Philippine Engineering Journal {1996} XVil {1): 19-32

THE GENERIC NETWORK MODELING
LANGUAGE (GNM)

Erville D. Magtubo
Communications Engineering Division
Advanced Science and Technology Institute
Department of Science and Technology
Philippines

ABSTRACT

GNM is a language specifically designed to be the base language for the HERMES Project. This
language provides network engineers a tool for describing and designing a network topology. With GNM,
engineers can design their network in a graphical manner making it easier to be understood by other
engineers. This paper discusses the basic rules in using the language

r

INTRODUCTION

The de31gn and development of computer networks has never been an easy task. From
the drawing board 16 the actual implementation, computer networks may come out with a lot of
problems. The efficiency, speed and accuracy of the network are just a few of the issues that the
network designer has to take inio account. These issues become more evident as the need for
neiwork systems, by aimost any kind of business, grows.

To aid developers in their design of various computer networks, a number of
development systems are available in the market. These systems, usually software, help the
developer design, document and evaluate their network. It also cuts their total development time
by a considerable amount making development not only efficient but also fast. BONeS and
OPNET are examples of such development systems that are available in the market.

An essential part of these development systems is their language or modeling paradigm.
These languages (from now on, language will not mean a programming language in the strict
sense but some kind of modeling paradigm or behavior), usually following a certain methodology
that the development system promote, help the user in the design and specification of the network.
‘After the developer has specified the network through the language, the development system can
now perform a number of task that will test, verify and sometimes simulate the network. These
langnages can vary from being purely text to something that is highly graphical. Basically the
language serves as the mediator between the developer and the development system.

GNM is one such language or modeling paradigm. It is the language unsed by the

HERMES software, a network modeling and simulation tool developed to cater for students,
professors, researchers and for those whe caimot afford the very cxpensive network development

19

system. The developer models the network using GNM then HERMES simulates it and provides
the developer data from which he can evaluate the network that he designed.

This paper discusses the details of GNM. It will provide the developer the know how
to design neiworks usmg GNM. Afier reading this paper one can expect to be a knowledgeable
GNM “programmer”.

One more note, GNM is not a language in the strictest sense. It can be thought of as a
mere concept where further formalization can be done to make it a full pledged language.

GENERIC NETWORK MODELING
LANGUAGE

GNM stands for Graphical Network Modeling. 1t is 2 graphical language that aids the
network developer in his design. It aids the developer by providing him with a set of rules or
guidelines to work by. And since it is graphical, the output is a top to bottom overview of the
designed network.

Primarily, GNM is a language for the purpose of simulation. The network to be
simulated can be modeled with GNM then an engine can read this GNM specification and
simulate the model accordingly. To date, the only engine that can interpret or simulate a GNM
specified network mode! is HERMES.

GNM is a relatively simple language. Since it caters to students (would be network
developers) and educators, GNM was designed to be simple yet powerful enough to be able ©
model most of the well know network topologies and protocols. As much as possible, GNM
models the netwoik close to reality.

Among the seven layers of the OSI Protocol Hierarchy. GNM focuses on the three
lower layers. Modeling the Network, Data link, and Physical layers of the network would be
relatively easy. Although, modeling the other four upper layers is pessible with GNM, it would
be a bit complicated,

GNM is object-oriented and hierarchical. It treats the elements of the network as
objects having certain propertics and behavior. The objects are composed of several objects and
certain behaviors forming a hierarchy of objects. It is also event-driven. Since networks are
governed by events, GNM was designed to allow the developers define events from which
elements of the network can respond to.

In defining the behavior of the network, GNM employs the block-oriented language
adopted from BONeS. Here procedures or “codes”™ are treated as blocks in which these blocks

are composed of a set of connected blocks forming a hierarchy of blocks. This way “coding” will
be much simpler and code reusability will be promoted.

GNM STRUCTURE

A GNM network design is composed of four design levels. These design levels form
the hierarchy that make up the network design. The following are the four levels:

20

Figure 1. GNM Design Hierarchy

e Network - top level of the network design; the overall topology of the network is
manifested on this level of design

s Node/Station - second level: contains the definitions of the nodes or stations that
comprise the network '

¢ Process - it is in this level where the behavior of each process in a station is
defined: the actions of the stations in response to events are specified in this level

= Block - the underlying language of GNM; it is in this level where the procedures
and actions are defined

At the lowest level, blocks are composed of several blocks connected together. In
effect, blocks can be blown up to see the composition of that block. Blocks that can no longer be
blown up are calied primtitives. 'These primitives where are no longer represented by a set of
connected blocks but are defined using a certain Janguage (in HERMES, the primitive code used
is C).

As was mentioned, GNM is hierarchical. Iis hierarchical siructire can be viewed as a
tree where the network level is the root and the primitives are the leaves,

With this hierarchical structure, it will be easier to visualize a network configuration or
design. Each component of the network is treated as objects making the definition of its behavior
much easier.

DATA IN GNM

An essential part of a network is its data. The data in network can vary from a simple
control signal, or 10 a complex data packet. GNM allows the developer to define his data
requirements. He is allowed to define almost any kind of data type and of any size. Although,
varying implementations may have varying restrictions and limitations it their data handling.

21

GNM has no formal data declarations of types and variables like those that C and
Pascal have. Depending on the implementation of GNM declaration of variables and data types
may vary. For example in HERMES data types are defined graphically.

Although GNM does not have any formal declarations of types. GNM recognize most
of the common data types in any programming langaage. The basic data types are as follows:

integers

integer vector

integer matrix

real

real vector

real matrix

string

event (can be 1mpleme11ted as string)
void

D00 NS L

Of course, an implementation of GNM can have more than the basic data types above.

Aside from the basic data types, one can define structures composed of the basic ones.
Most of the time, the data requirements of networks canmot be represented by a simple integer or
array. GNM allows one to define data structures. This way complex data like packets and node
acknowledgments can be represented properly.

(2) (b)

Figure 2. (a) A simple structure

. {b) Structure within structure

22

There are two types of data in GNM

¢ Memory - variables that contain data can be defined with the use of memory. With
the use of memories, one can record data and keep track of the information
pertinent to any design level of GNM. Memories can also function as a
communication bridge between objects.

+ Paramefers - like functions in a programming langnage (like C for example). one
can define objects that require parameters. These parameters serve as input and
output containers with which one can pass data down in the design hierarchy.

THE NETWORK GEOMETRY

One of the impoitant issues in designing a network is its topology The topology simply
defines the connections from node to node, or even connections from one network to another.

Also, another concern in the network geometry is the medium. There are a ‘wide range of
media that can connect two nodes which has varying speeds and error tolerance. The table below
shows some of the common media. :

_ Medium Signal Propagation Speed
sound in air : 0.000001c
twisted pair 0.8c
coaxial cable ' 0.8
radio waves I
optic fiber - 0.8

As was mentioned the GNM language has four levels of design:

‘Network Ievel
Node/ Station level
Process level
Block level

bl

THE NETWORK DESIGN LEVEL

There are a number of different network topologies that can be adopted for a specific
network design. It can be as simple as full duplex link between two computers or as complicated
as hierarchical switched network. These network topologies are modeled in the network design
level.

23

The network design level of GNM is where the developer designs the network topology. It
is in this level where he adds the nodes or stations of the network and links them accordingly. It
is also in this level where the types of links are determined.

(M} Memory1 -[P] Parameter1
i Memory?2 [P Parameter2

Figure 4. A network example

The active objects in the network design level are the nodes or stations. These stations
may represent a computer node, a gateway or a file server. Also, these stations are the ones that
generate the traffic in the network.

Stations have what we call ports. Ports are basically the connection of the stations to the
other stations. The links are connected via these ports. If a station does not have any ports, then
it cannot be connected to any station. All data sent and received pass through this ports. It serves
as a window for the data to pass through going to stations connected to it. These ports can be
thought of as a modem connected to a computer. '

The example ‘in -Figure 4 is the classical sender-receiver topology. A sender node just

sends a packet to a receiver node and then the receiver sends an acknowledgment. The links are
implemented by two unidirectional links so there is no possibility of collision.

24

" In the figure, the big blocks are the stations. As shown, there are two stations, the sender
and the receiver station. The small squares are the ports and the arrow lines are the links. This
links represent the connections and flow of data in the design.

STATION/NODE DESIGN LEVEL

Stations are the major entities in any network. Stations can be computers, workstations or
routers. It can also be transmitters, receivers or network repeaters. These stations are the on--
responsible for creating traffic in the metwork.

Figure 4.1. A node design example

In GNN, nodes are viewed as a group of cooperating processes. These processes define
the overall behavior of the node in the network. Itis in this design level that a node is defined.

As was mentioned in the above paragraph, nodes in GNM are merely a collection of
cooperating processes. So, defining a node is simply adding the processes that will compose the
overall behavior of the node, Queues, random generators, and math functions are just some of
the processes that 2 node may need.

In Figure 4.1 the blocks represent the processes. Process generate events with which other
processes respond to. The diamonds are the ports. Ports are also processes and are in charge of
all the reception and transmission of data to other stations.

For processes to cooperate, it must be provided by a means to communicate. This
communication will allow processes to pass data and synchronize with each other. - GNM allows
interposes communication. Processes communicate via shared memory or through the use of data
ports.

25

Processes can be use memories to communicate. Since a defined memory in any design
level is visible to any of the objects, processes can pass data through the memories or use it as
synchronization control. But, the problém with conmmon memoriés is that all the processes in the
same node can access the memory location. To allow for a little protection data ports and paths
are introduced.

data ports

Figure 4.2. Data ports and paths

Data ports are simply memory variables where it is local only to the process who owns it.
The memory variable can only be acégssed by the owner. But, there is an exception. Processes
with data paths connected to another process data port can access that same data port. In effect
the two data ports are linked together and their values will always be the same. The data ports
can be though of as pointers pointing to the same memory location.

Data paths have direction. The significance of the direction of these data paths represented
the read and write permissions of the processes to the ports. For example, in Figure 4.2, the
Packet_Source process can write to the Transmitter process data port but it cannot read it. This
means that whatever process Transmitter writes o it’s data port, process -~ Packet Source can
read it. “To make Packet_Source be able to access the other data port, the data path should be bi-
directional.

PROCESS DESIGN LEVEL

A collection of cooperating processes constitute the overall behavior of stations or nodes.
Each process can be viewed as an inferrupt handler, responding to certain events and doing some
processing.

26

The processes represent the protocol of the network. Protocols are the set of rules
followed by the network in its transmission and reception of data. As was previously mentioned
GNM allows for modeling of protocols. Among the OSI Protocol layers, GNM concentrates at
the lower layers, namely the Network, Data link, and Physical layers. The other layers can still
be modeled but it would take a bit of effort. o

start state

Figure b. Process design example

In GNM processes are modeled with the use of Finite State Machines (FSM). Since
FSM’s are the de facto standard in modeling protocols, it is simply logical for us to adopt FSM’s
as the modeling paradigm. And because of the power of FSM’s, GNM can support almost any
type of protocol, resource, application, algorithm, or quening policy,

A process is awakened, run and eventually terminated. A good understanding of the
mechanisms by which a process keeps itself alive is essential for the development of effective
network models.

Each process operates in a cycle consisting of the following steps:

1. aprocess is awakened by an event.
2. the process responds to that event and performs some specified operation.
3. 1t then puts itself back to sleep and waits for another event.

Before a process puts itself to sleep, the process first specifies the events that will wake it
up again. A process that goes in to a state with no outgoing state transition has effectively
terminated itself: Since it cannot specify any events o wake it up, the process will never wake

up.

27

EVENTS

Events are the life blood of processes. Evenis wake up processes that constitizte the overall
operation of the node. In GNM events can be thought of as a two-tuple <who, eveni>, where
who is the process that triggered the event and event is the actual event. This way processes can
specify to whom it will respond to.

. The whe in the tuple can be unspecified. This will mean that the waiting process will be
triggered by event no matter which process triggered it.

Events are triggered by processes. Any process can irigger any event it wishes, but the
events triggered are only visible to processes within the same node. Processes cannot trigger
processes from another station. For example, in the simple sender - receiver topology, processes
at the sender node can not trigger an event for processes in the receiver node.

<piocessi, &
- <procdss2, eventl>

<processz,p/
: roceed>

Figure 5.1. FSM and its events

Events don’t have specified targets. All processes in the same node can see the event. It
is up to the process whether it will respond to the event or not.

Process.can trigger itself.
This way processes can have control in its own processing. Triggered events happen

instantaneously, This means that if a process triggers an event a time 1, all the other processes

28

will see the event at time 1. Listed below are the processes that trigger events.

e the time process
e the port processes
e any other process

THE TIMER PROCESS

All processes in GNM recoghize a single indivisible unit of time. Time is discrete. In
GNM, time is an integer number and time starts with 0.

Time is advanced by a global process called the Timer. The events triggered by the timer
is seen by all processes regardless of which node it is associated with.

Events triggered by the Timer is of the form <Timer, n> where n is an integer number.
This means that a process waiting for this event will be triggered after n time units from the time
it is put to sleep. In effect, an event of this form will act like a simple time delay event.

THE PORT PROCESS

Another important processes is the port process. The port serves as the interface of the to
the link which is in turn connected to other stations. It is through this port that the transmission
and reception of data takes place.

The port process has the following parameters:

1. error probability (ep) - this is the probability that a received packet is damaged. The
probability functions follows a normal distribution.

2. transmission rate (tr) - the transmission rate is rate at which a single bit is pumped
through the port. For example, if the transmission rate is 2, then bits of data are
transmitted every 2 time units.

The port process has a single data port. Upon receipt of a new packet the data pert
contains the data structure sent through the link. On transmission the data port does not have any
use.

‘When a process wishes to transmit data, the process must specify which port to transmit it
to. Also the process must specify the size of the data to be transmitted (in bits). This way the
ports will be triggered when to transmit and can compute the length of transmission. The amount
of time in transmitting the data given a specified length is given by the formula.

29

transmission time = pd 4 ((n-1) * tr)

where:

pd - propagation delay of link
tr - transmission rate

n - length of data/packet in bits

BLACK DESIGN LEVEL

GNM uses a hierarchical data flow block diagram as the graphical programming language
for defining the states of the state machines. The language is adopted from the BONeS Designer.
GNM adopted this language because its ease of use. Since each block performs a specific task,
the developer is abstracted from the “how’s” of the blocks. This way code can be easily reused.
The processing of each block is also abstracted.

The block in GNM performs specific tasks. There are blocks that do mathematical

operations. Some provide queuing, counting and even conirol flow. The number of tasks that a -

block can do are endless. The developer simply has to define this blocks for use.

The modules in the block diagram operate on data structures which propagate through the
block diagram on connections between ports. These data structures can be of any of the primitive
types or any user defined structures.

A module provides interfaces to other modules through inputs, outputs, and arguments.
The figure below is an example of a medule. A module can be specified i one of two ways:
either by primitive code or by an internal graphical structures.

The interface of a block to other modules are through its ports (ports here are different
from the ports of the station discussed before). Input ports provide a way for data structures to
enter the module while output ports provide a way for the module to pass data structures to other
modules.

The execution of the block diagram is fairly simple. It can be compared to a Petri Net
diagram. Every time a block receives a data structure from all of its input ports, the block is
executed. The block will only execute if all of its input ports are enabled.

Then after execution the block sends its output through its corresponding output port where
it triggers another block. This process continues until no more block is enabled.

I GNM states are treated like blocks, except that it does not have any input or output
ports like those shown in Figure 6. It also have two, blocks stop and start. These blocks serve as
terminators of the diagram.

30

Figure 6. Block Diagram

When- the state is executed, the start block automaiically triggers. In effect, the whole
diagram goes into execution. The stop block on the other hand functions like a sink. Data that
goes in this block does not go out again.

At the lowest level of the design hierarchy are the block primitives. These are blocks that
are already implemenied as code. GNM does not specify what type of language to use at the
lowest level. Depending on the implementation, the block primitives can be written in any
language.

31

32

	PEJ 1996 JUNE_Part20
	PEJ 1996 JUNE_Part21
	PEJ 1996 JUNE_Part22
	PEJ 1996 JUNE_Part23
	PEJ 1996 JUNE_Part24
	PEJ 1996 JUNE_Part25
	PEJ 1996 JUNE_Part26
	PEJ 1996 JUNE_Part27
	PEJ 1996 JUNE_Part28
	PEJ 1996 JUNE_Part29
	PEJ 1996 JUNE_Part30
	PEJ 1996 JUNE_Part31
	PEJ 1996 JUNE_Part32
	PEJ 1996 JUNE_Part33

