Philippine Engineering Journal (2000) XXI (1): 65-72

VITERBI CONVOLUTIONAL ERROR-CORRECTING CODER-
DECODER

Azaleah Amina P. Chio* and Louis P. Alarcon
Department of Electrical and Electronics Engineering
University of the Philippines, Diliman

ABSTRACT

In digital communications systems, it is common to use error-correcting codes to
maintain reliable data reception. Error correction coding adds redundancy to the input, and at
the receiver, this redundancy is used to correct errors. There are two types of error-correcting
codes, block codes and convolutional codes.

Convolutional codes are preferred over block codes in error-correction due to better
reliability. Although somewhat more complex when implemented, it is easier to decode.
Convolutional encoders are implemented using shift-registers and modulo-2 summers. An (n, k, K)
convolutional encoder accepts k bits input, and encodes it into n bits using K previous inputs and

the present inputs.

However, regardless of whether the coding is block or convolutional, the majority of the
effort lies on the decoder, which needs to find the sequence which best corresponds with the noisy
received sequence. A well known decoder is the Viterbi algorithm, which produces a maximum-
likelihood estimate and is optimal in minimizing the probability of error, given equally likely
occurring information sequences.

The Viterbi Algorithm performs a search of all the paths in the trellis diagram, and
selects the most likely path traversed, which is then decoded as the original data.

An optimally designed VHDL implementation VLSI architecture of a (3, 2, 3)
convolutional encoder and error-correcting Viterbi decoder is aimed in this project.

I. Introduction

In communications, it is critical that information be received as accurately as possible.

However, when information is transmitted througl.l a.channel, distortion or errors may occur.
Several precautions may be implemented, one of which is to use an error-correction algorithm.

Forward Error Correcting (FEC) codes improve the cap-acit'y of the channel by making
use of redundancy : adding bits to the encoded word for d’etermmatlon of errors. There are two
types of error-correcting codes, block cod.es and cox}volu'tlonal codes. C.onvolutional coding in
telecommunications systems is the most reliable tgchmque In error-correction. It makes use of not
only the present inputs but previous inputs as well in determining the output.

mlh Virtual Center for Technology Innovation-Micoclectronics, Advanced Science and Technology
Institute.

65

A convolutional encoder is usually characterized by the following parameters : the coding
rate and the constraint length. The coding rate &/n represents the number of input bits, 4, and the
number of output bits generated by the encoder, n. The constraint length, K, corresponds to the
number of bits the output is dependent on, previous and present alike. Additional parameters are :
the memory order, m, which represents the number of shift register stages in path to any output;
memory constraint length, v, the total number of shift register stages excluding any buffering of
inputs and outputs [1].

Convolutional coding is a bit-level encoding technique rather than block-level techniques
such as Reed-Solomon coding. Advantages of convolutional codes over block-level codes for
telecom/datacom applications are : with soft-decision data, convolutionally encoded system gain
degrades gracefully as the error rate increases. Block-level codes correct errors up to a certain
point, after which the gain drops off rapidly [2].

The Viterbi Algorithm (VA) is a type of convolutional code. It has the advantage of
reduction in computational complexity due to the use of recursion. It also has the property of
providing the best interpretation given the entire context. It performs maximum-likelihood
detection of data. thus finding the path with the smallest distance when traversing the trellis.

The Viterbi decoder selects a code sequence closest to the received sequence and
recovers the original data in a traceback process. The most likely pattern with the fewest errors
compared to the received word will be chosen and outputted.

Convolutional encoding and Viterbi decoding has been developed to be used for satellite
networks [3], Code Division Multiple Access (CDMA) mobile communication systems [4],
modems [5] and for high-quality digital telecommunications, such as high definition television
(HDTV) [6]. As it has been proven to be useful for many applications, several developments have
surfaced like high speed, low power or pipelined [7] decoders.

In this paper, a development of a previous project Viterbi Convolutional Error-Correcting
Coder-Decoder [8], was implemented. Parallel implementation as compared to the previous serial
was applied. The result is approximately eight times faster than the previous implementation.
However, as always, the trade-off between speed and size crops up resulting to a design that was
not tested in the FPGA due to size constraint.

The presentation of this paper is as follows. In Section 1l, the design methodology is
presented and deals with the major blocks used. Section III presents the results acquired in the
VHDL simulation of the encoder and the decoder. The conclusion of the project follows in Section
Iv.

II. Design Mecthod

The convolutional encoder was designed as seen in figure /. It accepts a two-bit input and
based on three previous inputs and the present inputs, it produces a three-bit output.

The encoder is composed of two blocks, the main encoder and a counter. The counter
counts from 1 to 20 to accept the 32-bit data. At count equal to 1,2, 19 and 20, it is assumed that
the user will input “00”, which is required to initialize and end the encoder.

66

K1)

~ ml D i)
DA : p<1:3:
-— i < : .

k<:> _—.l \) i

| A D [
7 N n2)
: q \'\
o712 712 5 Yy,
y 37 DA I

ok »
md&

Figure 1: Schematic Diagram of the Convolutional Encoder

The encoder outputs the 3-bit data that will be transmitted and decoded by the Viterbi
Decoder. After a delay of one clock cycle, the encoder enables the decoder that the incoming data

are valid.

The Viterbi decoder is composed of three major blocks, the Branch Metric Unit (BMU),
the Add-Compare-Select Unit (ACS) and the Traceback Memory Unit (TB) [9] (refer to figure 2).

A. Branch Metric Unit

The Branch Metric Unit (BMU) computes the Hamming Distance for hard-decision, or
the Euclidean distance for soft-decision decoding, between the received code and the

corresponding output in the trellis.

—
en_count

o] coun_sco

o _ace

1 e || bmeui00

ey oo comt it
et L
] b i) o men
| »f bmeuxio o
§ <13 TeTT: ;;::u—ﬂu:b
:5.@;---: ; LnapLd 'gmghpgk —
< 1 3> v s dutect 2>
_=n st > = Ul
b mes 13 ~a1Es s pmIel 3
ey e
prev_su L= Aee pmT<] 3
prev_matedl
prev_suedd
prev_maied)
prev_sueld

e 2 - Viterbi Decoder block diagram

Figur

67

The BMU is composed of 8 smaller blocks, each corresponding to the 8 states in the
trellis (refer to figure 3). Each block has a specific function since the traversal in trellis is not
symmetric for all states. To compute the branch metrics per state, the matching output from the
state transition table is compared with the present state, and the Hamming Distance is the
corresponding branch metric. There are 4 branch metrics per state corresponding to the 4 branches
in the trellis that may enter each state. Thus, there are also 4 previous states. For all even states,
the 4 previous states are the same, and for all odd states, the previous states are also the same. Only
2 bits are needed to represent the previous states.

B. Add-Compare-Select Unit

This unit calculates the path metrics to find the minimum path. It adds the branch metrics
to each stored path metric, compares them, two at a time, and selects the path with the lowest
metric, the survivor [9].

The ACS unit is composed of two smaller blocks, the instantiated ACS blocks and the
path update block (refer to figure 4). The path update block keeps track of the surviving paths, the
path metrics. It returns the survivor path metrics to the inst_acs unit to be used as the previous path
metric for the computation of the survivor path metric in the next clock cycle. Since the previous
path metrics will not be needed anymore, the path update just acts like a feedback, without storing
the data it receives.

———» en_acs
n<l:3> > _
en_bmu > '

count bmu . bmus0

>
P
»
>
ol
>
=
L bmusl
>
P
.;
>
il bmus2
>
>
=
>
P
L4 bmus3
>
o
>
>
» bmusd4
>
|-
P>
>
o bmus5 -
> ; pre il
. prov_ivtelal: e
Prev_itidlal: de
bomerie
- b merdl
> bmus6 Famaridy
Prev et ewd: de
> Previniglalde
Prev_itielal: de
e ol | Prev_itetet el e
.
il b ™
. b omercn
£ b megemt
» bmus7 g ey o
Prow_t etadtal: du
clk D~ — Preiuten i de
» > P
reset Prev_imteal: de

Figure 3: Branch Metric Unit

68

A. C. Traceback Memory Unit

The memory block (refer to figure 5) stores the path traversed in the trellis. The memory
stores paths traversed starting when counter has count equal to 3, which is when the trellis is
normalized. The last two counts force the paths to state 0 as can be seen in the trellis diagram.
However, in the traceback, the state is converted into 3 bits to specify whether it came from an odd
state or even state. Traceback starts when traversal in the trellis is completed. The traceback starts
at state 0, since the path is forced to end at this state. After the whole path has been determined,
decoding starts. The decoding process simply obtains the 2 bit original data, depending on the path

followed.

=
—=
=
=
A A N
s) 5 opem0
— | count e AEYIVOL P l urvivor_yad pmewnc0 L
::z el pomewicl L)
3 wor_ym2 pmetnic2)
Lo _ped _menicd
EETI S RV O
oot pfuorps pomelics
i o 5 p_metich
7 puviver,
L > el ponelc]

¥

Figure 4 : Add-Compare-Select Unit

P lea_mem on_tb,

enabtle_tback

_SLack

mO<1 32>

0<1 32>

- e e v_etate0< 1 3> mein0<1.32
— N s

ml<l 32>

1<1:32>

m2<1:32>%

2<1°32>

e i eV _state2< 13> mem2<1:3
2 nv_,nmaffdryﬂfl 132

m3<l 32>

ma<i:32>

4<132>

e ov_stated< 1 3> memd<i 32

m3<l 32

3<1:32>

e e OV_Ra1e3<1 3> mem3<1:32
.———'.-ov_ﬁ-l-é<l 3> memé<132

me<1:32>

6<1:32>

m7<1:32>

7<1:32>

e [ev_sa107< 1:3> mem7 <1:32

I

date<1:2>]

rem3tyiiceback

]

resetem—

Figure 5 : Traceback Memory Unit

69

II1. Results

The designing process involves encoding in Cadence's Leapfrog Hardware Description
Language (HDL) and testing, and downloading to Xilinx's Field Programmable Gate Array
(FPGA).

In encoding in HDL, the encoder and decoder were divided into small blocks, as can be
seen in Appendix B : VHDL codes. Each block was designed, and then tested. When the HDL
simulations were verified, bigger blocks were formed by instantiation. Thus, the software design
was divided into four main blocks: the encoder (encoder_block), the branch metric unit (bmu), the
add-compare-select unit (acs_s) and the traceback memory unit (mem_min).

The encoder was sub-divided into two blocks : the convolutional encoder and the encoder
counter. Eight blocks further described the branch metric unit, a branch metric unit for each state,
and then instantiated. The ACS unit was divided into two blocks, the instantiated ACS (inst_acs)
and the path update unit (path_update). The instantiated ACS was composed of two major blocks :
the ACS for even states (acs_even) and that for the odd (acs_odd). The traceback memory unit was
composed of the memory block (meniory) and the traceback and decode block (back). Included in
the instantiation of the Viterbi decoder (integrated) was the decoder counter (counter).

When the design was tested, it was synthesized using Galileo Exemplar Logic which
simulates the design in actual circuit of gates and flip-flops. From this step, total number of
Configurable Logic Blocks (CLBs) used can be obtained. which determines the size of the FPGA
to be used.

After synthesis, the file generated by Galileo was imported back to Cadence. After which,
Cadence’s Design Flows performs four steps : edit design, netlist, place and route and generate
physical.

The Xilinx schematic is then acquired, which indicates the pin outs of the FPGA. Then,
XACT Design Manager (XDM) downloads the design into the FPGA and using the HP Logic
Analysis System. the design can be tested.

However, only Xilinx 4003PG84 and 4010PGI191 FPGAs were available, having 100
CLBs and 400 CLBs respectively.

The encoder, when synthesized, used up 20 CLBs. The decoder, when synthesized in
Galileo used 1024 CLBs. However, when Galileo Leo Exemplar Logic was used, 711 CLBs were
occupied. But, when the xn/f file generated by Galileo Leo was used in Cadence’s Design Flows,
the Xilinx schematic diagram was not created.

The encoder was downloaded to the Xilinx 4010PG191 FPGA. The decoder was

simulated using Xifinx 4025EHQ240-2 FPGA and the Verilog Simulation was verified. However,
as this FPGA is not available, the decoder circuit was not downloaded and tested in hardware.

70

Count 1 2 3 18 19 20

< Gan) \\

)

N

EEIITITYIE

Figure 6 : Trellis Diagram

Noise was simulated by changing up to 5 of the 32 bits in the received word input to the
decoder, the Viterbi Decoder was able to correct and attain the same original data was long as the
errors were separated by the minimum distance, dg.

Thus, the Viterbi Decoder can correct a certain received code word depending on the
errors. If the received code word is closer to another sequence when it goes through the trellis
diagram (refer to figure 1), then this would be the output of the decoder. Meaning, there could be a
5-bit error in the received word, which the decoder can correct, and there are some codes, which it
cannot correct, depending on the maximum-likelihood to any code sequence in the trellis.

Data

Received

Figure 7: Output of the decoder without any errors simulated

| rie ran view Sewnh lous o Optony

L. w0 Y 0% GG -
i. ’ e]

Figure 8: Output of the decoder with 4 errors simulated (corrected)

71

IV. Conclusion

Reliability of transmitted information is very important in telecommunications. Thus,
error-correcting devices are becoming a necessity in the present.

The use of error-correcting codes may increase the operational range of communications
systems, reduce the error rates and reduce the transmitted power requirements. The major
advantage of trellis codes is that coding gain can be attained without bandwidth expansion or data
rate reduction making it attractive for bandwidth limited systems.

Convolutional encoding and Viterbi decoding are commonly used in communications at

present. Its applications include high-definition televisions, modems, satellites, digital televisions
and digital audio broadcasting.

The Viterbi algorithm proves to be a very useful technique in error-control. It can be

implemented serially, which is slower yet occupies less space or parallel processing which would
be faster yet bigger, depending on the need of the user.

References

(1] Rhee, Man Young, El‘r'or Correcting Coding Theory, McGraw-Hill, 1989.
[2] Hendrix, Henry, Viterbi Decoding Techniques in TM320C54x Family : Application Report,
Texas Instrument

[3] Flem'ing,‘ Chip, 4 Tutorial on Convolutional Coding with Viterbi Decoding, Spectrum
Applications

[4] Kindred, D., Butler, B., Zehavi, E., Wolf, J., Multirate Serial Viterbi Decoder for Code

Division Multiple Access System Applications, Qualcomm Incorporated, October 1996

[5] ']V;Zl'sti“ez’ Kennet, Mack, Gregory, Viterbi decoder Jor wireline modems, Paradyne, March

[6] :‘319";, Ho Jun, Kwak, Heung Sik, Viterbi decoder Jor a high definition television, January

(7] Yeh; Nan-Hsiung, Olson; Charles R. , Pipclined Viterbi decoder Ampex Corporation,
October 1993 !

[8] Castro, Frederick, Viterbi Convolutional Error-Correcting Coder-Decoder, UP EEE, 1998

[9] Smith, Michael J. S., Application-Specific Integrated Circuits, Addison Wesley Longman,
Inc., 1997 o

72

	2021_02_18_13_46_50_016
	2021_02_18_13_46_50_017
	2021_02_18_13_46_50_018
	2021_02_18_13_46_50_019
	2021_02_18_13_46_50_020
	2021_02_18_13_46_50_021
	2021_02_18_13_46_50_022
	2021_02_18_13_46_50_023

