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ABSTRACT

The evaluation of setilements due 10 consolidation is one of the most common
computational procedures in geotechnical engineering. Recent research on this topic has
indicated that current computational procedures underestimate consolidation settlements by
as much as 70%. These errors are believed to result from the over-simplified manner by
which the strains are numerically integrated. In this paper, the magnitude and nature of
these numerical errors is investigated. A series of numerical experiments are performed to
study the effects of load intensity and type, depth of foundation, thickness of soil layer, and
preconsolidation pressure on these errors. Numerical errors are evaluated by comparing
results obtained using the aforementioned procedures to either closed-form analytical
solutions or numerical solutions using a high precision adaptive quadrature. Results of the
numerical experiments indicate that such the underestimation of consolidation settlements is
more pronounced in normally consolidated as well as heavily overconsolidated soils as
compared to either lightly overconsolidated or underconsolidated soils. Recommendations
are made regarding the proper use of the above-mentioned procedures in order to guarantee

as sufficient degree of accuracy in the calculations.

I. INTRODUCTION

The evaluation of settlement due to consolidation is one of the most
common computational procedures in geotechnical engineering. Traditionally,
research on this topic has focused primarily on accurately estimating the time
rate at which such settlements occur. However, recent study of this topic has
indicated that present methods used for calculating consolidation settlements
have the general tendency to underestimate such settlements by as much as
70%. Generally, the settlements due to surface loads are calculated by
ertical strains resulting from such loads over the depth of the
compressible soil layer. This process of integration is often approximate by
dividing the entire soil layer into a finite number of sublayers, calculating the
settlement in each layer based on the stress condition at the middle of the
layer, and summing up the incremental settlements to obtain the settlement of
the entire soil layer. This method shall be referred to in this paper as the ﬁn}te
sublayer method. This procedure is reduced to the conventl.onal one-point
method when one layer is used. While, the use of the one-point methgd and
finite sublayer method for calculating consolidation sertlemgnts IS.descrlbed. in
most books on geotechnical engineering, none of these dlsqussnons pr.ovlde
clear guidelines for determining the number of sublayers requnred to achieve a
prescribed level of accuracy. The limitations and inaccuracies of the
conventional one-point method as well as the need for more rigorous methods

integrating the v
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for calculating consolidation settlements was first pointed out by McPhail et
al. [2000].

In this paper, the magnitude and nature of these numerical errors is
investigated. A series of numerical experiments are performed to study the
effects of load intensity and type, depth of foundation, thickness of soil layer,
and preconsolidation pressure on these errors. Numerical errors are evaluated
by comparing results obtained using the aforementioned procedures to either
closed-form analytical solutions or numerical solutions using a high precision
adaptive quadrature. Results of the numerical experiments indicate that the
underestimation of consolidation settlements is more pronounced in normally
consolidated soils as compared to either overconsolidated or
underconsolidated soils. Recommendations are made regarding the proper use
of the above-mentioned procedures in order to guarantee as sufficient degree
of accuracy in the calculations.

II. THEORY

The following discussion summarizes the conventional method used in
geotechnical engineering for computing consolidation settlements within a
soil mass due to the application of a surface load g. If the corresponding

change in stress Ao (z)at a depth z is given by the expression
Ao(z)=q-1(z)

where [(z) is the appropriate influence coefficient corresponding to the type

of load applied, and assuming the soil is normally consolidated with a
compression index of C,, the resulting vertical strain ¢_ is given by

e =C_lo p,(2)
: C""g[mz)]

where p,(z) is the initial effective overburden pressure, and

p,(2)=p, (z)+Ao(z) is the final effective overburden pressure after
application of the load. If the soil is overconsolidated, with a preconsolidation
pressure of p, (2)>p, (z), a compression index of C,, and a recompression
index of C

er?

then the corresponding vertical strain &_ is given by

£.=C, log[l;i—((zz))j

for the case where the preconsolidation pressure is greater than the final
pressure p,, and

g,=C, log[ 2,(2)
p.(z
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for cases where p,(z)< p,(z)< p, (z). For a given strain profile ¢, (z). the

resulting settlement is obtained by integrating the strain over the entire
thickness of the compressible layer

A= LH E. (z)dz
In the one-point method, the integral in (1.5) is approximated by
A =H-g (H/2)

For the finite sublayer method, the integral in (1.5) is approximated by

H 2i—1
A =—)> €. H
: Z ( 2n J

n oo

where »n is the number of sub-layers assumed. The need to resort to
approximate methods for integrating (1.5) arises because &, (z) is often

difficult, if not impossible, to integrate analytically. Equation (1.7) can be
considered equivalent to the generalized mid-point quadrature, in which the
numerical error vanishes with increasing values of nand with (1.6)

corresponding to the specific case where n=1.

It should be emphasized numerical techniques for accurately integrating
(1.5) abound. These include schemes such as the Newton-Cotes formulas that
include the widely used Trapezoidal and Simpsons rule, Romberg integration
which combines the Trapezoidal rule with Richardson’s extrapolation
technique, as well as Gauss quadrature (Chapra and Canale, [1998]). Of
particular interest is the class of numerical procedures falling under general
category of “adaptive scheme”. In these procedures, the number of functional
evaluations is systematically increased until the estimated errors are within

prescribed limits (Press [1992]).

III. METHODOLOGY

Five numerical experiments where formulated to investigate the
magnitude and nature of the numerical errors in the conventional one-point
and finite sublayer method. The scope of this stud_y.was. limite.:d to
homogenous soils. In each problem, the functional variation in the initial

effective overburden pressurep,,(Z), preconsolidation PFCSSUFCPP(Z), and

final effective overburden pressure p,(z) together with the resulting

expression for strain &, (z) was derived. The corresponding consolidation

settlement was then evaluated using the conventional one-point and finite
sublayer method, and the results were compared with the assumed exact
solution. In cases where no analytical form of the exact solution was available,

the exact solution was obtained by numerically integrating & (z) using an
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adaptive quadrature. For this purpose, a FORTRAN 77 program
CONSETTLE was written to provide accurate consolidation settlement
calculations. The program uses the IMSL subroutines QDAG and QDAGS for
integrating the strains over the thickness of the compressible soil layer. Both
routines employ an adaptive general-purpose quadrature based on the Gauss-
Kronrod rules. For integrands without end-point singularities, the routine
QDAG is employed. In special cases where the integrand is singular at one of
the endpoints, the routine QDAGS is used.
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Figure 1. Geometry of fill problem

IV. DISCUSSION
CASE 1: Fill Underlain by Normally Consolidated Soil

The geometry of this case is illustrated in Figure 1. It consists of a layer
of compressible soil that is normally consolidated with a thickness H , where
the initial effective overburden pressure prior to the placement of a fill is
assumed to be

p,,(2)=}'z+q0

and, where y is the buoyant weight of the soil in the compressible layer, and
g, is a pre-existing surcharge at the top of the compressible soil layer. The

preconsolidation pressure p, (z) is equal to p, (z) since the entire layer is

normally consolidated. After placement of the fill,

_ the final effective
overburden pressure is assumed to be

P,,(Z)=q+qo+yz
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where ¢ is the increase in overburden pressure through the entire thickness of
the compressible layer, arising from placement of the fill. Substitution of (1.8)
and (1.9) into (1.2) yields after some simplification

. q
e (z)=C_logl| 1+ 1.10
.(2)=C., g[ W%J (1.10)

Equation (1.10) can be non-dimensionalized through a change of variable
from z to & =z/ H , resulting in the following expression

e__(z):Cn_log[Hcfij (1.11)

where a=q/yH and x=gq,/yH. The corresponding expression for

settlement is given by

A:C“H'Elog[HffKJdé (1.12)

Integration of (1.12) gives

A= Cﬂ_H[K(log(K)— log (x +1)) - (ar +«) (log (a + k)~ log (e + k +1))

+lo 1+ -2 J (1.13)
£ 1+x
For the case where x =0, equation (1.13) simplifies to
A=C‘“H[(a+])log(l+a)—alog(a)] (1.14)

By using dimensionless quantities, the results of the following analysis
can be generalized for problems with varying geometries. In this case, it can
be seen that the problem depends on only three parameters, namely the layer
thickness H , the load intensity factor & and the surcharge intensity factor & .
It should also be noted, only a and « affect the computational errors arising
from the approximate manner in which the strains are integrated.
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Figure 2. Effect of load and surcharge intensity on settlement of normally
consolidated soil under a fill.

Figure 2 shows the computed normalized settlements A/H obtained
using the numerical solution for different load intensity factors a and
surcharge intensity factorsx . Results obtained agree within five decimal
places to the analytical solution in (1.13) and (1.14). As shown, the computed
settlements increase with increasing values of o and decreasingx . This
behavior can be explained by (1.11) in that at any given depth, increasing o
increases €., while increasing x decreases £_. This rate of increase in the
computed settlements is greatest for value of values ofa close to 0, and
decreases as « increases.
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Figure '3. Computational error in consolidation settlement
calculations (conventional one-point method) for fill underlain
by normally consolidated soil.
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Figure 3 shows the computational error in percentage resulting from the
conventional one-point method. The graph indicates that as both the load
intensity factor o and surcharge intensity factor « increase, the error
decreases. Increasing « resulted in a strain distribution that changed less
abruptly with depth, resulting in a value at the mid point more representative
of the strain throughout the thickness of the compressible soil layer.
Increasing « also resulted in a more uniform strain profile by decreasing the
strain at the top of the soil layer, while maintaining approximately the same
strain at the bottom of the layer. The under-prediction in the settlements was
found to range from between | percent to 20 percent of the exact solution.
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Figure 4. Computational error in consolidation scttlement
calculations (finite sublayer method using 2 meter thick layers)
for fill underlain by normally consolidated soil.

Figure 4 shows the computational error in percentage resulting from the
finite sublayer method with the thickness of each sublayer limited to 2 meters.
Observed behavior with respect to the effects of a andx were the same as
those for the conventional one-point method. It was also noted that except for
values of a < 0.5, most of the resulting errors were within 5 percent of the

exact value.
CASE 2: Fill Underlain by Under Consolidated Soil

This case is similar to the previous one with the exception that soil layer
is still in the process of consolidating due to the prior placement of a fill with a
corresponding uniform surcharge of g,. Under these conditions, the initial
effective overburden pressure prior to the placement of the new fill is assumed
to be

p,(£)=yH[E+xI.(&.7)]

where 1_(z) is the influence coefficient function based on the Terzaghi one-

dimensional consolidation theory given by the expression
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4 & 2 4
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(1.16)
powre 2n+1
Given the circumstances previous mentioned, the preconsolidation pressure
p,(z) is equal to p,(z). After placement of the fill, the final effective
14
overburden pressure is assumed to be
p,(&)=rH[a+xI(£7)+¢] (1.17)

where ¢ is the increase in overburden pressure through the entire thickness of

the compressible layer, arising from placement of the fill. Substitution of (1.8)
and (1.9) into (1.2) yields after some simplification

[04
=C o S 18
£.(£)=C, loa[H;”]‘_(;T)] (1.18)

Due to the complex nature of /7 (&,7), it is not possible to integrate (1.18)

analytically, and thus the settlement A can only be obtained through numerical
integration.
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Figure 5. Effect of load and surcharge intensity on settlement
of underconsolidated fill.

Figure 5 shows the computed normalized settlements A/H obtained
using the numerical solution for different load intensity factors o and
surcharge intensity factors x. As shown the computed settlements increase
with increasing values of a and decreasing x as in the normally consolidated
case. This behavior can be explained in the same manner as the previous case,
the strain profiles of these two cases being very similar.
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Figure 6. Effect of time factor on consolidation settlement of
underconsolidated fill.

Figure 6 shows the effect of the time factor 7 on the settlement. This
figure shows that the settlement increases with decreasing degree of
consolidation.
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Figure 6. Effect of time factor on consolidation settlement of
underconsolidated fill.
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Figure 7. Effect of surcharge intensity on computational error in
consolidation settlement calculations (conventional one-point method) for

underconsolidated fill.

Figure 7 shows the computational error in percentage resulting from the
conventional one-point method. The graph indicates that as both the load
intensity factor « and surcharge intensity factor x increase, the error
decreases very much in the same manner as the normally consolidated case.
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Figure 8. Effect of time factor on computational error in consolidation settlement
calculations (conventional one-point method) for underconsolidated fill.

Figure 8 shows effect of the time factor 7 on the computational error
resulting from the conventional one-point method. It can be seen that with
increasing «, the error decreases in an asymptotic manner. Differences in the
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computational error become negligible for when the degree of consolidation is
equal to 50 percent or greater.

Computational errors for the aforementioned method were generally less
than those obtained for normally consolidated soils, particularly with
increasing values ofa . In general, the under-prediction in the settlement was
found to range from 1 percent to 5 percent.
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Figure 9. Computational error in consolidation settlement
calculations (finite sublayer method using 2 meter thick layers) for
underconsolidated fill.

Figure 9 shows the computational error in percentage resulting from the
finite sublayer method with the thickness of each sublayer limited to 2 meters.
Observed behavior with respect to the effects of a andx were the same as
those for the conventional one-point method. It was noted that except for
values of @ < 0.5, all of the resulting errors were within 2 percent of the exact

value.
CASE 3: Fill Underlain by Over Consolidated Soil

This case involves a compressible soil layer of thickness H, with an
initial effective overburden pressure distribution as described in(1.8), and a
final effective overburden pressure distribution as given by(1.9). In order to
simplify the problem, the initial surcharge g, was assumed equal to zero.

However, it was also assumed that the soil within a depth of z, from the top of
the layer was over consolidated due to desiccation according to the following
quadratic function

61



 —7Z 2
pp(z)=—’¥-(z—zp) +yz,, z<z (1.19)

where p, is the preconsolidation pressure at the top of the soil layer. For value
ofz>z,, the preconsolidation and initial overburden pressures are the same.
In non-dimensional form, the preconsolidation pressure can be written as

p,,(§)=(a,—§p)(§£—lJ +%, (1.20)

14

z
wherea, = —q—’H, and &, = —[5 . For cases where p, < g, the resulting settlement
Y

was given by the expression
‘I‘ pp(g)} r [pj(f)}
A=H|C log| —== C,. | log| L=~
[ £r£ og(pa(g) §+ nf Og pp(é) é:
P, (‘f)Jd
C,. | log| —=
* & [:r Og[pu(g) 5\]

For cases where p, > g, it was first necessary to find the intermediate point &,

(1.21)

where p,(£,)=p, (£,). Consequently the resulting settlement was given by

the expression
o P,,(f) , p 5)
A=H|C I C 1 L
[ 2 °g[p,,(é ]d§+ A Og(p(,(f))“‘f

)
+C,, _E" log[pf—(g)]df +Ca£ log Py (f) &
" p/’ (6) " pu (g)
It should be emphasized that determination of £ was only necessary in
cases where the settlement was computed using the convention

method and finite sublayer method. In the adaptive quadrature simple

application of equations (1.3) and (1.4) was required, as wel] as for cases
where value of nassumed in the finite sublayer method was fairly large

—~

(1.22)

al one-point
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Figure 10. Effect of load intensity and pre-consolidation pressure on
settlement of overconsolidated fill.

Figure 10 shows the effect of the load intensity factor « and
preconsolidation pressure intensity factor x on the computed settlements. The
behavior in this case is the same as the previous two cases. In the case of
increasing x, the decrease in settlement occurs due to the fact a larger portion
of the settlement occurring in the soil near the top of the layer is due to
recompression.
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Figure 11. Effect of thickness of overconsolidated layer on settlement.
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Figure 11 illustrates the effect of the thickness of the over consolidated
portion of the soil layer, in relation to the overall thickness of the entire soil
layer. A parameter [representing the thickness of the entire layer with respect
to the thickness of the overconsolidated portion is used. The graph shows that
as the thickness of the overconsolidated portion increases, as characterized by
decreasing 3, the settlement decreases due to the fact that more of the

settlement occurs in recompression.
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Figure 1_2. Computational error in consolidation settlement calculations
(conventional one-point method) for overconsolidated fill.
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Figure 12 shows the computational error resulting from the conventional
one-point method. For values of # < 4, the error decreases with increasinga,
whereas, for value of > 4, the error increased with increasing « .

The under-prediction in settlements obtained ranged from 1 percent to 5
percent for cases of lightly overconsolidated soils. For more heavily
consolidated soils, the under-prediction approach that similar to that of
normally consolidated soils. This behavior could be explained by the fact the
most of the under-prediction takes places due to the inability of the one-point
method to account for the very large strains occurring near the top of the
compressible layer. In lightly overconsolidated soils, smaller strains occur due
as the settlement involves both virgin compression as well as recompression.
This results in a strain profile that is more uniform, for which the one-point
method yields more accurate results. For cases involving heavily
overconsolidated soils where the entire thickness of the compressible layer is
overconsolidated, the strain profile is similar to that for the normally
consolidated case with the exception that the strains are reduced by the same
factor. Consequently, the under-prediction in the settlements is similar to that
which occurs in the normally consolidated case.

e H

Po(z>

\

Figure 13. Geometry of footing problem.

CASE 4: Isolated Footing Underlain by Normally Consolidated Soil

The case geometry of this case is illustrated in Figure 13. It consists of a
spread footing of width B founded at a depth of D, within a compressible,

normally consolidated soil layer of thickness A . Assurqing that the footin.g
exerts a uniform bearing pressure ofg, the corresponding stress change is

given by (Poulos and Davis [1974])

Ao =ql, (&)
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where (&) is the appropriate Boussinesq influence factor in terms of the

Z

|t

) . . B . . )
non-dimensional parameter ¢ =—, with b =5. In this particular case, & is

measured from the base of the footing. For a square footing

2 I 28
I ==
a(é’) - arctan[\/§2+2]+\/§2+2(§2+l)

For a circular footing, l(.f) is given by the expression

(1.24)

zf(g):]—[ | } (1.25)

14+&7

For a strip footing, I (&) is given by the expression

I, (§)=%[9+sin («9)cos(6’+2¢):| (1.26)

n-1 [77+1) ¢
where ¢ = arctan| —— |, @ =arctan| — (-5 ,and n==.
¢emin| 52,0 :

The initial overburden pressure is given by the expression

p.(&)=yD, (k& +1) (1.27)

b .
where k¥ = — . The final overburden pressure is given by the expression
/

p,(&)=7D, (k& +1)+(a~1)1,(¢) (1.28)

where a = % . The corresponding settlement in terms of non-dimensional
rey
terms is given by

A=bC,, f’log[u a1, (g)]dg (1.29)

K& +1
where ,B:%.

In this particular case, it was discovered that the problem depends on four
parameters, namely, the footing width B, the load intensity factorar, the
surcharge intensity factorx, and the relative thickness . Onlya, 4 and «
were noted to affect the computational error.
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Figure 14. Effect of load intensity on settlement of square footing on
normally consolidated soil.

Figure 14 shows the consolidation settlement as a function of load
intensity « and relative thickness 5. As was observed previously, the

settlement increases with increasinga. While the settlement also increases
with increasing 3, the rate at which this increase takes places decreases

rapidly with increase S such that for values of > 6, this increase is

negligible.
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Figure 15. Effect of foundation depth on scttlement of square footing on
normally consolidated soil.
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Figure 15 shows the consolidation settlement as a function of the
foundation depth factor x and relative thickness 3. The graph shows that with

increasing x , the resulting settlement decreases due to the increase in the
overburden pressure through out the entire compressible layer.

Settlement for this problem obtained using the conventional one-point
method was compared to those numerically obtained using the settlement ratio
p defined as the ratio between settlements obtained from the one-point
method and those obtained using the numerical procedure. A value of p<1
indicated the exert of the under prediction in the one-point method.
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Figure 16. Effect of load and surcharge intensity on settlement ratio
(conventional one-point method) of square footing on normally
consolidated soil.

Figure 16 shows the settlement ratio as a function of load intensity o
and relative thickness #. The graph shows the general tendency of the

conventional one-point method to underpredict the settlement. This under
prediction ranges from between 20 percent and 2000 percent, as increases with
increasinga .
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Figure 17. Effect of foundation depth on settlement ratio (conventional
one-point method) of square footing on normally consolidated soil.

Figure 17 shows the settlement ratio as a function of foundation depth
x and relative thickness #. The graph shows the general tendency of the

conventional one-point method to underpredict the settlement. This under
prediction ranges from between 20 percent and 2000 percent, as increases with

decreasing x .
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Figure 18. Effect of sublayer thickness on settlement computed by finite
sublayer method for square footing on normally consolidated soil
considering () load intensity (b) depth of compressible layer

Figure 18 shows the settlement computational error as a function of load
intensity factor a using varying numbers of sublayers in the finite sublayer
method. Figure 17 shows the settlement computational error as a function of
foundation depth « using varying numbers of sublayers in the finite sublayer
method. These figures show that sublayer thickness of between 1 to 2 meters
is required to obtain settlements within 10% of the exact value.
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The following table illustrates the effect of the shape of the footing on the
resulting settlement and corresponding computational error. Consolidation
settlements were calculated for a 2 meter wide footing, underlain by a 10 m.
layer of normally consolidated soil. Settlements were computed at the center
of the footing assuming a square, circular and strip footing. For the strip
footing, settlements were also computed at the footing edge. The compression

index C, was assumed equal to 0.24 with a void ratio of 0.8 and a unit weight
of soil equal toy =14.52 kN/m’. In all cases analyzed, the footing was located
at 1 meter below the ground surface.

Footing Exact One-point Method Sublayer Method
Shape A
A P A p
Square 0.2054 0.0584 0.2843 0.19971 0.9723
Circle 0.1912 0.0473 0.2474 0.18501 0.9676
Strip 0.2896 0.1653 0.5708 0.28389 0.9803
(Center)
Strip 0.2342 0.1534 0.6545 0.22927 0.9789
(Edge)

Results of the above analyses indicate that for the one-point method, the
under prediction is greatest in the circular footing and least in the strip footing.
Settlements at the middle are under-predicted more than at the edge of the
footing. In the sublayer method, a total of 5 sublayers were used for each
analysis. The resulting under prediction was within 5% of the exact value for

all types of footings analyzed.
CASE 5: Isolated Footing Underlain by Over Consolidated Soil

This case is similar to the previous case with the exception that prior to
application of the footing load, the soil was pre-loaded by the application of a
surcharge of g, <g. For the conventional one-point method as well as the

finite sub-layer method, it is necessary to determine the intermediate point

&, where the condition p,(¢,)=p ,(&,) is satisfied, where the
preconsolidation pressure is defined by the expression
p,=yD, (a, +xé+1),

and where p, (&) is given by (1.28).
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Figure 19. Effect of compressible layer thickness and
preconsolidation pressure on computational errors in settlement
calculations for square footing on pre-loaded soil using
conventional one-point method.

Figure 19 illustrates the numerical error in the settlements computed
using the conventional one-point method. The graph shows that these errors
increase with increasing preconsolidation pressure and layer thickness.
However, the magnitude of theses errors is significantly less than that for the
normally consolidated soils for cases where the preconsolidation pressure is
less than the bearing pressure of the footing. For cases where the
preconsolidation pressure is greater than the bearing pressure exerted by the
footing, the errors are the same as those for the normally consolidated case.
The aforementioned behavior is due to the fact that in the latter case, the entire
settlement results from recompression, whereas only part of the settlement
results from recompression in the former case. This reduces the strains that
occur near the top of the soil layer in the latter case, and results in a more
uniform strain distribution.
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Figure 20. Effect of compressible layer thickness and preconsolidation pressure on
computational errors in settlement calculations for square footing on pre-loaded
soil using finite sublayer method.

Figure 20 shows the numerical error in the settlement computed using
the finite sublayer method in which the soil layer is divided into two parts: the
upper layer which undergoes a combination of recompression and virgin
compression, and the lower layer which undergoes recompression only. Each
of these layers was further subdivided into a five sublayers. Results of the
analyses show that for cases where the sublayers did not exceed a thickness of
2 meters, the predicted values were within 5% of the exact value.

V. SUMMARY AND CONCLUSIONS

In this paper, the numerical errors that arise when consolidation
settlements are computed using the conventional one-point method were
investigated. It was shown that consolidation settlements can be calculated
accurately through the use of an appropriate numerical quadrature. Using this
technique, exact solutions were obtained for purposes of estimating the
numerical errors of the conventional one-point and finite sublayer methods.
Studies show that these numerical errors are most significant in either
normally consolidated or heavily consolidated soils, and are less pronounced
in cases of lightly overconsolidated as well as underconsolidated soils. It was
also shown that increasing the intensity of the load, surcharge and footing
depth served to diminish these errors. In contrast, these numerical errors
increase as the thickness of the compressible soil layer increases. It was also
shown that these under-predictions in settlement are most pronounced for
square and circular footings as compared to strip footings or extensive fills.
Finally, for the finite sublayer method, it is recommended that thickness of
each sublayer be restricted to no more than 2 meters in order to obtain values
that are within 10% of the exact value.
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ABSTRACT

The evaluation of settlements due to consolidation is one of the most common
computational procedures in geotechnical engineering. Recent research on this topic has
indicated that current computational procedures underestimate consolidation setilements by
as much as 70%. These errors are believed to result from the over-simplified manner by
which the strains are numerically integrated. In this paper, the magnitude and nature of
these numerical errors is investigated A series of numerical experiments are performed to
study the effects of load intensity and type, depth of foundation, thickness of soil layer, and
preconsolidation pressure on these errors. Numerical errors are evaluated by comparing
results obtained using the aforementioned procedures (o either closed-form analytical
solutions or numerical solutions using a high precision adaptive quadrature. Results of the
numerical experiments indicate that such the underestimation of consolidation settlements is
more pronounced in normally consolidated as well as heavily overconsolidated soils as
compared to either lightly overconsolidated or underconsolidated soils, Recommendations
are made regarding the proper use of the above-mentioned procedures in order to guarantee
as sufficient degree of accuracy in the calculations.

I. INTRODUCTION

The evaluation of settlement due to consolidation is one of the most
common computational procedures in geotechnical engineering. Traditionally,
research on this topic has focused primarily on accurately estimating the time
rate at which such settlements occur. However, recent study of this topic has
indicated that present methods used for calculating consolidation settlements
have the general tendency to underestimate such settlements by as much as
70%. Generally, the settlements due to surface loads are calculated by
integrating the vertical strains resulting from such loads over the depth of the
compressible soil layer. This process of integration is often approximate by
dividing the entire soil layer into a finite number of sublayers, calculating the
settlement in each layer based on the stress condition at the middle of the
layer, and summing up the incremental settlements to obtain the settlement of
the entire soil layer. This method shall be referred to in this paper as the finite
sublayer method. This procedure is reduced to the conventional one-point
method when one layer is used. While, the use of the one-point method and
finite sublayer method for calculating consolidation settlements is described in
most books on geotechnical engineering, none of these discussions provide
clear guidelines for determining the number of sublayers required to achieve a
prescribed level of accuracy. The limitations and inaccuracies of the
conventional one-point method as well as the need for more rigorous methods
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