresses these concerns in
modeling land use changes at both regional and municipal levels (Landis, 1994; Engelen, et al.,
1995; White, et al., 1997; Clarke and Gaydos, 1998; Batty, Xie et al., 1999; White and Engelen,
2000; Li and Yeh, 2000; Yeh and Li, 2001; Wu, 2003; Cheng and Masser, 2004). (Detailed
discussion on CA below). Most land use maps are prepared through the conventional per-pixel
land use classification of satellite images using the spectral signature of each pixel. The use of
the regular pixel grids makes these models easy to integrate with raster Geographic Information
Systems (GIS). Although regular grids are technically convenient in CA-based land use chan?ge
models, cadastral parcels are the most ideal spatial unit of analysis in land use change modeling
(Landis and Zhang, 1998a, 1998b; Irwin and Geoghegan, 2001; Allen and Lu, 2003). This is
because stakeholder behaviors such as purchasing, selling, and developing land are made and
observed at the parcel level. It is also at the parcel level that most land use policies such as
zoning are crafted and implemented. Furthermore, parcels contain socio-ecconomic information
through the municipal tax assessment database — information which can be used in the
evaluation of land use changes (Wu et al, 2007).
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Stevens et al. (2007) developed iCity, a CA-based land use change model that utilizes
irregularly shaped parcels as the unit of analysis to evaluate urban development in Saskatoon,
Saskatchewan, Canada. But there are limitations in the use of iCity. First, the model allows only
two classification types for parcels: urban and non-urban uses. Second, the weights assigned to
various influencing factors to derive land use conversion rules, are dependent on expert
knowledge, and as such, prone to subjectivity bias as discussed by Verburg, Schot et al. (2004).

This study aims to extend the capability of the parcel-based iCity model developed by
Stevens et al. (2007) to predict land use changes. First, it uses the more realistic and finer land
use classification types instead of a simple, dichotomous, urban/non-urban classification
scheme. Second, it addresses complexity in defining driving factors and neighborhood effects
when using parcels as the unit of analysis and applies an innovative data-mining scheme called
decision tree (DT) to elicit land use transition rules. DT is a machine learning and interpretation
algorithm which therefore avoids the subjectivity bias that usually becomes manifest when
expert knowledge is used (Li & Yeh, 2004). The machine learning and interpretation approach
for deriving transition rules does not require extensive quantitative skills and can be better
appreciated by non-technical users such as stakeholders and land use change decision-makers.
This study implements the coupled DT and CA-based land use change model through a
GIS-based Agent Analyst model Recursive Porous Agent Simulation Toolkit (RePAST) (North
et al., 2005). This study applies the resulting innovative land use change model to Hunterdon
County, New Jersey, where dramatic land use changes have taken place during last 3 decades.

II. METHODS: MODEL DEVELOPMENT

CA is a collection of cells that evolves through a number of discrete time steps according to
a set of rules based on the states of neighboring cells (Chopard and Droz, 1998). CA has five
principal elements, namely - cell state, lattice, neighborhood, time, and transition rule (Chopard
and Droz, 1998). Cell state represents one of finite cell conditions. Lattice refers to the space or
a group of cells in which the CA exists and evolves over time. The neighborhood comprises the
localized region of a CA lattice. Transition rules specify how cells change from one state to
another based on the cell’s state and neighborhood conditions (For a thorough discussion of CA,
the reader is referred to Toffoli and Margolus, 1987).

The introduction of CA in geographical applications was catalyzed by Tobler (1979) who
first recognized the advantages of CA in solving geographical problems. Following Tobler’s
pioneering work, other researchers applied CA to urban land use change modeling (White and
Engelen, 1993; Batty and Xie, 1994; Clarke and Gaydos, 1998; Wu and Webster, 1998).
Several noticeable examples of CA land use models are the Research Institute for Knowledge
Systems (RIKS) of the University of Maastricht, a decision support tool for the management of
river basins, coastal zones, cities and regions (Engelen et al., 1995), and an urban land use
change prediction model with the input requirements: Slope, Land use map, Excluded areas
from urbanization, Urban areas, Transportation map, and Hill shading area (SLEUTH) (Clarke
et al., 1997). While most land use change models use regression models to elicit the transition
rule, CA-based land use change models introduce new methods to elicit the transition rules. Wu
(1996) introduced the use of fuzzy logic to simulatfa Fiifferfent scenarios that result.c‘ed from _the
implementation of different urban development policies. Li and Yeh (2002) and Pijanowski et
al. (2002) used artificial neural networks to ellf:!t or “Iearl?” patterns from driving factors of land
use change and calculate a conversion probability for a given cell t?ased on those factors. There
are also some CA-based land use models that incorporate stochastic land use change processes
by developing stochastic transition rules (Ward et al., 2000; de Kok et al., 2001; and Guan et al.,

2005).
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In this study we aim to develop a CA-based land use change model using a parcel-level data
to predict future land use changes and to apply the model to Hunterdon County, New Jersey. In
this application, we represent cells by parcels; these parcels comprise the county which serves
as the lattice. We consider the following driving factors: present land use type, percentages of
land use types in the neighborhood, distances to the nearest urban center, to major roads, and to
streams, soil suitability for development, slope, parcel size, and wetland area within a parcel if
any exists. The details regarding the cell states, neighborhood, and driving factors that affect the
cell states are discussed in the next section on Study Area and Data Development.

This paper begins with a discussion of two modules that implement the land use change
prediction model: a DT module that generates the transition rule from the driving factors, and a
CA module that predicts future land use change using the derived transition rules. It then
proceeds with a discussion of the methods used to evaluate the model’s accuracy.

Decision Tree: J48

A transition rule defines how driving factors determine the evolution of a cell from one state to
another. DT is used to generate the transition rules for the land use change model. In
geographical studies, DT is a data mining technique for classification (Moore et al., 1991;
Meyer et al., 2001; Speybroeck et al., 2004, Wu et al., 2007). A DT structure entails a series of
yes/no questions in which the sequence of the questions depends on the answers given in the
previous question. Applied to land use/cover classification, the specific questions take on values
equivalent to land attributes. Its sequence eventually determines the appropriate land use/cover
classification (Aalders and Aitkenhead, 2006). DT has been used to elicit the transition rules to
predict land use changes (McDonald and Urban, 2006; Liu et al., 2007).

In the present model we use the DT algorithm J48, a WEKA implementation of the latest
public release (Version 8) of C4.5, a standard decision tree algorithm that is widely used for
practical machine learning (Witten and Frank, 1999). J48 was developed by the Machine
Learning Group of the University of Waikato, New Zealand. The chief function of J48 is the
classification of a sample dataset whose data instances have a set of attributes. The J48
algorithm operates by recursively splitting sample data input based on attribute values to
produce a tree that preferably generates just one branch. The first attribute to be chosen by this
algorithm is designated as the root of the tree. The instances in the training sample are then split
among branches based on their attribute values. If the values are continuous, then each branch
takes a certain range of values; otherwise a new attribute feature (node) is then chosen and the
process is repeated for the remaining instances. The process stops at a terminal node when the
classification of a branch is pure (i.e., it contains only instances of a certain class). As to what
attribute will be used for a given split, the choice is based on the attribute with the largest value
for information gain (Quinlan, 1996; Goodman and Smyth, 1988). The final decision tree
generated by J48 contains various paths from the root to the terminal node. Each path from the
root of the tree down to the terminal node where a classification is shown can be translated into
a transition rule; this is subsequently used by the CA module.

Creating transition rules through DT is more helpful than using statistical regressions in
cases where: (1) there is a large number of variables to predict land use changes (Pal and
Mather, 2002 and 2003; Speybroeck et al., 2004); (2) non-linear relationships exist between
variables in the data (Razi and Athappilly, 2005); and (3) the underlying relationship between
dependent and independent variables is not known (Pal and Mather, 2002). The ANN approach
has similar advantages over statistical regression methods; however, it is not intuirive to policy
makers and land use planners because of its black box nature. DT is a white bo model and is
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more easily interpreted compared to a neural network wherein the derivation of the results is not
explained or readily available (Breiman et al., 1984; Quinlan, 1996; Li and Yeh, 2004).
Decision tree processing also entails shorter processing/computing time (Perner et al., 2001; Pal
and Mather, 2002; Razi and Athappily, 2005).

Cellular Automata: Recursive Porous Agent Simulation Toolkit (RePAST)

A CA module subsequently uses the transition rules derived using J48 to evaluate how land
parcels are converted from their current land uses to their future land uses. Here we choose
Agent Analyst/RePAST to implement the CA process. RePAST was developed by a group of
researchers from the University of Chicago and Argonne National Laboratory (North et al.,
2005). Through Agent Analyst, users can create, edit, and run RePAST model within the
ArcGIS® environment (Groff, 2007). This graphical user interface allows the modeler to create
agents, schedule simulations, visualize the ArcGIS® layers, and specify the behavior and
interactions of the agents. Aside from having the spatial analysis capabilities of ArcGIS, Agent
Analyst/RePAST has two outstanding features relevant to this study. First, the model has
provisions that allow the modification of agent properties, agent behavioral equations, and
model properties during run time. Second, it has libraries for genetic algorithms and neural
networks, including the ability to handle irregular grids or vector data as a model component.
Utilization of the transition rules in RePAST is implemented as the step function of the Agent
Analyst model. First, RePAST reads from an array of all spatial data represented in the
transition rule and stores the attributes into a featureList. Subsequently, an instance of
LTCMain is created and assigned to the variable named Itc. The classify method of the Itc
variable is then invoked with featureList as an input parameter. In this manner, the program
feeds into DT the attributes placed inside featureList. After processing, DT will then make a
prediction (and thus return a value) on the next land usage based on the attribute values stored in
featureList. The value returned by the method is then stored as the new land use type.

The transition rules embedded in the CA model can also include government regulatory
policies on land use changes. Examples of these policies are regulations or limitations on the
conversion of agricultural land to developed land, steering of urban developments to sites where
the soils are considered low value for agriculture, or designation of zoning laws. Following the
calibration of the CA land use change model, we then use the parameter estimates to simulate
future growth patterns arising from the implementation of planned land use policies.

Accuracy Assessment

The assessment of land use prediction accuracy relies on the use of a confusion matrix, which is
simply a cross tabulation of the predicted land use classes in a prediction map against the same
land use classes in a reference map. Suppose there are K classes of land uses. Information in the
rows correspond to the land use classes of the reference map, while those in the columns show
the land uses predicted from the land use change model. The element in the confusion

matrix,"» , where i, j = 1, ..., K, represents the number of instances in reference class i that are
predicted to class . The diagonal element of the matrix, where i = j, represents correct
predictions. Overall accuracy is calculated as the sum of the diagonal elements divided by the
total instances. Although overall accuracy is useful, it does not give much information about the
accuracy of the individual land use classes.predicted; these are psuglly evalqated by producer’s
accuracy, user’s accuracy, e€rrors of commission, and errors of omission which show how well
each of the classes in the reference map are predicted.
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The overall prediction accuracy using the error matrix is recognized as an overestimation
since the method used to calculate it does not account for agreements that would have occurred
by chance (Lillesand and Kiefer, 2000). Another way to assess prediction accuracy is to use the
Cohen’s Kappa Index; it is a measure that takes into account overestimates of the computed
percentage of correct values caused by agreements made by pure chance (Cohen, 1960; Foody,
1992; Monserud and Leemans, 1992; Pontius and Cheuk, 2006). This index ranges between 0
and 1 and is interpreted as the proportionate reduction in error achieved by the model being
evaluated as compared with the error of a completely random prediction model.

Pontius (2000) argued that Cohen’s Kappa Index also has limitations in assessing
prediction accuracy. Specifically, the index does not give information about location and
quantification errors. Quantification error occurs when the number of parcels or cells for a given
land use type in the predicted map is different from the reference map. Location error occurs
when the predicted land use type of a given parcel is different from that in the reference map.
AIoc;umn s and
~ouy  that measure the accuracy in predicting location and quantity, respectively.

With these considerations, the overall accuracy, error of commission, error of omission,
we use Kappa Index and its two variants to evaluate the performance of the land use change
prediction model.

III. STUDY AREA AND DATA DEVELOPMENT

We applied the land use change prediction model developed in this study to Hunterdon
County, New Jersey. Hunterdon County is one of 21 counties in New Jersey. It encompasses
1134 square kilometers of the western portion of the State. It ranks eighth among New Jersey’s
counties in terms of land area and has 26 municipalities classified into townships, boroughs, and
towns. As shown in Figure 1, the County is traversed from east to west by the I-78 interstate
highway designed to carry traffic between regions of the state and to serve as a corridor between
Port Newark/Liberty Airport and other points westward. Accessibility between municipalities
and adjoining counties is provided by a network of county and municipal roads that include
Routes 12, 31,202, and 517.

Hunterdon County is home to approximately 129,000 people (NJDLWD, 2006). Its
population grew by 87 percent between 1970 and 2004 making it the third fastest growing
county in New Jersey. Its economic growth is boosted by its proximity to high growth areas in
the state where firms like Exxon, Foster Wheeler, and Merck established their corporate offices
there during the 1980s and 1990s. Hunterdon is one of six counties situated in an extensive
growth area known as "the wealth belt" characterized by high property values, high population,
plenty of jobs and high personal income” (Hughes and Seneca, 2006). Such a trend is
accelerated by the “ratables chase” policy in New Jersey that encourages local governments to
permit more development to maintain the low property tax rate and to finance their public
service requirements (e.g. sewer, solid waste collection, etc) (HCPB, 2007).

Despite being in the “wealth belt” area, Hunterdon County is still considered to be a mostly
rural and suburban county: To maintain its rural and agricultural character, some communities
in the county implemented the large-lot zoning that requires at least 0.8-, 2- and 4-hectare (two-,
five- or ten-acre) lots for residential homes. Various land use policies have also been
implemented in the county to restrict land use development toward smart growth and
environmental protection. Notable examples are: Open space preservation, farmland
preservation, and purchase of development rights. A group of 13 townships, towns, and
boroughs in Hunterdon County are partly or completely within the Highlands Preservation
Area. Future land use development in this group of 13 will be subject to much more stringent

Pontius (2000) further derived two variants of Cohen’s Kappa Index, namely:
K
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restrictions enforced by the New Jersey Highlands Water Protection and Planning Act (NJDEP,
2005).

In applying the land use change prediction model to Hunterdon County, we used three sets
of land use/cover GIS layers of the county corresponding to the years 1986, 1995 and 2002
which we downloaded from the NJDEP website. These land use/cover data were compiled from
aerial photography and Landsat satellite images; each of them was classified into 6 categories as
agriculture, barren lands, forest, urban, wetlands and water modified from the Anderson
Classification System (Rutgers CRSSA, 2004). The model uses all six land use classes. We
obtained the land parcel GIS layer in the county from the Office of GIS, Hunterdon County,
New Jersey. We likewise obtained other spatial data such as the digital elevation model (DEM),
soil, streams, protected open space and preserved farmland, census, and location of urban
centers and roads, streets and major highways. All these data sets in digital format are available
in the NJDEP Bureau of GIS and/or the Hunterdon County Office of GIS.

Allen and Lu (2003) suggested three criteria in selecting an appropriate set of driving
factors for modeling land use change. First, the factors must include all physical, economic,
demographic, and social factors that affect all types of land use change. Second, they must have
spatial attributes. Third, they must reflect the properties and characteristics of the parcel. Jiao
and Boerboom (2003) grouped various driving forces into five categories namely:
neighborhood, accessibility, suitability, policy, and socio-economic factors. Following those
principles, this study considers the following driving factors: parcel size, the land use of the
parcel, the distribution of land uses in the neighborhood of a parcel in terms of percentages, the
area of wetlands within a parcel, the distances to the nearest streams, roads, and urban centers,
slope, and the number of soil restrictions for urban development. By overlaying all the spatial
data over the parcel map, we generated a parcel-based data on the driving factors that affect land
uses. While the methods for deriving some of these driving factors are straightforward, there are
difficulties in assigning a single land use to a parcel and defining the neighborhood of a parcel.
These are discussed exclusively below.

Development of Parcel-based Land Uses

The land use change prediction model requires a single land use type assigned to each land
parcel. However, after overlaying the'land use and the land parcel layers, a parcel may contain
multiple land user/covers. Hence, we developed a classification to assign a single land use to a
parcel to develop the parcel-based land uses in the county for 1986, 1995, and 2002. This
scheme requires the conduct of initial tests on each parcel for any agricultural land present. If
the agricultural land is over 45 percent in a parcel, we classify the parcel as agricultural lands.
This threshold of 45 percent is based on the percentage of agricultural land in all parcels in
2002, and has a mean of 19 percent with a standard deviation of 26 percent.

For a parcel with less than 45 percent of agricultural land, we compare the urban area in the
parcel to a threshold value of 0.5 hectares (1.2 acres). This represents a typical house footprint
in the region including the area occupied by house, driveway, patio, pool, etc. (NJWSA, 2003).
Thus, we classify a parcel as urban if its urban area is greater than 0.5 hectares and is located in
a residential, commercial or industrial zone and the parcel size is less than 4 hectares (10 acres).
If the urban area of a parcel is less than 0.5 hectares, but represents more than 45 percent of the
parcel area, we also classify the parcel as urban. For a parcel that fails to be classified as
agriculture and urban, we determine its final designation by the dominant land uses in the

parcel.
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Definition of the Neighborhood

The usual neighborhood configurations of CA models use the von Neumann or the Moore
patterns that assume a lattice composed of regularly shaped cells or grids. Since the land parcels
used as the unit of analysis in this study are irregularly shaped, we have to define an alternative
neighborhood configuration accordingly. In the parcel-based CA model on urban sprawl iCity,
Stevens et al. (2007) used three neighborhood configurations to estimate attractiveness scores
for residential land parcels and transition rules for commercial and industrial parcels. The three
types of neighborhood configurations are: (A) an adjacency neighborhood that includes all
parcels having a common edge with the central parcel; (B) a distance neighborhood that
includes parcels that fall completely or partially within a certain distance of buffer from the
edge of the central parcel; and (C) a clipped distance neighborhood that includes all parcels that
fall completely and portions of the parcels that are partially within a certain distance of buffer
from the edge of the central parcel.

In this study, we define the neighborhood of a parcel by an external buffer with a thickness
of 145 meters around the edge of a parcel. We base this on the average size of all parcels in
Hunterdon County. This neighborhood is very similar to but different from the iCity
configuration (C) as the central parcel itself is excluded.

We overlaid the original land use GIS layers with the buffer to identify the percentages of
different land use types within the buffer, which we consequently use as the driving factors in
the land use change prediction model to determine the future land use of the parcel. We wrote a
script in ArcView Avenue® Scripting Language to define the neighborhood and to calculate the
percentages of land use types within each neighborhood.

Figure 2 illustrates the steps for applying the land use change prediction model in
Hunterdon County, New Jersey. We derived transition rules using 1986 and 1995 re-classified
parcel-based land use data and the discussed driving factors in the DT module. We then used the
derived transition rules in the CA module to predict land use changes from 1995 to 2004 using
the parcel based land use data in 1995. We validated the model by comparing the predicted land
use pattern in 2004 to the parcel-based land use data for 2002. Since no land use map for 2004
was available, we used a 2002 map as reference. By using the 2002 land use data as a reference
to validate the prediction for 2004, we assumed that changes within this two-year period would
not be considerable. We used the array of accuracy measurements discussed previously to
compare the predicted land use in 2004 to the actual land use in 2002 and to evaluate the
performance of the model.

We used the validated model to predict the land use changes from 2002 to 2011 based on the
land use data of 2002. We modeled two scenarios: A baseline scenario, which is a “business as
usual” situation wherein policy interventions by the government are not included in the
modeling process and another scenario that incorporates government policy interventions such
as down-zoning and the preservation of farmlands and open space. With the down-zoning
reflected in the 2001 NJDEP Water Quality Management Planning Rules, the lot size for
residential development in non-sewered areas will have to be greater than 1.3 hectares. The
model implements down-zoning and the two other land preservation policies by adopting a
spatial constraints approach (Swenson and Franklin 2000; Schneider and Pontius 2001). CA
uses this approach by implementing a set of transition rules that prohibits the conversion of the
parcels that are classified as preserved farmland, or open space. Likewise. CA does not allow
the conversion to urban lands of areas that do not conform to developmer;t requirements (i.e.,
greater than 1.3 hectares).
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IV. RESULTS

Transition Rules Derived from 1986 to 1995 Land Uses

We converted the DT generated from J48 to the transition rules in the subsequent CA
modeling. Here are some significant transition rules. The first split in the decision tree is current
land use type. Although most urban parcels remain urban, they could be converted to other uses
such as agriculture and forest. This occurs when the parcels are large, contain a big portion of
wetlands, have three or more soil restrictions for urban development, have lower percentage of
urban and barren land, have higher percentage of water, agricultural, forest, wetlands in the
neighborhood, and are farther away from highways and urban centers with steeper slope.

Agricultural parcels could be converted into urban, forest, barren and wetlands depending
primarily on their neighborhood land use distribution and parcel size. Small agricultural parcels
tend to get converted into urban uses when there is high percentage of urban land in their
neighborhood. Conversion from agriculture to forest can occur to parcels with steep slopes
where there are severely restricted soils for development and when the percentage of forest in
their neighborhoods is high. Agricultural parcels with a significant amount of barren land in
their neighborhood have the potential of becoming barren. Conversion to wetlands usually
occurs in large agricultural parcels that have significant wetlands.

Forest parcels with a high percentage of urban land and a low percentage of barren land in
their neighborhood are usually converted to urban use. This type of conversion tends to occur in
the case of small forest parcels. Forest parcels can be converted to agriculture or wetlands when
there is a significant presence of agricultural land already in their neighborhood or wetlands
within these parcels.

The actual amount of wetlands in a wetland parcel usually determines its future status;
parcels with a large amount of wetlands within it always remain as wetlands. However, wetland
parcels with smaller amounts of wetlands have higher likelihood of being converted into 1'tban
in a high urban neighborhood, or they become barren lands if the parcel displays hree
restrictions to urban development. Barren parcels can be developed into urban lands or .main
as barren. Parcels classified as water, or artificial and natural lakes usually stay as wate-.

We evaluated the accuracy of these transition rules by testing the derived transition rules
against a testing dataset. For example, to predict the land use class in 1995, we f d all the
attributes of an instance in the dataset (except the 1995 land use class) into the decision tree that
consists of all the transition rules. We repeated this process for all the instances in the dataset.
We computed accuracy by dividing the total number of correctly predicted instances by the total
number of instances in the dataset.  In predicting the 1995 land uses in from the 1986 land
uses, we obtained an accuracy of 81.4 percent when two-thirds of the randomly selected land
parcels in the county was used. The accuracy increased to 85 percent when we applied the
bootstrap method to the remaining one-third of parcels in that period.

Predicted Land Use Changes for the Period 1995-2004

Table 1 presents the predicted land use changes during the period 1995-2004. The model
predicted that the urban areas would increase from 17,878 hectares (33,866 parcels) in 1995 to
32,470 hectares (39,386 parcels) in 2004 while the area of other land uses would decrease
(except for water which remains the same). Forest conversion is predicted to be the biggest
contributor to urban development in that period, followed by agriculture and wetlands. The total
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forest lost to urban development is forecasted at 10,018 hectares (3,306 parcels). 2,440 hectares
(1,434 parcels) of agricultural lands would be given away to urban development. There are
2,078 hectares (739 parcels) of wetlands lost to urban development, which is quite significant
since this amount represents almost a third of the county’s wetlands in 1995. Forest loss would
partially offset the reforestation of 144 hectares from wetlands (35 parcels), agriculture (24
parcels), and urban parcels (1 parcel).

Model Validation Using the Actual Land Uses in 2002 -

Table 2 presents the confusion matrix in terms of the number of parcels (the upper panel)
and of the area (the lower panel) using the predicted land use distribution for 2004 and the actual
land uses in 2002. As shown in the upper panel of the table, the overall prediction accuracy in
terms of the number of parcels, computed as the sum of the agreements in the diagonals divided
by the total number of parcels, is 84.46 percent. Similarly, the overall prediction accuracy is
80.92 percent in terms of the total acreage as shown in the lower panel of Table 2. These
measurements are comparable to the values reported in the literature. Li and Yeh (2004)
reported an overall accuracy of 82 percent using a DT-based CA for predicting land use change
in an urbanizing city in Southern China. Allen and Lu (2003) developed a multinomial logistic
land use change model with the parcel as the unit of analysis and achieved an overall accuracy
of 80.76 percent in terms of number of parcels.

Table 2 also shows the error of omission and the error of commission. Omission error varies
across land use categories. There are large errors of omission for barren, wetlands and water, but
they account for a portion of the county. On the other hand, urban and agriculture, two major
land use categories, have low errors of omission. Similar observations are also found for the
errors of commission. Table 2 also shows that agricultural and urban lands are consistently
underpredicted while water and wetlands are overpredicted in terms of both the total numbers of
parcels and acreage.

We evaluated the agreement between the predicted land use distribution for 2004, and the
actual land uses in 2002 by Cohen’s Kappa Index and its variants to account for agreements by
pure chance. The calculated Kappa Index of 0.644 indicates that the two patterns are in a
moderate agreement based on Congalton (2001) and Landis and Koch (1977).

We calculated two variants of the standard Cohen’s Kappa Index to evaluate the agreement
between the predicted land use distribution for 2004 and the actual land uses in 2002: Klocation
and Kquantity following Pontius (2000). Klocation is equal to 0.748, which indicates that the
model has good capacity to specify location correctly. Kquantity is equal to 0.925, which
indicates the model has excellent capacity to specify quantity correctly. These numbers also
suggest that the model is better at predicting quantitative changes than location changes in
Hunterdon County.

Table 3 compares the sizes of predicted and actual parcels that convert to other uses. The
model underpredicts the sizes of those reforested parcels. The actyal reforested parcels are
generally larger than predicted, with greater standard deviations for both agricultural and
wetland parcels. The actual parcels converted to urban use are smaller than those predicted by
the model. However, the differences between the average sizes of predicted and actual
converted parcels are much smaller; they range from 0.35 hectares for agricultural parcels to
1.92 hectares for forest parcels. As for the urban parcels converted to barren lands, the sizes of
parcels that actually changed are larger than those predicted by the model.
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Comparison of Two Future Land Use Change Scenarios

Table 4 presents a land use change pattern from 2002 to 2011 under the baseline scenario.
There are a total of 3,435 hectares (2,361 parcels) of non-urban lands converted to urban uses
which constitute 95 percent of all converted parcels during the 2002-2011 period. In this
scenario, urbanization comes primarily at the expense of agriculture and forest land, each
contributing 1,701 hectares (1,027 parcels) and 1,288 hectares (896 parcels) respectively.
During the projection period, wetlands suffer an additional loss of 375 hectares (119 parcels),
among which 303 hectares (99 parcels) are converted to urban and 72 hectares (20 parcels) to
forest land. The total number of forest parcels nevertheless declines even if 142 hectares (74
parcels) become reforested, among which, 69 hectares (53 parcels) come from agriculture and
72 hectares (20 parcels) come from wetlands. There are no other land use parcels that are
converted into agriculture and wetlands.

Table 5 presents the predicted land use change pattern during 2002-2011 under the policy
scenario. We consider three land use policies in the policy scenario, namely: down-zoning,
preservation of farmlands, and preservation of open spaces. Results from the policy scenario
indicate that successful implementation of these land use policies could slow down the process
of urbanization. Under the policy scenario, only 474 hectares (54 parcels) of agricultural lands
and 61 hectares (26 parcels) of forest are converted to urban use. Compared to the baseline
scenario as previously discussed, the policy scenario could protect a total of 2,856 hectares of
non-urban lands from urban development. The protected non-urban lands include 300 hectares
of wetlands, 1,229 hectares of agricultural lands, 101 hectares of barren, and 1,226 hectares of
forest. A total of 1,097 agricultural parcels are converted to other uses in the baseline scenario
whereas only 124 parcels are converted to urban (54 parcels), forest (53 parcels) and barren land
(17 parcels) in the policy scenario. As for forest parcels, 898 parcels are converted to other land
use types in the baseline scenario whereas only 28 parcels are converted in the policy scenario.

There are four likely outcomes when comparing the converted and not converted parcels
under both the baseline and policy scenarios: (1) converted parcels predicted by both scenarios;
(2) not converted parcels predicted by both scenarios; (3) converted parcels predicted by the
baseline scenario but not by the policy scenario and (4) converted parcels predicted by the
policy scenario but not by the baseline scenario. It is not surprising that the majority of parcels
fall under the Case 2. Case 4 does not occur. Figure 3 presents the spatial distributions of the
parcels in Cases 1 and 3. The parcels under Case 1, i.e. those converted under both scenarios, are
primarily located in Lebanon and Franklin Townships. The parcels under Case 3 are mostly
located on the western and southern portion of the county. Under Case 3, five farmland parcels
were preserved, distributed among Raritan Township with three parcels and Delaware and East
Amwell Townships having one parcel each. Readington Township has the most number of
preserved open space at 8 parcels followed by Lebanon and Bethlehem townships with six and
four parcels respectively. We can attribute this to strong local land use regulations that are in
effect. Clinton, Raritan and Union Townships have a number of preserved farm parcels as well.

V. SUMMARY AND CONCLUSIONS

This study developed a DT-based CA model to predict future land use changes with
parcel-level data. We validated the model in Hunterdon County, New Jersey using historical
land use changes which we applied to predict future land use changes under two scenarios:
baseline scenario (“business as usual”) and policy scenario (imposed government policy). The
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model extends the classical raster-based CA model by defining the modeling space as a
collection of irregularly shaped geographic objects (represented by land parcels) and defining
the transition rules using a knowledge discovery algorithm DT. The model defines the
neighborhood of each parcel as an external buffer around the boundary of the parcel, which is an
improvement over the ways of defining the neighborhood in existing CA-based land use change
models. A DT elicits land use patterns from a large set of driving factors and is free from the
subjectivity biases often encountered in expert knowledge-based methods. The DT approach
also offers the convenience of incorporating the land use policies such as down-zoning, open
space and farmland preservation in simulating future land use changes.

The coupled DT-based CA model reasonably predicted the land use changes in Hunterdon
County, New Jersey, where substantial land use changes have taken place in the last three
decades. Using the historical land use changes during the pericd 1995-2002 as a reference, the
model achieves an overall accuracy of 80.92 in terms of the total areas and of 84.46 percent in
terms of the total number of land parcels. The Cohen’s Kappa Index, the conventional statistics
for comparing similarity of two spatial patterns, yields a 0.64. We calculated two variants of the
Kappa Index to evaluate the model’s ability to correctly predict location and quantity; they are
0.748 and 0.925, respectively. Such results indicate that the model has a higher capability to
predict quantitative changes than location changes in land use.

Simulations of future land use scenarios using the coupled model we developed indicate
that the current land use policies such as down-zoning, open space, and farmland preservation
could successfully prevent 2,856 hectares of non-urban lands from future urban development in
Hunterdon County during the period 2002-2011. This study defines the neighborhood of a
parcel by a 145-meter buffer around the boundary of the parcel. A sensitivity analyses using the
55-meter and 221-meter buffers show that the definition of the neighborhood has no significant
impact on the model’s prediction accuracy.

The coupled model demonstrates the feasibility and effectiveness of using parcel-level data
in land use change modeling. However, there are still challenges that need to be addressed in
future land use change modeling that uses parcel-level data. First, the model assumes a single
land use type for each parcel. Such is a challenging task to do over a land use map compiled
from satellite images and/or aerial photography especially when the study area is too large for
detailed field verification. As discussed previously, some land use classes are overestimated,
while others are underestimated. The accuracy of assigning the correct land uses would have
significant impacts on the overall accuracy of the modeling, ‘

Although the transition rules on the derived parcel-based land uses achieve reasonable
prediction accuracy, the overall accuracy can be further improved through better accuracy in
assigning a single land use type to a parcel based on the current land use data; this can be
derived from aerial and remote sensing imagery.

Second, the model assumes that the parcel boundary stays the same during the modeling
process; this is not realistic. A parcel itself may evolve over time when it gets divided into
several smaller parcels or consolidated with other parcels to form industrial estates as
experienced in urban development. Incorporating the dynamic changes of the parcel boundaries
may help explain the parcel size differences between the actual and predicted land use changes
as presented previously. Future land use change models using the parcel-level data could
address these challenges.
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Figure 2. The schematic presentation for implementing the land use change prediction model in
Hunterdon County, New Jersey
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Figure 3. Spatial Distribution of the Converted Parcels under the Baseline and Policy Scenarios during
the period 2002-2011
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Table

1.

The Predicted Land Use Distribution in 2004 in Hunterdon County, New Jersey, Hectares"

Land Use Predicted Land Use in 2004
in 1995 Agriculture Barren | Forest | Urban Water | Wetlands Total
Agriculture | 44,130 28 2,440 46,598
(4,463) (24) (1,434) (5,921)
Barren 249 64 313
(318) (80) (398)
Forest 25,367 | 10,018 35,384
(6,872) | (3.300) (10,178)
Urban 1 17.870 17,878
(38) @)) (33.827) (33,866)
Water 2,722 2,722
(142) (142)
Wetlands 115 2,078 4,331.88 6,525
(35) (739) (763) (1,537)
Total 44,130 257 25,511 | 32,470 2,722 | 4,331.88 109,420
(4,463) (356) | (6,932) | (39,386) | (142) (763) (52,042)

Note: a. the numbers in parentheses indicates the number of parcels.

Table

2.

Confusion Matrix for Evaluating Accuracy in terms of the Number of Parcels and the Total Area

2002 Predicted 2002 Land Uses in Terms of the Number of Parcels
Land Uses Agri- Barren | Forest | Urban | Water | Wet- | Total Mis- Error of com-
culture lands | Parcels | classified | mission %
Agri- 3,171 - 98 1,057 - 12 4,338 1,167 26.90
culture
Barren 97 15 15 52 - 2 181 166 91.71
Forest 270 9 5,787 3,385 13 32 9,496 3,709 39.06
Urban 912 332 955 34,241 17 68 36,525 2,284 6.25
Water 4 - 25 40 105 14 188 83 44.15
Wetland 9 - 52 611 7 635 1,314 679 51.67
Total Parcels | 4,463 356 6,932 | 39,386 142 763 52,042 - -
Misclassified | 1,292 | 341 1.145 | 5,145 37 128 - 8,088 R
Error ot com 28.95 95.79 16.52 13.06 26.06 16.78 - - -
mission, %
2002 Predicted 2004 Land Uses in Terms of the Total Area, Hectares
Land Uses Agri- Barren | Forest | Urban Water | Wet- | Total Mis- Error of com-
culture lands | Parcels | classified | mission,%
Agri- 40,264 | - 490 | 2,829 - 130 | 43,714 | 3,449 7.89
culture
Barren 372 107 131 77 - 2 689 582 84.47
Forest 1,042 | 46 | 23,629 | 9,651 10 156 | 35,444 | 11,814 33.33
Urban 1,400 | 104 | 1,069 | 17,929 | 17 85 | 20,597 | 2,669 12.965
Water 25 - 33 34 2,691 | 38 2,820 130 4.61
Wetland 127 - 159 1,948 4 3919 | 6,156 2,238 36.35
Total Parcels | 44,130 257 25,511 | 32,468 | 2,722 | 4,332 109,420 - z
Misclassified | 3,865 150 1,881 14,540 32 413 - 20,881 -
Error of com- 8.76 58.52 7.37 44.78 1.16 9.54 - - -
mission, %
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Table 3.
The Comparison of the Size of the Converted Parcels by Land uses, Hectares
1995-2002 1995-2002 Difference
Predicted Conversions Actual Conversions
Change | Mean Std Max Min Mean Std Max Min Mean Std
Dev Dev Dev
To
Forest
Agri- 1.17 0.27 2.29 0.146 5.77 4.53 107.81 | 0.004 -4.6 -4.26
culture
Wetland | 3.29 1.33 14.86 | 0.765 5.06 3.43 59.92 | 0.267 | -1.77 -2.10
To
Urban
Agri- 1.70 1.43 82.05 | 0.004 1.35 1.49 96.42 | 0.020 0.35 -0.06
Culture
Barren 0.80 0.27 3.64 0.020 0.42 0.26 6.28 0.008 0.38 0.01
Forest 3.03 3.21 160.29 | 0.001 1.11 1.81 160.29 | 0.004 1.92 1.40
Wetland | 2.81 2.52 101.10 | 0.008 1.10 0.41 7.36 0.012 1.71 2.11
To
Barren
Urban 0.20 0.10 0.81 0.008 1.55 0.01 1.59 6.302 | -1.35 0.09
Table 4.

The Predicted Land Use Change Patterns During 2002-2011 in the Baseline Scenario, Hectares™

Predicted Land Use in 2011

Land Use Agriculture Barren Forest Urban Water Wetland Total
in 2002
Agriculture 42,347 11 69 1,7023 44,130
(3,366) a7n (53) (1027) (4,463)
Barren 116 141 257
(17) (339) (356)
Forest 2 24,221 1,288 25,511
2) (6,034) (896) (6,932)
Urban 7 1 32,462 32,470
31 (1) (39,354) (39,386)
Water 2,722 2,722
(142) (142)
Wetland 72 303 3,956 4,331
(20) (99) (644) (763)
Total 42,347 136 24,363 35,897 2,722 3,956 109,420
(3,366) (67) (6,108) (41,715) (142) (644) (52,042)

Note: a. The numbers in parentheses indicates the number of parcels.
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Table 5.
The Predicted Land use Change Pattern during 2002-2011 in the Policy Scenario, Hectares®
2002-2011 | Agriculture | Barren Forest Urban Water Wetland Total
Agri- 43,576 11 69 474 44,130
culture (4,339) (17) (53) (54) (4,463)
Barren 217 40 257
349 (@) (356)
Forest 2 25,447 61 25,511
) (6,904) (26) (6,932)
Urban 7 1 32,462 32,470
(€2)) Q) (39,354) (39,386)
Water 2,722 2,722
(142) (142)
Wetland 72 3 4,257 4,332
(20) 2 (741) (763)
Total 43,576 237 25,590 33,040 2,722 4,257 109,420
Area (4,339) (399) (6,978) (39,443) (142) (741) (52,042)

Note: a. The numbers in parentheses indicates the number of parcels.
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