Philippine Engineering Journal {1996} XVI| {2}: 53 - 66

ELASTO-PLASTIC SOIL-STRUCTURE ANALYSIS
BY BEM-FEM SUBSTRUCTURE METHOD

Mark A. Zarco, Ph.D.
Associate Professor and Chairman
Department of Engineering Sciences
- College of Engineering
University of the Philippines
Diliman, Quezon City, Philippines

and

Thangavelu Kuppusamy. Ph.D.
Professor and Head, Geotechnicat Division
Charles Via Department of Civil Engineering

Virginia Polytechnic Institute and State University
Blacksburg, Virginia, USA

ABSTRACT

A method for solving soil-structure interaction problems which includes the infinite boundary effects
of the far field domain is developed. The method involves coupling boundary elements based on the Melan
fundamental solution with finite elements in a manner so as to-result in a system. of equations which is both
symmetric and banded. Analyses of nonlinear soil-structure interaction problerns such as bearing capacity,
lateral earth pressure and U-frame lock construction problems are performed to investigate the far field
domain effect. ' ' '

INTRODUCTION

Soil-structure interaction problems involve the solution of boundary value problems
involving two domains. A near field finite domain consisting of the structure and the soil adjacent
to 1t, and a semi-infinite far field domain representing the soil distant from the structure. Because
such problems normally involve complex geometry, boundary conditions and constitutive
behavior, they must be solved numerically.. ' ' :

A number of researchers have coupled the boundary element and finite element method to
solve problems involving a non-linear finite domain imbedded within an infinite linear domain.
The concept of coupling the boundary element and finite element method is described in
Zienkiewicz, Kelley and Bettes [141, and Johnson and Nedelec [7]. The main setback of coupling
the boundary element to the finite element method is that the symmetry and bandedness of the
stiffuess matrix resulting from the finite element method is destroyed due to the boundary element
method. Numerous researchers (Jirousek and Teoderescu, [6]; Zielinski and Zienkiewicz, [i3])
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have tried to remedy the problem of unsymmetry by developing alternative boundary element
formulations that produce a symmetric stiffness matrix. Neveriheless, the resulting element
stiffness matrix when assembled into the global stiffness matrix destroys the Iatter's bandedness,

NEAR FIELD SOIL
[FINITE ELEMENT MODEL]

Figure 1. A typical soil-structure interaction problem modeled using the proposed
boundary element-finite element model.

In the present study, a method for coupling the boundary element and finite element
method in such a way as to preserve both the symmetry and bandedness is developed. - This
method is implemented info a compuier program BEFEC, and a mumber of soil-siructure
interaction problems are solved to investigate the effecis of domain size, finite element type,
boundary conditions as well as ihe infinite boundary effecis on the displacements and stresses
predicted. :

COUPLED BEM-FEM METHOD

The application of -.the coupled boundary element-finite- element method to the solution of
soil-structure interaction problems was first presented by Brebbia and Georgiou [2], and later by
Vallabhan, et..al. [10]. In these two studies, the structure is modelled using finite elements, while
the foundation soil is modelied using boundary elements based on the Kelvin sclution. Because of
the manner in which the foundation soil is modelled, these approaches are limited to linear
problems where the far field domain is ignored. In the proposed coupled boundary element-finite
element method for soil-structure interaction problems, the near field is modelled using 4-node
isoparametric elements, while the far field is modelled using boundary elements based on the
Melan Solution, as described by Telles and Brebia [9], assuming a linear and bomogencus far-
field domain. Using this approach, the non-linear and nonhomogenous nature of the soil in the
near field domain can be modelled at the same time taking into consideration the effects of the
infinite far-field domain. Figure 1 shows how a typical soil-structure interaction problem is
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modelled using the proposed method. The technique for coupling the boundary element and finite
element method shall now be described. For elastostatic problems, the finite element results in a
system of iinear equations of the form:

KU=F m

where K is the fivite element stiffness matrix which is both symmetric and banded, U and ¥ are
the vectors of nodal displacements and forces respectively. For elastostatic problems iovolving
half-plane domains, the direct boundary element method results in a system of equauons of the
form; _ : .

HM U =GHP @

where H™ and G are matrices of influence coefficients based on the Melan fundamental
solution, and Uand P are the vectors of nodal boundary displacements and tractions respectively.

Multiplying both sides of equation (2) by (GM yl yields:

M) HO=p @
The nodal boundary tractlons are transformed lmearly into nodal boundary forces by: -
- F=MP e @y
where M is a square matrix. Muitiplying both sides of equation 3 by M yields: . '
| MicH [ uM b=k Y
which can be rewritten in the form:
| ko= e

where K=M(GM )_]H M can be viewed as an equivalent stiffness matrix for the boundary
element system. This matrix is both asymmetric and fully populated.

To assemble the equivalent boundary element stiffness -matrix into the finite element
stiffness' matrix in such a way as to preserve the bandedness of the system, the finii¢ element
system described in‘equation 1 must first be assembled such that the resulting system is partmoned

in the following manner:
KgiXn {P_{} - iF_{.} _ ' )
Ky 1Ko [|Us ] (Fp)] e

where U, and F, are the vectors of nodal displacements and forces respectively corresponding

to nodes located along the interface of the boundary and finite element system, while ¥ 7 angd-

Fyare the vectors of nodal displacements and forces respectively corresponding to nodes
exclusive to the finite element domain. The nodal displacements and forces along the interface of
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the boundary and ﬁmte element system are related by oompatlblhty and equilibrium which
requires that:

S i " | ®)
F,+F=0 o ©)

Applying equations (6) and (7} through (9) yields:
KeiXallu ) [ (10
Ky, 1Ky (U, 15y )

b 1 B ) b
where

Ky =Ky+K o an

Because the fully populated and asymmetric matrix K is 1soléteﬁ to the bottom right-hand
side corner, the resulting global stiffness matrix in equation (10) remains banded. It should also

be noted that only the sub -matrix K s» becomes asymmetric, Thus, aside from the upper
triangular portion of the global stiffness matrix, only the elements of K ss located beneath the
principal diagonal need to be siored. Because the number of nodes located along the interface

between the boundary clement and finite element system is small compared to the total number of _

nodes, the additional computer memory required to store lower triangular elements of K s 18

minimal. An algorithm for assembling, storing and solving a “partially symmetric” system like
equation (10) is given by Zarco [12].

The global stiffness matrix can further be made fully symmetric by discarding the skew-
symmetric part of K. The resulting symmetric stiffness matrix K* is given by:

ke =2[R4kT) . m

This technique for obtaining a symﬁxetﬁc boundary element  stiffness matrix has been
employed by Brebbia and Greorgiou, and Vallabhan et.al., and has been shown by Brebia f3].to
correspond (o a least squares approximation.

The proposed coupling method can easily be extended to the non-linear case. For a finite

element formulatlon based on the Newton-Raphson method, the incremental displacements AU’
for the i iteration is obtained by solving the system of equations:

v’ =[R{u' ' R(0?) | @

where K is the tangent stiffness matrix given by:

ﬁ:

2%
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and R is the residual vector given by :
R=KU-F (15)

Solving for AU'from equation (13), the displacements for the i* iteration of chan be obtained
by:

U =U" AU (16)

In most non-linear finite element computer programs, the tangent stiffness matrix and residual
vector are compuied for individual elements and then assembled to form the global tangent
stiffness matrix and residual vector. For the boundary element system, . the residual vector is;
given by:

R=K+U-F an

Since the far field is assumed to be linear, the equation K +Fis independent of U and the tangent

stiffoess matrix for the boundary element system is simply equated to K. In assembling the
tangent stiffness matrix, the same procedure for obtaining the system partitioned in the manner
described in equation (10) is followed. ’

EFFECTS OF INFINITE BOUNDARY

To study the effects of the infinite boundary on the strip-footing problem, different methods
for incorporating the infinite boundary into the finite element solution were investigated. These
included (1) coupled boundary element-finite element method described in this stdy, (2) the
analogue spring model, and (3) the use of infinite elements (Beer and Meek) [1]). In the coupled
boundary element-finite element method, two analyses were performed to assess the effect of
discarding the skew-symunetric part of the boundary element stiffness matrix. For all analyses, a
10 m. x 10 m. mesh was used. In the analogue spring model, the stiffness of the far field domain
was approximated using a series of springs connected to the nodes located along the right-hand
side and bottom boundary of the mesh. This is accomplished by imposing the mixed boundary
conditions for every node located along the boundary. .

Figure 2(a) shows the normalised relative vertical displacements along the surface versus
the normalised co-ordinate X/R where R = 10m. is the domain size. When the analogue spring
model is used, the underprediction in the vertical displacements with respect to the closed form
solution for values of X/R < 0.2 is within 15%. Using infinite elements reduces this
underprediction for X/R < 0.2 to within 10%. The coupled boundary element-finite element
method results in vertical displacements which are within 0.5% of the closed form solution. This
1s true both for the case when the full stiffness matrix is used as well as when only the symmetric
part is used.

Figure 2(b) shows the percentage error ‘with respect to the closed form solution in the
computed values of oxx along the diagonal. For the analogue spring model, errors in ox as large
as 40% occurring at X/R = 0.4 are observed. In general, the errors are larger than those in the
conventional finite element analysis are where the infinite boundary is neglected and the
displacements along the right-hand side and bottom boundary are fixed. Except for X/R =0.9

57




NORMALIZEG RELATIVE DISPLACEMENTS

[0, (%.0)-1,(10.0)}/a x 107

ERROR(%)

0.06

0.04

0.02

0.00

T T T T

~ FEM FIXED

FEM SPRING

FEM INFINITE ELEMENT
COUPLED FEM/BEM

. - COUPLED FEM/BEM )
R (SYMMETRICY

v — — ANALYHCAL SOLTUION

eBr o0
]

0.0

X/R

(b) oxx along diagonal elements

Figure 2. Effects of Infinite Boundary

58

70 7 y 1 T

% F 3
O ~ FEM FIXCD

80 - & — FEM SPRING E
& — FEM INFINITE ELEMENT

50 8 - COUPLED FEM/BEM |
& — COUPLID FEM/BEM

=¥ T (SYMMETRIC)
40 i, /‘0 i
e
30| o 3
/— a
A .
20 / i
A A ’
10 .a‘: a
. ®
- .“/ \.
I'e} [+ 1 1
0.0 0.2 0.4

1.0




where 68% error is observed, the use of infmite elements results in smaller errors in G as
compared to the conventional finite element analysis. The coupled boundary element-finite
element method results in values of ox which are in generai within 3% of the closed form
solution. Except for the point X/R = 0.9, where the symmetric solution results in a slightly
larger error, discarding the skew-symmetric part of the boundary element stiffness matrix does
not have any significant effect on the value of obtained.

ELASTO-PLASTIC CASE

The homogeneous strip-footing problem was solved again assuming an elastic perfecily
plastic material behaviour. A non-associated plasticity model assuming the Drucker-Prager
failure criterion as the yield surface and the Von Mises failure criterion as the plastic potential
function is implemented into a computer program BEFEC. Siresses are computed using a fully
implicit integration scheme based on the radial return method (Wilkins, i1i]). The consistent
tangent formwulation described by Simo and Taylor [8] is used together with the B methed to
compute the finite element tangeni stiffness matrix. For the analysis performed, the same elastic
parameters assumed in the homogeneous strip-footing problem are used. Also, it is assumed that
the soil has a cohesion intercept of ¢ = 1.0 kN/wd, ™ was both frictionless (¢ = 0°) and
weightless (y= 0.0 KN/m?).

The vertical displacement under the footing is measured relative to the edge point and
normalised by the footing half-width @ = 1.0 m., while the load w is normalised by ¢ for values
of w/c < 3.0, when the behaviour in both problems is elastic, the finite element solution gives
displacements which are 20% beneath those of the coupled boundary elemeni-finite element
method. At w/c < 4.0, just after yielding has just begun to occur, the disparity in the vertical
displacements computed using the two methods is reduced to 5%. However, as yielding
progresses, the disparity between the two methods begins to increase again. The solution
procedure progresses until w/c < 5.2 at which failure is predicted by boih the finite element
analysis as well as the coupled boundary element-finite clement method, This result is close to
the theoretical limit load w/c < 5.14 predicted by Prandtl. The most proncunce difference
between the displacements obtained using the solution procedures occars underneath the footing
(X/R < 0.1) where the finite element analysis gives vertical displacements which are 20% below
those obiained using the coupled boundary element-finite elerent method.

NONLINEAR U-FRAME LOCK CONSTRUCTION PROBLEM _

This problem as illustrated in Figure 3(a) consists of 2 U-frame lock structure constructed
on a clay foundation. Beside the lock, a 20ft. (6.1m.) high embankment with a slope 1:2.5 is
built. Prior to the analysis, initial stresses in the soil dae to self-weight are computed. The
construction sequence involves first building the U-frame lock, afier which the embankment is
incrementally constructed in lifts. Lastly, the lock is filled to capacity with water. The
construction of the U-frame lock is performed i a single load step by first assigning properties of
fluid concrete to the element comprising the U-frame lock, In succeeding load steps, these
elements are assigned the properties of hardened concrete to simulate the concrete setting. The
embankment copstruction is performed using the “backfili placeroent” procedure. In this
procedure, the elements comprising the embankment are assigned the properties of air. With each
load step, a lift is placed by changing the properties of the elemenis in that lift from those of air to
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Figure 3. U-frame lock construction problem
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soil. When the elements within each lift first placed, they are assigned the properties of a dense
fluid with a low modulus. In subsequent load steps, these elements are allowed to harden by
assigning the modulus of soil t them. '

In the analyses performed, the embankment is constructed in 10 lifts each lift being 2 ft.
(0.61m) high. The U-frame lock is assumed linearly elastic with E = 4.5 x 10° psf (21.5 GPa),
v = 0.2, and y = 150 pef (23.7 kN/m®). The soil in the foundation and embankment is assumed
to behave according to the hyperbolic stress-strain model (Duncan and Chang, [4]). A summary
of the material parameters assumed for the hyperbolic model are given in Table 1. To model the
relative movement between the different materials, interface elements (Goodman, Taylor and
Brekke, [5] are used. These clements are placed along the interfaces between the lock and
foundation, lock and embankment, and foundation and cmbankment. A bilinear material
behaviour was assumed for the interface elements.

Table 1. Material parameters for soils in U-frame lock problem ('Non-iinear case)

Material _ o ,

Parameter Foundation Embankment
Modulus number, K 340 300
Modulus exponent, » 0.011 . 0.5
Failure ratio, Rf ' ' 0.8 B 0.8
Cohesion intercept, ¢ 1000 psf 400 psf
Friction angle, ¢ _ 0.0 deg - 37.0 deg
Unit weight, Y 125 pef 25 pef
Coefficient of lateral
earth pressure at rest, Ko 1.0 0.5
Poison’s Ratio, v 0.49 0.3

Table 2. Material parameters for interface elements in nonlinear U-frame lock problem

Material Lock- Lock- Foundation-
Parameter Foundation Embankment Embankment
Shear Stiffness -
K (psf) 36000 6000 36000
Normal Stiffness -
K (psh) _ _ 1x 108 1x 108 1x 108
Minimum Shear
Stiffness (psf), Ks 100 100 i00
Minimum Normal
Stiffness (psf), Ko _ . 100 <100 : o100
Cohesion, ¢ (psf) 1000.0 0.0 1000.0
Friction angle, ¢ ‘ - 0.0 deg 17.0 deg 0.0 deg
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Table 2 gives a summary of the material parameters assumed for the interface elements.
The effects of the infinite boundary are investigated by performing two analyses. In the first
analysis, the problem is solved using only the finite element method, while the coupled boundary
eiemem finite element method is used in the second analysis, :

Figare 3(b) iilustraies the miesh used in the coupled boundary element-finite element
analysis. In this mesh, the point labelled A is located on the foundation sarface 150.0-fi. (45.7
m.} from ihe centreline is-used as a reference point for measuring all displacements. A similar
mesh with a reference point for measuring alf displacements. A szimilar mesh with the
displacements along the right-hand side and bottom boundary fixed was used in the finite slemeni
analysis. For the far field in the coupled solution, it was assumed that E = 1.5 x 10° psf (71.8
MFa), v = 0.495. This value of E was obtained by averaging the tangent inoduli along the
boitorn boundary of the boundary based on the initial stress analysis.

Figure 4(a) shows the vertical displacements along the surface, measured relative to point 4
and normalised by the embankment height H, versus the normalised co-ordinate X/, where [ =
150 ft. (45.7 m.) is the length of the foundation domain. - This figure shows that for ail values of
X/L £ 10, taking into account the effects of the infinite boundary results in a ten-fold increase in
the computed vertical displacements as compared to the case where these effects are ignored.
This disparity is much greater than that observed in the strip-footing problem and can be
explained by the fact that the loaded area to the depth of the foundation domain in this problem is
significantly greater than that in the strip footing problem.

Figure 4(b) shows the lateral earth pressures exerted by the embankment on-the lock wall.
In this figure, the lateral pressure is normalised by the quantity yH where y =125 pcf (19.8 KN/m
%) is the unit weight of the embankment soil and is plotied versus the normalised co-ordinate ¥/H
where ¥ is the distance from ihe base of the embankment. For values of ¥/H > 0.7, the coupled
boundary element-finite element method resulis in iateral earth pressures which are as much as
15% greater as compared to those obtained using the finite slement method only.  For values of
Y/H < 0.7, the finite element analysis gives values of lateral earth pressure which are
significantly greater than those obtaimed using the coupled boundary eclemeni-finite element
method. The disparity is most significant for ¥/H < 0.3 where the finite element analysis gives
lateral earih pressures that are double those obtained from the coupled boundary element-finite
element method.

CONCLUSIONS

A method for solving soil-structure interaction problems that mc!udes the infinite- boundaxy
effects of the far field domain was developed. The method involved coupling boundary elements
based on the Melan solution with finite elements in a manner 2o as to result in a system of
equations which is both symmietric and banded. For the elasiic strip-footing problem, it was noted
that neglecting the effects of the infinite boundary resulted in errors in the displacement and
stresses as large as 20% and 30% respectively when compared with the close form solution.
‘These errors were observed te decrease with increasing domain size and were unaffected by the
type of finite elements used as well as the type of boundary condition assumed on the right-hand
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side boundary. Simulating the infinite domain using the analog spring model or infinite elemenis
decreased the errors occurring in the displacements but affecied the errors in the stresses. Using
the proposed coupling method resulted in displacements and stress within 3% of the closed form
solution. For the elasto-plastic strip footing, the infinite boundary resulted in vertical
displacements which were 20 neglecting the far field. For the nonlinear U-frame lock
construction problem, taking into consideration the effects of the infinite boundary resulted in a
ten-fold increase in the vertical displacements as compared to the finite element analysis. The
infinite boundary also resulted in lateral earth pressures against the lock which were half of those
obtained when the far field was neglected.
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