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AN ALTERNATIVE EQUATION

Edgardo S. Pacheco
Vidal A. Tan Professor of Engineering Mechanics
College of Engineering
University of the Philippines
Diliman, Quezon City

ABSTRACT

The integrated equation of the clastic curve of an clastically supported continuous beam that is
acted on by any numbecr of concentrated forces, concentrated couples, and uniformly varying loads is
obtained by using the Laplace transfarmation. The support may consist of a Winkler foundation, and/or
simple supports and/or cantilever supports which may be lincarly clastic or rigid.

INTRODUCTION

One of the earliest comprehensive treatment of the problem of beams on elastic
foundation was made by Hetenyi [1] who obtained solutions to numerous problems involving
infinite as well as finite length beams subjected to various systems of applied loads. Miranda and
Nair [2] obtained the integrated equation of the elastic curve for arbitrary loads when the beam is
supported by a Winkler foundation only. Ting [3] obtained the equation for arbitrary loads when
a single span beam is elastically retrained at the ends while resting on an elastic foundation.

In Ting's solution, expressions for the slope and deflection at the origin (left end of
beam) are obtained by using two boundary conditions at the right end, namely,

—E]y"(L) = I,y'(L)
and
—E[y"'(L) = K,y( L)

where K, and I are the deflection and rotation spring constants, respectively, for the right end
support. The terms I and K[, as well as I} and K (the spring constants for the left support), are
always present in Ting's solution regardless of whether the end restraints are elastic or rigid.
These constants assume infinitive values when the end restraints are unyielding. This writer
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avoids the mathematical awkwardness of terms in the solution having infinite. values for rigid
supports by using a different approach in evaluating the deflection and the slope at the left end of
the beam.

To make the solution free of any unevaluated integral, this paper considers only
distributed loads that are uniformly varying since these are usually the loads of interest. In
addition, to facilitate the writing of a computer program for determining deflections in single
span as well as continuous beams, the presence of internal supports as well as end restraints is
made explicit in the solution.

An application of the theory of beams on elastic foundation is the determination of the
stresses in a thin-walled circular cylinder that is acted on by rotationally symmetric loads [1], [4].
The cylinder may be provided with circumferential stiffener rings. When the stiffener rings are
equally spaced and the load is uniformly distributed along the cylinder, a longitudinal strip of the
cylinder between two consecutive rings can be treated as a single span beam on elastic foundation
that is cantilevered at both ends. [1]. If for some construction or other reasons the stiffener rings
can not be spaced equally, a longitudinal strip of the cylinder behaves as a continuous beam on an
elastic foundation. The integrated equation of the elastic curve obtained in this paper solves this
and other problems. The solution obtained includes the results in [2] and [3] as special cases.

Another application of the solution obtained in this paper is the analysis of beams that
are elastically supported by perpendicular cross beams.

Derivation of the Equation:

The differential equation of the elastic curve of a beam on an elastic foundation (Winkler
foundation) is

4

dx

EI ;v+ky=q(x) (1)

beam deflection

where y(x)

EI = flexural rigidity of the beam
k = modulus of the foundation
g(x) = load function for the beam, i.e., the intensity of

the distributed load at a point x in the beam.

When the loads on the beam consist of concentrated forces, concentrated couples, and
uniformly varying distributed loads, and if the beam is additionally supported by cantilevers as
well as simple supports, the free body diagram of the beam will be as shown in Figure 1. For
convenience, the origin of coordinates is located slightly to the left of the leftmost load or
reaction. Thus, the leftmost loads or reaction will be at x = O+.

L is the length of the beam, c;, a;-b;, d;, g;, and f; are the x coordinates respectively of n
concentrated forces P;, m distributed loads A;, B;, j applied concentrated couples Z;, the location
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Fig. 1

of h simple supports, and the location of p (p=0, 1 or 2) cantilevers. R; is the reaction at a
simple support. M; and V; are the reactions at a cantilever support which may only be located at
the left and/or the right end of the beam. The upward distributed force ky(x) represents the
reaction of the foundation.

Let k = 484El Then,

¢(x)

4 _ N
+4p7y= o (2)

d'y

4
dx

The load functions for the applied forces and the support reactions are (see Pacheco [5])

n

for P;: ZP.5(x—c,.)

!
=

1
forZ,: — Z,5'(x—d,»)
i=1

for A-B; : gtA +u(.\‘—a,)}[u(.\'—a,)—u(x—b,)]

R
for R; : ZZ;R@(A‘—&-)
for V; : gl/,é(x—f})
for M, : —gM,é'(x—.f})

where u is the unit step function, & is the Dirac delta function,
and &' is the unit doublet.
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If a simple support is linearly elastic, R; is to be replaced by -k;y(g;) where k; is the
spring constant of the simple support and y(g;) is the unknown deflection at that support.
Similarly, at a linearly yielding cantilever, V;j is to be replaced by -K;y(f;) and M; is to be
replaced by -H;y'(fj), where K; and Hj are the deflection and rotation spring constants,
respectively.

Substitute the load function into (2) to get

4

El %+4ﬁ4y:||= i!’,é{x—c, - 22,5'(x—d,)J
i=1 1=|

wl B _4 ]

+Zl.Ai + ﬁ(x—al)J[u(x - ai) - ll(,\‘—bi)]
+§R,.5(x—gi)+gr/,a(x--ﬁ)—gzw,a'(x—ﬁ) (3)

Take the Laplace transform of both sides of (3) to obtain

s*y(0) .\ s*y'(0) . sy (0) N ¥ (0)
s'+4pY s +4pt T +4pt st +ap!

Liy} =

P exp( ) iisexp(—d,s) i 1

SRS v4p SE s +4p 5 Ells" +48")

‘?U

!

4 B4
s bas2

} -, s exp(—bl .s')]

R exp( gs) ii exp(——_/;s) ’ M,- sexp(—f,s)
:IEI Y+4p° +,=| El s'+4B8° S EI & +43"° (4)

Since the origin was placed slightly to the left of the leftmost load and reaction, then

M(0) V(0)
}’(0)=—E]—=0 and y (0)= El =0
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where M(0) and V(0) are the sheas force and bending moment, respectively, at x = 0.

From Erdelyi [6],

as® +bs* +cs+d

L"{4,B3 KEwyT }=4,B"acos(ﬂ\:)cosh(,8x)+

(2,8 b - d) cos( ,Bx) sinh( fx) + (2,3 b+ d) sin( fx) cosh( Bx) +
2 fBessin( Bx) sinh( Ax)

Using the convolution integral in getting the inverse transform of the term involving the
distributed loads, the inverse transform of (4) is found to be

70 = HOD, () + 5 (00, () + 2550 plx = )fulx—e)

o] e
4ﬂE1:llt{%(l_q%[ﬁ(x_al)]))rg—:llL [ﬂﬂz ']+ ﬂ‘J}l

{%Ll ¢O[ﬂ(x_b,)]+ﬁ:::'{‘m'[ﬁ;_h”

)
[ B(x-b,)]+ = a'J}

| Ri
u(x b leﬁd) [,B(x—d,)]u(x—d,)+;ﬂ3E1

d)3[,3(x—g,)]u(x—g, z———d) [,Bx g,)]u(x g,)

S plx= £ )ls- 1), )
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where, following the notation of Miranda and Nair [2],

@, ( fix) = cos( ) cosh( fx)

@,(2) = 3 [sin( 32) cosh{ ) + cos{ ) simh( )]
,(p) = 5 sin ) sinh( )

CD3( Bx) = %[sin( Bx) sinh( Bx) — cos( Bx) sinh( ,Bx)]

Two equations of equilibrium yield the following:

1 | )
Y F=0= ZP+ZA +B( ,—a,)+ZR,+ZV,—kI,’;y(x)dx (6)
i=1 i=1

S ”'r - —a \a. .
ZM0=O=;PC.+I [ib —a?)+ (8- 4)e ')('+2b')}

171 2 6
j 1 ) )
+22i+ZRig,- +ZV,f, +2M,- — kS xy(x)dx (7)
i=1 i=] i=1 i=1

where y(x) is as given by (5).

Through routine integration, it can be shown that

J@,( px)dx = @, (Bx)/ B +c
fo,(f)dx =,(px)/ p +c
Jo,(fx)dx = D, () / B +c
J@,(Br)dx = -y (px/48) +c
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[x®y( r)ax = x®,(Bx) | B - D,(fx)/ B +c
[x®,( fx)dx = —Dy(Bx) / B +xD,(fx)/ B +¢
[ x®,( fx)dx = x@,( fx) / B +Dy(Ax)4B7 +c

[x®,( fe)de = D,(fx) 1487 = xD(Bx) 14 +c
Use of the above integration formulas in evaluating f y(x)sx and J xy(x)dx results in

1 ) )
A+D.RC + ZV,D, + ZM, F —Gy0)= Hy'(0) =0
i=1 i=1 i=1

(8)
and
1 ) )
J+ZR,N,+ZV,Q,+ZM,S,—Ty(o)—Uy'(o)=o (9)
i=1 i=1 i=|
where

m

1= S rop(1-e)}+ 34220 ~a)-4(1-a o [s(1-0)] 1)

1=1 2

B -4
b, —a,

+

(@,[p(L-a)]/ B2)+ a4 (L-b - [8(2-8)]/ B)

B — A o)
+b:—a,-l {_(Dz[ﬂ(L—b,)]/ﬂz’f(a,—/’:)(DI['B(L_b")]/’B_(I—ZaL}

kZ,
Y e B(L-d)

C=op(L-g)], D =wo[p(L-1), F=ko,[p(L-1)]/pEI

G=ko(pL)/ B, H=kd,(AL)/ B°
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J= ;Z'IP,'[_CDI[IB(L_C")]/'B + L(l),_,[ﬂ(l,—c,)” +§[%(bi2 —a,2)+

(B, - 4,)(b,~a,)(a, +2b,)
6

—a{(L-a?)r2- L[ B(L-a)|/ B

+@,[A(L-a)|/ B} + ; :; [L(Dz[ﬂ(L—a,.)]/ﬂz ~@,[p(L-a,)]/ B°
20 =30, +a})16)+ 4{(L -b2) 12~ Lo [ p(L-b,)]/ B

(20 30, +a?) 1 6]+ 4,{(L -67) /2~ Lo [ B(L-5,)]/ B

+¢2[ﬂ(['_bi)]/ﬂ2}+ b ::I [_Lq)z[ﬂ(l‘—bi)]/ﬂz +CD3[,B(L—b,)]/,B

Ha,-0){L0[B(L-0)]1 p}-0,[B(L-0)]/ B?)
~(2L? =3a,L* —2b +3a,b?) / 6]
ilﬁkZEI{an [B(L-d,)]+®,[p(L-a,)]/45)

N, = Lo B(L-g)]- 0 [B(L-g)]/8. O =Lay[p(L-f)]-o[p(L-1)] 18

k
B EI

S, = —5—{L®,[ B(L- f)]+ @[ AL~ 1,)] 1458}
T=kLO(BL)/ p-@,(BL)/ B7],  U=k[®,(AL)/ 87 -,(AL)/ ]

Solve (8) and (9) simultaneously for y(0) and y'(0) to obtain

| ) )
AU - HJ + 2 R,(UC, - HN,) + zV,(UD, - HQ,) + XM,(UF, ~ HS)
i=| 1=1

i=1

HO) = GU - HT
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GJ - AT+ZR(GN TC,) ZV (GO, - D)+ Y. M(GS,~ TF,)

' i=1 i=1
y(0) = GU—TT

Substitute the expressions for y(0) and y'(0) into (5) to get the integrated equation of the elastic
curve:

AU - HJ (GJ — AT &, ( fx)
W) = G @) Gu T
4 Z,
+;ﬂ?d) [,B xX-— c u X-c, Z/f LI )]u(r a’)
1 4, B-aY orp(x-m)]
+4,B E[Zﬂ_ (l—d)o[ﬂ(x—a,)]+ b —a, I— ,Bz J

P28 ) hfaa)- (10 ple-0)

g—

r
B -4, ,B(x—b,) a,b,
+bi‘ai|L—[:B2 ]_l (D[IB\ b]J

_x'—Ba, ]u(x_bi)}_'_gRi[q)J[ﬂ(,\-—gi)]zl(x—g,)/ﬂ3E1

+UC,. - HN, o )+GN, —TC, @,( fx)
GU-HT P Gu—Hr B

Swfoplx-g)ds-g) 56

,UD, - HQ GO, - D, ®,(B¥)
+ U S G T T

3w [@, B £ )]dx=1) £ 751
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GSI - Tl: (Dl(ﬂ\.)
GU-HT p (10)

+UF,.—HS,cD( |
GU —fr Do\ )+

The expressions for the slope, shear, and bending moment can be found by differentiating (10).
The following differentiation formulas from Miranda and Nair [2] will be helpful:

Table 1
Differentiation Formulas for @,

Ql'l én' q’n" én" '
20 -4B%4 4829, -4p38,
81 B, -48%, -an3e,
N Be, 32a, -ap3p,
25 B, 82e, B3%q

DISCUSSION OF RESULTS

Equation (10) involved 1 unknown reactions R; and, if the beam is also cantilevered, 2p
unknown reactions at the cantilever, where p is the number of cantilever supports (p = 0, 1 or
2). The values of these reactions can be found by using the fact that the deflection at a simple
unyielding support is zero and that y'(f;) = 0, where f; is the location of the cantilever.

If the simple support at g; is an elastic spring with spring constant k;, the reaction R; in
(10) will be replaced by -k;y(g;). Hence, there is available from (10) one equation for each
elastic support, thus enabling the determination of the deflection y(g;).

If the cantilevers are elastic, then the reaction Vi will be replaced by -K;y(f;) and the
reactive couple M; will be replaced by -H;y'(f;), where K; and H; are the deflection and rotation
spring constants, respectively. Again, two additional equations are obtained from (10) for each
cantilever support, so that there are always enough equations to obtain the values of the unknown
reactions.

If the beam is supported solely by the Winkler foundation, then (10) gives the complete
expression for y(x) in terms of the known applied forces and couples since R; = V; = Z; = 0.
Equation (10) is then equivalent to the result obtained by Miranda and Nair [2]. Note that the
unknown M(0) and V(0) appear in [2] whereas these are absent in (10) because of the positioning
of the origin in this paper. If the beam is additionally restrained at the ends only (single span
beams), (10) is equivalent to the result obtained by Ting [3].
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Another special case covered by (10) is that of a beam with simple and/or cantilever
supports that are elastic but the Winkler foundation is absent. This is the situation encountered in
a floor framework where beams rest on several perpendicular elastic beams. The value of k, the
foundation modulus, will be set equal to zero in (10). When k = 0, many of the terms in (10)
will be indeterminate of the form 0/0 so that L'Hospitals' rule must be used in the determination
of deflections.

Results from using (10) were tested against those obtained by Hetenyi for several cases
of loading and were found to be exactly the same for problems where Hetenyi obtained exact
solutions. For problems where Hetenyi obtained approximate solutions, the results obtained by
Hetenyi were found to be close to the exact solution given by (10). One of the examples given
by Ting [3] is the beam in Figure 2. A comparison of the deflections obtained by Ting with
those using (10) is shown in Table 2.

72 kip ,
30' 30
N g
H (4 Ho
3 K| K2
77777
6 _ 6 _ 4
k =3 x 10" psf E = 519 x 10~ psf I = 1.667 ft
Ki=Ky= 1.378 x 10% 1b/ft?  Hy=H,=11.019x10°® ft-1b/rad
Figure 2
Table 2
x Y y' M v
ft in radians ft-kips kips

Ting Eqg.10 Ting Eq.10 Ting Eq.10 Ting Eqg.10

0+ .0000 -.0002 .0000 -.0000 .12 .12 -.03 .024

6 .0000 -.0006 .0000 -.0000 -.09 .003 -.24 -.24

12 -.0012 -.0011 .0000 .0000 -5.14 -5.11 -1.59 -.1.6

18 .0012 .0013 .0001 .0001 -18.07 -18.07 =-2.15 -2.15

24 .012 .012 .0002 .0002 -12.78 -12.79 6.62 6.62

30 .025 .025 .0000 .0000 104.91 104.91 36 36
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It will be noted from the Table 2 above that, while the two sets of values agree in the
middle third of the beam, there are appreciable differences near the ends of the beam. These
differences are again present in the next example for which values obtained by Hetenyi, Ting,
and this writer are compared.

The second example considered by Ting is the same beam in Figure 2 except that the end
restraints are rigid simple supports. To simulate a rigid support, Ting used H} = Hy = O and a
very large spring constant (K;{ = K, = 90 gigapounds per ft). Hetenyi found the solution for
this problem to be

PB[cos B(L/2—-x)sinh B(L/2+x)—cosh B(L/2~x)sin B(L/2+x)
2k[cosh BL + cos AL|
—PB*[sinh f(L/2~x)sin f(L/2+x)+sinh B(L/2-x)sinh B(L/2+x)
2k[cosh fBL + cos SL]
_ Plcosh B(L/2-x)sinh(L/2+x)—sinh (L/2~-x)cos f(L/2+x)
- 2k[cosh BL + cos BL]

yx) =

y(x)=

M(x)

Plcos f(L/2—x)sinh B(L/2+x)—sin f(L/2—-x)cosh B(L/2+x)
¥ 4k[cosh BL + cos fL)
v(x) = Plcosh B(L/2-x)cos f(L/2+x)+cos B(L/2-x)coshB(L/2+x)
= 2k[cosh AL + cos AL]

Table 3
Values of Deflection, Slope, Bending Moment, and Shear for Beam in Figure 2
(Elastic Restraints Replaced by Rigid Simple Supports)

X Source Y y' M v

ft in radians ft-kips kips
Hetenyi 0.00000 0.00001 0.00000 -0.17644

0+ Ting 0 0] 0 0.18
Eq.10 0.00000 0.00001 0.00000 -0.17644
Hetenyi -0.00060 0.00001 0.21866 0.25384

6 Ting -0.0012 0 .22 -0.25
Eq.10 -0.00060 0.00001 0.21866 0.25384
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Hetenyi -0.00109 0.00000 -5.01290 1.62222
12 Ting -0.0012 0 -5.01 -1.62
Eqg.10 -0.00109 0.00000 -5.01290 1.62222
Hetenyi 0.00130 -0.00008 -18.06307 2.15792
18 Ting 0.0012 0.0001 -18.06 -2.16
Eq.10 0.00130 -0.00008 -18.06307 2.15792
Hetenyi 0.01211 -0.00022 -12.79707 -6.62217
24 Ting 0.012 0.0002 -12.80 6.62
Eqg.10 0.01211 -0.00022 -12.79707 -6.62217
Hetenyi 0.02471 0.00000 104.90600 -36.00000
30 Ting 0.025 0 104.90 36.00
Eq.10 0.02471 0.00000 104.90600 -36.0000

Table 3 compares the results obtained by Hetenyi, Ting, and this writer. It will be noted
that the results obtained by Hetenyi are exactly the same as the results obtained from Eq.10 of this

paper.

The last example in this paper treats a beam (Figure 3) which contains all the types of
loads and supports appearing in Eq. 10. The values of deflection, slope, bending moment, and

shear for this beam appear in Table 4.
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Table 4

b y y' M \"
in in radians in-kips kips
0o+ 0.0000 0.0000 4.14 -0.26
10 -0.0021 -0.0003 -1.97 -0.96
20 -0.0002 0.0010 -15.10 -1.66
30 0.0169 0.0020 0.41 1.21
40 0.0343 0.0012 9.09 0.53
50 0.0384 -0.0004 11.10 -0.13
60 0.0157 -0.0050 45.82 3.14
70 0.0000 0.0010 -22.80 3.14
80 0.0175 0.0014 17.90 4.08
90 0.0201 -0.0007 8.75 -0.90
100 0.0089 -0.0013 -0.20 -0.89
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Notation
The following symbols are used in this naper:
a;, b; = x coordinates of distributed load of intensities A; and B;, respectively;

A, C;, Dy, F;, G, H, I, N;, Q;, S, T, U = coefficients;
¢; = x coordinate of point of application of force P;;
d; = x coordinate of point of application of couple Z;;
E = modulus of elasticity of the beam;
f, = x coordinate of cantilever i;
g; = x coordinate of simple support;
H; = rotation spring constant of yielding cantilever at f;;
I = moment of inertia of the beam;
k = foundation modulus;
k; = deflection spring constant of yielding simple support at g;
Ki = deflection spring constant of yielding cantilever at f;;
L = length of the beam;
M; = reactive couple at cantilever located at fi;
M(x) = bending moment at x;
q(x) = load function at x;
R; = reaction at simple support located at g;;
= unit step function;
V= reactive force at cantilever located at g
V(x) = shear force at x;
y(x) = deflection at x;
y'(x) = slope at x;
Z; = couple applied at d;;
& = Dirac delta function;
8' = unit doublet;
9, ®;, ¢, 3 = Miranda-Nair functions.
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