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ABSTRACT

Material characterization and modeling of materials being used in energy-dissipating devices is a
Prerequisite in the development of accurate models which can predict the behavior of these devices. One such
material in silicone putty used in the Shock Transmission Unit (STU). This paper discusses the material
characterization of silicone putty using a flat plate rheometer and its modeling using a fractional derivative
maxwell model under low frequencies of loading. The resulting constitutive equation is approximated using
the L1-Algorithm Jor fractional derivatives.

L. Introduction

Energy-dissipating devices of various forms have been developed making use of different
materials to dissipate energy, such as friction materials, viscoelastic polymers, viscous fluids,
ductile metals and others. These devices are mechanical dampers which dissipate significant
amount of energy, augmenting the energy-dissipating capability of structural systems. Other
benefits provided by adding energy-dissipating devices (especially in bridges) are effective
distribution of forces and induced load-sharing among the substructure components. One such
device is the Shock Transmission Unit (STU) which makes use of silicone putty [Pritchard, 1989].

‘ Silicone putty s classified as a reverse thixotropic material. A thixotropic material behaves
like a solid when unstressed but will flow like a liquid when pressure is applied to it. Thus, silicone
putty flows slowly when constant pressure is slowly applied to it, but will exhibit solid material
behavior when it experiences an impact (high velocity) load [Brown, 1996].

At low frequencies of loading the silicone putty behaves viscoelastically but at high
frequencies of loading it stiffens. It is during the low frequencies of loading that the STU dissipates
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energy which can be seen in the hysteresis of the device. However, at high frequencies of loading
the silicone putty behaves like a solid effecting load sharing among substructure components
without energy-dissipation [Tanzo, 1996]. It is during low frequencies of loading that is of interest
in this paper, i.e. the characterization and modeling of the behavior of silicone putty at low
frequencies only.

II. Material Characterization

The physical properties of silicone putty prevent it from being characterized by standard
tests such as simple tension/compression, equibiaxial tension, simple shear and pure shear-
However, high precision rheometers are now being routinely used in laboratories which can test
materials like silicone putty using oscillation tests.

i

rheometer controller

Figure 1. Flow Chart of the Experiment
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Figure 2. Storage G’, Loss G”and Complex G+ Modulus

The silicone putty was characterized using a flat plate rheometer at a constant oscillation

Strgss of 3 Pa. It was subjected to different oscillation frequencies at a constant temperature of

20°C. The flow-chart of the experiment is shown in Figure 1. The material storage modulus G“and

loss modulus G” were determined. Using these two parameters a constitutive equation model for

gle silicone putty can be developed. Figure 2 shows the plot of G, G”and the complex modulus
*

III. Maxwell Fractional Derivative Model
Although a generalized standard solid model, of the form
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can be developed from the oscillation test on the silicone putty, a large number of terms and/or
Parameters must be used in order to come up with a suitable curve fit. However, with the use of
fractional derivative modeling, the number of parameters needed are greatly reduced to as few as
three parameters in modeling the material with high accuracy. Fractional derivative modeling takes

the form,
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with 0 < @< ] and I is the gamma function.

A fractional derivative maxwell model was developed from the results of the oscillation
tests,
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with g assumed equal to p and less than unity. Taking the Fourier transform of both sides of the
equation,
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Equation 6 can be manipulated to separate the real and imaginary parts which correspond to the
storage and loss modulus, G’and G”, respectively. One arrives at the following expressions:
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Knowing that G* = /G +G"? , the Levenberg-Marquardt algorithm is then used to apply a curve
fit to the test data. The curve fit, shown in Figure 3, resulted in values of y,=1.8981e +05 Pa,

A=0.64133 (sec)*** and g = p = 0.82234.
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Figure 3. Fractional Derivative Maxwell Model Curve-Fit
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IV. Linear L1 - Algorithm

A closed form solution of an equation involving fractional derivatives is very difficult 10
derive except for the order of the derivative equal to one-half. One can then take the Lapl.ﬂce
transform of the equation and arrive at a solution. However, for the general case, numerical
approximations are normally used in order to solve equations having fractional derivatives of
arbitrary order. One such approximation is the linear L1-Algorithm which assumes that the
function whose fractional derivative is being taken is piecewise linear in every subinterval.

The fractional derivative definition,

diz(r) 1 dI, (&)

= — @
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can be expressed in the following form,
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Applying the assumption that (1) is piecewise linear over each subinterval [jA ( + ])h];
we obtain the L1-Algorithm. Following the formulation of Koh [1985], the derivative of the shea
stress in the subinterval is approximated by

T, =T,
T(’—@E%l‘ an

Jh S &< ( + 1)h, which is independent of ¢ in the subinterval. This makes it possible to integrat®
and simplify equation 10, yielding the L1-Algorithm.
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This equation can be written in quadrature form as,
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30



1

W, = ——
I'2-gq)
o, =1_(2—_q)[(j+1)"q =27+ (G =D"],  1sjsn-1

Substituting back into the fractional derivative maxwell model, equation 4:
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Then we can solve for 7, as,
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(18)

(19)

(20)

D
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Similar to Koh’s formulation, a shifted L1-algorithm was developed in order to lessen the
Number of terms which will come into the equation because n = #/h becomes very large as ¢

increases,

A fortran program was developed using the shifted L1-algorithm mentioned. For the purpose
of verifying the developed program, a numerical example is provided. The L1-Algorithm is

Implemented for a shear strain, varying sinusoidally,
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where @ is the frequency of the sinusoidal load. Taking the Laplace transform of the resulting
fractional derivative maxwell model equation and solving for t (s)

s’ Yo
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taking A =w=y5¢=1.0, q=0.5 p=1 and y; = 1000 in equation 24,
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The closed form solution of this equation was derived using Mathematics 3.0. One obsen"?;
from the plot of the closed form solution and that obtained using the fortran program, shown .
Figure 4, that the two are in very good agreement.
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Figure 4. Comparison of Closed-Form Solution with L1-Algorithm Numerical
Approximation (7 vs t)
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V. Conclusions

Silicone putty subjected to low frequency sinusoidal loading was successfully modeled using
a fractional derivative maxwell model. As a means of solving the resulting constitutive equation,
the L1-Algorithm was implemented using a fortran program which was verified by solving a
differential equation involving fractional derivatives which has a closed form solution. The
material model can now be used in the modeling of energy-dissipating devices which uses silicone

putty.
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