Philippine Engineering Journal (2000) XXI (1): 28-37

MP3 DECODER USING Tl TMS320C6X DSP CHIP

Bienvenido H. Galang Jr.
Lemuel Q. Quiwa
Computer Software Division
Advanced Science and Technology Institute
Department of Science and Technology

ABSTRACT

MPEG I Layer IIl, more commonly known as MP3, is the de facto standard of digital
audio compression. It is an open standard for low bit rate coding of audio signals. It is able to
reduce an audio file up to a factor of 12 without losing fidelity—CD quality.

This paper describes the theory behind MP3 and the implementation of ISO/IEC 11172-3
Audio Layer 1l decoding using the TMS320C6X Evaluation Module. The software was written in
ANSI C and it was cross-compiled through Code Composer Studio.

The project is able to decode an MP3 file, store the result in a buffer and play the
decoded segment using the codec of the evaluation module, or it can store the PCM samples as a
raw file. This raw file can then be played using software such as Goldwave.

Introduction

MP3 is a shortcut for MPEG layer 11l. MPEG or the Moving Pictures Expert Group was
formed to provide the standards for audio and video coding schemes at low data rates. These
standards are the first international standards in the field of high-quality digital audio and video
compression. MP3 is the most powerful compression technique but it is also the most complex.
The compact disk (CD), today’s de facto standard of audio representation, uses 16-bits per sample
at 44.1 kHz and holds up to 72 minutes of audio. With the use of MP3, a single CD can hold up to

8 hours of audio without losing fidelity—“CD quality”[1]. That’s basically it—an MP3 file is a
reduced audio file.

The classic way of size reduction is to reduce the information. For example, if we reduce
the 16-bit PCM samples to 8-bit PCM samples, we reduce the file size by half but we lose half of

the quality and probably gain more noise in the process. If we reduce the sampling frequency, we
lose resolution[2].

Modest reductions in audio bit rates were done by instantaneous companding (p-law/A-
law)—reducing 16-bit PCM into 11-bit PCM; various forms of block companding (DSR,
NICAM); and adaptive differential PDM (ADPCM)—getting the difference between two
consecutive samples instead of the samples themselves [1].

Excellent audio coding performance was obtained by using various frequency coders—
Subband Coding (SBC) and Adaptive Transform Coding (ATC). These coding techniques are the
ones used by MPEG for file reduction. Other recent coding technologies employed by MPEG are:

Perceptual Audio Coding, Frequency Domain Coding, Window Switching, and Dynamic Bit
Allocation.

28

Basically, an efficient sourcg-coding algorithm will remove redundant components of the
source signal by exploiting correlations between its samples and remove components that are
perceptually irrelevant to the ear [1]. This is how MP3 works—it strips away information that is
not important. It decides what information is necessary and what is not, based on the research of

human perception.

Before we hear anything, our brain analyses the incoming data and it interprets the sound
and filters irrelevant information. MP3 just does the job earlier—this is called Perceptual Audio
Coding. PAC uses simultaneous masking and temporal masking. Simultaneous masking is a
frequency domain phenomenon where a low-level signal (maskee) can be made inaudible (masked)
by a simultaneously occurring stronger signal (masker) as long as the masker and the maskee are
close enough to each other in frequency. A masking threshold can be measured and low-level
signals below this threshold will be inaudible. If there is no masker, a low-level signal will be
inaudible if it is below the threshold in quiet, which depends on the frequency. Temporal masking
is a time domain phenomenon and it occurs when two sounds appear within a small interval of
time. Depending on the individual Sound Pressure Levels (SPL’s), the stronger signal may mask
the weaker signal even if the maskee precedes the masker. MP3 reduces file size by removing

these inaudible signals [3].

80
dB|
1 60|
. »
TqoL
Threshol
[~ in quiet _
201 inaudible
= Signal |
ok

Perceptual Audio Coding (Masking)[4]

In Frequency Domain Coding, redundancy (the non-flat shert-term spectral characteristic
Jevancy (signals below the psychoacoustical thresholds) are exploited

of the source signal) and irre .
to reduce the transmitted data rate with respect to PCM. This is achieved by splitting the source
spectrum into frequency bands to generate nearly uncon:related spectral components and by
quantizing these components separatgly. There are ng coding categories: Transform Coding and
Subband Coding. In TC, a block of input samplesi is linearly transformed via a discrete transform
into a set of nearly uncorrelated transform cocfﬁcnents. These coefficients are then quantized. In
SBC, the source signal is fed into an analysis filerbank consisting of M subband filters, Each

decimated filter output is quantized separately. The quantization error is limited for each band nm

29

These are the techniques used in the encoding algorithm to effectively reduce the size of
an audio file without losing fidelity.

The purpose of this project was to implement the MP3 decoding algorithm to the TI
TMS320C6X Evaluation Module, to learn the fundamentals of MP3, and to learn the basics of
Code Composer Studio. The knowledge learned from this project may be used to make a stand-
alone MP3 player prototype in the future.

MP3 Decoding

The decoding process is just the reverse of the encoding process. A simple block diagram
of the decoding process is shown below [5]:

Frequency to

Bit stream 2 Frequency
unpacking M:L:z;? reconstruction Time Mapping

R RRTSSE Bae [P m‘m ¥

An MP3 file is a bit stream of ones and zeroes divided into frames. First, the necessary
information is extracted from the header of the frame. Then the samples are used to reconstruct the
source spectrum. Finally, we convert from frequency domain to time domain.

An MP3 frame consists of three parts: header, body, and “tail”. The header contains all
the necessary information about the MP3 file, the body contains the sample or the main data, and
the “tail” contains the ancillary data. The frame header consists of two parts. The ﬁrst’ part
contains 12 synchronization bits, 20-bit system information, and an optional 16-bit cyclic
redundancy check (CRC) code. The second part consists of the side information—about the bit
allocation and the scale factors. The length of each frame is not constant, due to the fact that the
length of the main information field depends on the bitrate and the sampling frequency. Each
frame is also autonomous. You do not need the previous frame, to decode the next frame. The
frame structure is shown below [1]:

“4 side sl Subband Samples /T R
> §§~,Igf9.x'1n?§g‘,}}§ o RS 00 ‘

ST

.|| Data Field

<—Frame Heade Body Tail —>]

30

The MP3 decoding algorithm consists of eleven blocks. The decoding flowchart is shown below
[6].

GET BIT STREAM, FIND HEADER
s S VRSB T o BN mxg
DECODE SIDE INFORMATION
—

DECODE SCALE FACTORS

DECODE HUFFMAN DATA E
|5 T T R S < R AT G RV R TR,

REQUANTIZE SPECTRUM
TS Pl O TR TR \‘:,14‘

REORDER SPECTRUM
IF (window_switching_flag) AND
(block_type==2)

| RS P T S Y VR e e e |
JOINT STEREO PROCESSING

(if applicable)
| T e R R
ALIAS REDUCTION
[R T SN A TIPS R Ve s RS T
SYNTHESIZE VIA IMDCT &

OVERLAP-ADD
(IMDCT either 18 or 6,6,6 depending on

A

TR s

| ST

P
window_§wi;c;hing‘_f‘l_§g and block type)_ {ﬁ
BSOSO P ISR T AR ‘g
SYNTHESIZE VIA POLYPHASE
FILTERBANK

ST R TR

The first step is to find the 12-bit syngword, ITT1 1111 1111, to synchronize the
incoming bitstream. In some cases, the first 16 bits of the header becomes the 16-bit syncword
since the ID, layer, and protection status are al.ready known. The first 32 bits make up the header,
and each bit or group of bits contain information about the MP3 file. Please see reference [6] for

the complete details, Huffman tables, etc.
The next step is to extract the side information from the bitstream and store it as the

current frame is being decoded. The table select information is used to identify which Huffman
table is going to be used and how many ESC-bits (linbits) will be used.

In layer 111, the body containing the main data is not necessarily located next to the side
information due to the Huffman coding. The beginning of the main data is located by using the

31

main_data_begin pointer of the current frame. The main data is allocated in a way that all main
data are resident in the input buffer when the header of the next frame is arriving in the input
buffer. The decoder skips header and side information when decoding the main data because their
position is already known from the bitrate_index and padding_bit. The header is always made up
of 4 bytes; the side information is always made up of 17 bytes in mode single_channel and 32
bytes in the other modes. The main data can span more than one block of header and side
information [6].

After decoding the side information, the scalefactors are decoded using slenl and slen2.
The values of slenl and slen2 are determined from scalefac_compress. The decoded values can be
used to calculate the factors for each scalefactor band or they can be used in lookup tables. When
decoding the second granule, the scfsi has to be considered. When scfsi is set to 1, the scalefactors
of the first granule are also used for the second granule therefore they are not transmitted for the
second granule [6].

The number of bits used to encode scalefactors is called part2_length and is calculated as
follows [6]:

For block_type==0, 1, or 3 (long blocks)
part2_length=11%*slen1+10*slen2

For block_type==2 (short blocks) and mixed_block_flag==0;
part2_length=18*slenl+18*slen2

For block_type==2 (short blocks) and mired_block_flag==1;
part2_length=17*slenl+18*slen2

The main data is then fed to a Huffman decoder. All the information we need to generate
the Huffiman code tree can be found from the 32 Huffman tables. First, the big_values are
decoded. The frequency lines in region 0, region 1, and region 2 are Huffman decoded in pairs
until big_values number of line pairs has been decoded. The remaining Huffmancodebits are
decoded. Decoding is done until all Huffman code bits have been decoded or until quantized
values representing 576 frequency lines have been decoded, whichever comes first. If there are

more Huffinan code bits than necessary to decode 576 values, they are regarded as stuffing bits
and are discarded [6].

The data is then requantized using a non-uniform quantizer. For each value “is”, from the
Huffman decoder, “|is|‘”3” is calculated or its value is determined from a lookup table. If short

blocks are used, the rescaled data shall be reordered in subband order prior to the IMDCT
operation [6].

After requantization, the reconstructed values are processed for MS Mode, Intensity
Mode, or both; before going to the synthesis filterbank. If MS_stereo is enabled but intensity
stereo is not, the entire spectrum is decoded in MS_stereo. If they are both enabled, the upper
bgund of the scalefactor bands decoded in MS_stereo is derived from the “zero-part” of the
difference (right) channel. In this case, the scalefactor band in which the last non-zero (right
channel) frequency line occurs is the last scalefactor band to which the MS_stereo equations apply.
In MS_stereo, the values of the normalized middle/side channels My/S; are transmitted instead of
the left/right channel values Li/R;. Thus Li/R; are reconstructed using [6]:

Li=M;+5s; Ri =M;-S§;
2 \2

The values M; are transmitted in the left, S; values are transmitted I the right channel [6].

32

In layer 111, intensity stereo is not done using a pair of scalefactors as in layers I and II,
but by specifying the magnitude; and a stereo position is transmitted instead of scalefactors for the
right channels. The stereo position is used to derive the left and right channel signals according to
the formula [6]:

L;=L;* _is_ratio for all indices i within sb
1 + is_ratio

R, =R; * _is_ratio for all indices i within sb
1+ is_ratio

For long block type granules, alias reduction is performed prior to IMDCT. Alias
reduction in not performed with block_type==2 (short blocks) [6].

To calculate for the Inverse Modified Discrete Cosine Transform, we use the formula [6]:

ll/z_l
X; = Z x¢c0s[2 (20 + 1 + ")(2k+1)] fori=0ton-1
k=0

where n is the number of windowed samples (n=12 for short blocks; n=36 for long
blocks)

In the synthesis filterbank, the frequency lines are preprocessed by the alias reduction
scheme and fed into the IMDCT matrix, each 18 into one transform block. The first half of the
output values are added to the stored overlap values from the last block. These values are new
output values and are input values for the polyphase filterbank. The second half of the output
values are stored for overlap with the next data granule. For every second subband of the
polyphase filterbank every second input value is multiplied by —1 to correct for the frequency
inversion of the polyphase filterbank [6].

Depending on the block_type different shapes of windows are used [6]:

block_type=0 (normal window)

z, = xsin["34(i + '12)] fori=0to 35
block_type=1 (start block)

z = xisin[Yse(i + '12)] fori= 0to17

Zi = X fori=18 to 23

z,= xisin[*a(i - 18 +)] fori=241to029

z=0 for i =30 to 35
block_type=3 (stop block)

z=0 fori= Oto §

7= xsin[Yia(i — 6 + '12)] fori= 6to 1l

Zi = Xi fori=12to 17

z,= xsin[*(i +)] fori=18to 35

block_type=2 (short block)
Each of the three short blocks is windowed separately
v = xOsin["3(i +)] fori=0to11,j=0t02

The windowed short blocks must be overlapped and concatenated
reference for more technical details. The encoding algorithm and the psycho
also be found in the reference.

[6]. Please see the
acoustic model cap

33

Methodology

To implement the MP3 decoding algorithm, we took the necessary files and functions
from 32 files downloaded from the Internet. From these functions, we built our code. The code
was written in ANSI C and it was cross-compiled using Code Composer Studio. Code Composer
Studio is the development software for the TMS320C6X Evaluation Module. It contains the GUI,
Assembler, Compiler, Debugger, and it loads the COFF file to the target DSP chip. We
implemented the decoding algorithm by block, starting with the first block, then adding the next
block, until all eleven blocks are complete. It was quite hard implementing the code because the
behavior of the code was quite different from its behavior when compiled in C. To debug the
code, we had to run the code using Visual C++, trace it and compare the results when running the
code using Code Composer Studio.

Results

We were able to implement all eleven blocks. We were able to decode an MP3 file, and
store the result in a raw file. Decoding a 4-5 minute song took about a day and the result was a 35-
40 MB raw file. The raw file can then be played using Goldwave. We were also able to use the
codec of the evaluation module. Instead of storing the result in a raw file, we stored it in a buffer,
and transmitted it to the codec. It took the buffer 20-30 minutes to fill up and transmit the result to
the codec. It was able play 3-5 seconds of audio.

The code was compiled using Visual C++ to test its workability. This was then used as
our reference in implementing the decoding algorithm to the evaluation module. Decoding an
MP3 file took about 8-10 minutes. The code prints out the information about the MP3 file, the
frames decoded, and it stores the result in a raw file. Decoding an MP3 file using Visual C++ is
shown below:

34

E3 TR KA : ERRL SRR i N RS S A TS IR T B |

- elbacisss Midorall Visbal Lo [GIWG0RE) 765 - Sul

'L‘) (==l mE s s m R R femely =

D Ele E& View It Propct Buld Tock Wedow Hep 7 AT ST T IR A Y S T
"Ilﬁbbahl][1A global members) =[Fae A QA xS

s X

= Zinclude <stdio.h>
1 finclude <stdlib.h> 3
% B8 refblock clazzes

2include “coamon h®
finclude “decoder.h®
#include “huffman. h®

¥4 refblock

Mae 3 izel B EE Al
the bitistream fillelBAT.mp3/ is’ a BINARY fiile
HDR:® s=FFF, id=Ll, 1=3, ep=0, br=9, sf=0, pd=0, pr=0, m=1l, js=0, c=0, o=1, e=0
layen=III, tot bitrate=128, sfrq=44.1, mode=j-stereo, sblim=32, jsbd=0, ch=2
orfl "13{ 2¥{ 3} _ 4} 5k 6} 7} 8F{ 9k{ 10}{ 11}{ 12}{
} F{ 153{ 16}{ 173{ 183{ 19}{ 20}{" 21}{ 22}{ 23}{ 24}{ 25}{
6}{ 27F{ 283{ 29}{ 30 { '31}{ :32}{ 33}{ '34}{ 35}{ 136}{ 37}{ '38}{ 39}
40F{ 41¥{ 42}{ 43}{ 44}{ 45}{ 46}{ '47}{ 48}{ 49}{' 50}{ S51}{ 52}{
53}{ . 54}{; 553}{ 56}{" 57}{ 58}{ 59}{ 60}{ 61}{ 62}{ 63}{ 64}{ 65}{ 6
6}{ 67}{ 68}{ 69}{ 70H 7i}{ 72}{" 73}{ "74}{ 75}{ 76}{ Z7}{ -78}{i 79}
80}{ 81}{. 82}{ 83} 84}{ 85}{ 86}{ 87}{ 88}{ 89}{ 90}{ o1}{ 92}
93}{ " '94}{ 95}{" 96}{ 197}{ "98}L{ 99}{ 100}{ 101}{ 102}{ 103}{ 104}{ 105}{ 10
6} {71107}{ 1083{ 109}{ 110}{ 111}{ 112}{ 113}{ 114}{ 115}{ 116}{ 117}{ 118}{ 119}
{ 1203{ 1213{ 122}{ 123}{ 124}{ 125}{ 126}{ 127}{ 128}{ 129}{ 130}{ 131}{ 132}{
133}{ 134}{ 135}{ 136}{ 137}{ 138}{ 139}{ 140}{ 141}{ 142}{ 143}{ 144}{ 145}{ 14
6Y{ 1473 { 148}{ 149}{ 150}{ 151}{ 152}{ 153}{ 154}{ 155}{ 156}{ 157}{ 158}{ 159}
}{ 161}{ 162}{ 163}{ 164}{ 165}{ 166}{ 167}{ 168}{ 169}{ 170}{ 171}{ 172}{
“174}{ 17531 176}{ 1773{ 178}{ 179}{ 1803} { 181}{ 182}{ 183}{ 184}{ 185}{ 18
PM6}{ 187}{ 188H{ 189} { 190}{ 1910}{ 192}{ 193}{ 194}{ 195}{ 196}{ 197}{ 198}{ 199}k
e 200k 20 O {31800, 21900 32001, S2100 32000 22310, S24YL 2530 vojce
: 2 225 =
—"l: ¥ 230}{ 231}{ 232}{ 233}{ 234}{ 235}{ 236}{ 237}{%38}{%33;

240F(2413{ 242}{ 243}{ 244}{ 245}{ 246}{ 247}{ 248}{ 249}{ 250}{ 251}{ 252}
553Y7 35414 255}{ 256}{ 257}{ 258}{ 259}{ 260}{ 261}{ 262}{ 263}{ 264 o
:G}{}§67}{?268}{~269}{ 270}{ 271}{ 272}{ 273}{ 274}{}575}{}§76}{}§77}{}£7§?§}§75§

s | @ &3S ¥ Abe | Woet| SN Shibo. | Slinte.| B 16| G, | micke | s | oot [t [N D4 DE) 117

Using Code Composer Studio, we were able to cross compile the code and load the COFF
file to the target DSP. The code wou_ld also print the information about the MP3 file, print the
frames decoded, and store the result in a raw file. Decoding an MP3 file using TMS320C6X

Evaluation Module, is shown below:

35

@ /cBTEVM/TMS320C6700 - C6700 Code Composer Studio- filo.mak [Optimize2.c] HEER

@ Fie Edt Vew Pojet Debug Piofier Opiion GEL Toos Wedow Heb o~ - ° L e, SAT s1e)]
ABe @ - [DMAEventd B I
i #include <stdio.h> =
@ gf"’“u‘" iinclude ¢stdlib.h> j
& ’—]Px #1nclude “cof h"
= T!_:;:‘;c:mx #include *
¥ = yosemi] [frnciude “hu
&) Inchde #include ‘a2
¢ _J Lbanes
D ket g ine BUFSIZE 4096
—’B*m wdefine C6701 1
ivoid 1nitialize(void):;
9 char *mode_names[4] = { “stereo”, "j-stereo", "dual-ch", "single-ch" };
lchar #layer_names(3) = { “I", "II", “III" };
#1f C6701
float s_freq[4] = {44.1, 48, 32, 0}:
iielse
double s_freq[4] = {44.1, 48, 32, 0}:
#endy f
A
by 1nt bitrate(3][15] = {
1\ {0.32,64,96,128,160,192,224,256,288,320,352,384,416,448},
A {0,32,48,56.64,80,96,112,128,160,192,224,256,320,384}),
b {0,32,40,48,56,64,80,96,112,128,160,192,224,256,320}
}:
e |
& —[,ija—— Istruct { -
B, == e Jf g A YT (o D
the bit stream file BAT.mp3 is a BINARY file

HDR: s=FFF, 1d=1, 1=3, ep=1, br=8, sf=0, pd=0, pr=0, m=1, js=2, c=1, o=1, e=0
layer=I11, tot bitrate=112, sfrq=44.1, mode=)-stereo, sblim=32, jsbd=8, ch=2

{ O3 w2y 3K 44X SH 8} 7ML 8H 9 10H{ 11}{ 12}{ 13} 14}{ 1S}{ 16}{ 17){

AT N\stdowt / Dediha: o SRl Mo T LI i

05P RUNHING e ek menhn e -
o] FE3 o »] Nest| Yo 21080 Ginko.] Elince. f[@ e Geus. | Eicsk | BIMPa | oo

2T cat T
[avo® 1iem

The raw file can then be played using Goldwave. The settings are: 16-bit, signed, stereo,

44.1 sampling frequency. In some cases, you need to swap the bytes (select byte-swapped). The
raw file decoded is shown below:

36

W GoldWave a—

Flo Edt Elfegts View Iwh Oplionz Wandow Help
1017,)
ALl

BRI EEEEEERREE

“l«|>ll"l‘*lll¢lﬂl I-I_H |‘°|°’|°I|°H*l ln-l‘*’H.L_LJ

Oahngl.lutm.rn

I I.I I'IEHEIIIH-IHIIIIHH

E I T e ’! %
LEBHUEH RN Al dei bt

TS =

Y

»

a:'.f.::‘—

f

A

umonz" WRBE | mmmamooonzza_tsa

Steizo | 1 Zoom 1.8187.24 Y. z 3 B st e B
S| F 5 3G 7 Woe| est] S0V Liiba | FVede | s IEBMImca: | BMes IW Nave® 1am
Conclusion

The MP3 decoding algorithm was successfully implemented using Code Composer
Studio and TMS320C6X Evaluation Module. The MP3 file was decoded and it was played using
the codec of the evaluation module but it was not played in real time. The next step would be to
optimize and speed up the operation of the code to make it real time. This would utilize the DSP
B1OS of the TMS320C6X Evaluation Module. We tried loading the MP3 file to the memory of
the evaluation module hoping to speed up the decoding but there was only a little improvement.

The decoding speed increased by less than 10%.

References

1 peter Noll. “MPEG Digital Audio Coding”. IEEE Signal Processing. Vol. 14. No. 5

) http://www.mpeg.org
) Marina Bosi. “Perceptual Audio Coding”. IEEE Signal Processing. Vol. 14. No. 5

) http://www.iis.fhg.de/amm/techinf/basics.html
1) Davis Pan. “A Tutorial on MPEG/Audio Compression”. IEEE Multimedia Journal. 1995

) MPEG. “ISO/IEC 11172-3”. 1993

37

	2021_02_18_11_40_40_001
	2021_02_18_11_40_40_002
	2021_02_18_11_40_40_003
	2021_02_18_11_40_40_004
	2021_02_18_11_40_40_005
	2021_02_18_11_40_40_006
	2021_02_18_11_40_40_007
	2021_02_18_11_40_40_008
	2021_02_18_11_40_40_009
	2021_02_18_11_40_40_010

