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ABSTRACT

A formulation for the dynamics of flexible multibody systems is presented in this paper. This
formulation relies on the use of floating reference frames to describe the configuration of the multibody
system. Compeoneat flexibility is described in terms of the finite element deformation coordinates. The
equations of motion are derived through the generalized d'Alembert principle, and the resulting set of
differential-algebraic equations are reduced to ordinary differential equations through the use of the
augmented Lagrangian penalty method. Meodal reduction is utilized to reduce the dimension of the
deformation coordinales. Stiffening effect is included through the-use of a stress stiffening matrix, which
is computed efficiently as a linear combination of constant stress stiffness matrices with time-dependent
scalar coefficients, The same formulation is used to devise an efficient method for computing the
dynamic stresses which include the effects of inertia due to gross motion and elastic deformation.

INTRODUCTION

The ficld of dynamics of flexible multibody systems has been gaining importance in the
CAE community, especially in the aerospace and automotive sectors. This discipline has a
broad base of applications, such as precision mechanisms, large space structures, automotive
suspension systems, high speed robotics, and aircraft structures. The increasing popularity of
this field is found evident by the enormous amount of papers dealing with various aspects of
multibody dynamics during the last decade alone. Recent advances in this field include
developments in the solution of multibody dynamics differential-algebraic equations of
motion'-2, inverse dynamics of flexible multibody systems*, noniinear material behavior
characterization®-%, modeling of geometric stiffening effects in flexible multibody systems?-10,
modal reduction techniques in multibody dynamics'!-12, modeling of contact and impact
conditions in flexible multibody dynamics!*15, dynamic simulation using parallel computer
architectures 1918, modeling of composite materials in multibody systems 1920, assienment of
modal damping in flexible multibody dynamics 2!, among others.




This paper presents a formulation of the dynamics of flexible multibody systems
wherein stress stiffening effects are included in the formulation. The same formulation is used
to devise a method for efficiently computing the dynamic stresses in each component of the
fiexible multibody system. The kinematic quantities are derived through the use of floating
refezence frames associated with each component of the multibody system. The deformation
field in each body is described in terms of finite element nodat deformations, and the dimension
of the deformation coordinates is reduced through standard modal reduction schemes. The
generalized d'Alembert principie is employed to formulate the equations of motion, and the
augmented Lagrangian penaity method is used to reduce the system of differential-algebraic
equations to a set of ordinary differential equations.

FINITE ELEMENT FORMULATION

In this section, the equations of motion for a flexible multibody component are derived
through the generalized d'Alembert principle. A floating reference frame is employed to
_describe the deformed state of multibody component. The finite element method is employed
for the spatial discretization of the flexible multibody component and for describing the
component flexibility through the nodal elastic degrees of freedom. A practical consequence of
this approach is twofold: multibody components of any geometry can be easily modeled; and
existing commercial finite element codes for structural analysis can be easily modified in order
to make them applicable for the simulation of flexible multibody systems. Furthermore, the
elastic forces are expressed as linear functions of the nodal deformations in order to make the
method applicable to structural models that have already been linearized in a separate finite
element code prior to input to the flexible muitibody dynamics code. This premature
lincarization leads to a spurious softening of the structure during the dynamic simulation.
Corrections to the prematurely linearized equations of motion are presented in Section 3.

Kinematics

Consider an n-body flexible system such as that shown in Figure 1. A typical
multibody component, say body i, is shown in Figure 1 along with the floating reference frame
associated with that body. The generalized coordinates consist of rigid body coordinates q.
which describe the position and orientation of the floating reference frame associated with each
muitibody component, and deformation coordinate q; which describe the deformation of the
flexible body with respect to its floating reference frame. The rigid body coordinates q.
consist of Cartesian coordinates R! which describe the position of the origin of the floating
reference frame associated with body 7, and a set of Euler parameters 0’ which describe the
orientation of the floating frame. The decision to use Fuler parameters among several choices
of orientation coordinates is based on the fact that Euler parameters form a minimal set of
singularity-free orientation coordinates. The deformation from the nominal (rigid body)
configuration is assumed to be small, so that the principle of local superposition®? is applicable.
With the above choice of coordinates, the position of an arbitrary point P in body / is given by

=R+ A (1)
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Fig. 1: Multibody system and reference frames

where Ri is the location of the origin of the body axes with respect to the inertial frame, ul is
the location of point P with respect to the body axes, and Al is the rotation transformation
matrix from the body axes to the inertial frame. In the three-dimensional case, the rotation
transformation is given by

202 +62)-1 2(0,6,-6,6,) 2(0,6,+0,8,)]
A'=12(08,+0,8,) 2(0;+02)-1 2(6,8,-6,9,) @
2(0,6,-6,8,) 2(0,9,+68,) 2(62+62)-1

where the orientation coordinates are represented by four Euler parameters 8;, ei. 9; and
9; which satisfy the following identity:23
2z

23}(6;) =1 26

k=0
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The position vector with respect to the body axes, ui, can be decomposed into
u' =u +ul : @

where ui is the position vector of point P in the undeformed state with respect to the body axes,
and u; is the deformation vector of point P with respect to the body axes. Differentiating
Equatlon {1} with respect tc time yields the velocity of point P

PR +A v +A'Y )

where the superposed dot represents dlffercnuanon with respect to time. In deriving Equation
(5), we have used the fact that vector u is constant in time. The time derivative of the rotation
transformation matrix can be expressed as the matrix product

A =AG (6)

where the tilde symbol refers to the skew-symmetric matrix representation of the vector product
operator, and o is the angular velocity of the body axes whose components are measured with
respect to the body axes. The angular velocity vector of can be determined from the time
derivatives of the Euler parameters through the following relation:

=GO

where G is a matrix that depends linearly on the Euler parameters and is given by
G =2/-06, -8, 6, 6 (8)

The deformation vector . can be expressed in terms of the nodal deformations by using a finite
element discretization scheme, 1.e.,

up =N'q; ©)
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where N is the shape function matrix and q' is the nodal deformation vector. Since the shape
function matrix is time-invariant, the time derivative of the deformation vector becomes

0} =Nk . (10)

where q‘f is the nodal elastic vector. Substituting Egs. (6) through (10) into Equation (5), we
obtain the following expression for the velocity vector of point P:

g - (1)

where the velocity coefficient matrix Li is given by
L' =[I,-AUG AN] (12

and ¢ is the vector of generalized coordinates for body i, i.e.,
q =86 7 (13)

Differentiating Equation (11) with respect to time yields the acceleration vebtor of point P,
namely,

i i i T2 i .

P=Lg +Alo'] v +2Am0; (14)

The kinematical quantities derived above will be used in formulating the dynamics equations of
motion in the next sub-section,

Dynamics

In this section, we use the generalized d'Alembert principle to derive the equations of
motion for a flexible multibody component. The generalized d'Alembert principle for an
unconstrained flexible multibody component can be written as

[ £ -sridv - [LE-8riav=o (15)
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where fi is the vector of active forces (mcludmg elastic forces) per wnit volume acting on the
flexible multabody component, pt is the mass density, anid Vi is the volume of the component,
and Sr is the virtual displacement of the generic point P. The virtual displacement of point P
is the first variation of the position vector which can be induced from the expression for the
velocity vecior in Equation (11). Hence, the virtual displacement vector can be expressed as

&r' = L'ag' ' (16)

The first integral in Equation (15) represents the virtual work done by the active forces. This
term can be decomposed into sum of the virtual work done by the applied external forces and
the virtual work done by the internal elastic forces, i.e.,

5r dav (17)

int

[ f-oridv= j i 5rdV+j

If the applied external foree vector is expressed in terms of components. along the body axes,
the virtual work done by the applied external forces can be written as

[ifa-srav={oq'} [ [L] At av (18)

The virtual work done by the internal elastic forces can be further decomposed into the sum of
virtual work done by the elastic forces associated with the structural stiffness and the virtual
work done by the elastic forces associated with the geometric stiffness, i.e.,

f. 1 8rdvV = {Eiq"}ﬁjr(k}rﬂc"g)qif (19

where k}ir is the linear suffness matrix of the flexible multibody component corresponding to
the nodal deformation vector ¢, and k' is the geometric stiffness matrix which depends on
the geometry, displacement field, and statc of stress of the elements representing the
deformable multibody component. A discussion on the efficient computation of the motion-
induced geometric stiffness is deferred until the section 3. We note that the elastic forces are
due only to the elastic deformation and are therefore independent of the configuration of the
floating reference frame,

Combining Equations (12) through (19), and taking into account the fact that the
generalized coordinates g' are independent for an unconstrained multibody component, the
equations of motion for an unconstrained fiexible multibody component are thus obtained:

Mpp My My, R Fr 1 0, l Qx l

B (20)
Mg Mgy Mg | 6| =|F | -0, | +}Q,
Mg My Mg | {; E P, Q;
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or, alternatively, the equations can be written in the more compact form
Ml§' =F -P' 4+ ed))

where M is the component mass matrix, F! is the external force vector, P is the elastic force
vector, and Q! is the quadratic velocity force vector which absorbs the Coriolis and centrifugal
force components coming from the second and third terms on the right hand side of Equation
{14). For convenience, the superscript { will be dropped in the remainder of the formulation.

The elements of the mass matrix can be expressed in terms of the so-called finite
element invariants which depend only on the undeformed geometry of the body and on the
assumed displacement field characterized by the shape function matrix Ni. The finite element
invariants, which are computed only once in a pre-processor module, are expressed by the
following integrals:24

Z¥ = j x,pdV k=123 22)
Z¥ = [xxpdV;j k=123 23)
Ztk = LNkpdV; k=123 24)
Zk = Lx NpdV; j, k=123 (25)
Z¥ = IVN}NkpdV; k=123 26)

where xg( is the component of the undeformed position vector u, zlong the ¥ body axis, and N,
is the & row of the shape function matrix. With the finite element invariants shown above, the
components of the mass matrix are given by the following expressions:

Mpe =ml, 27n
Mpg = _AglG %)




My = AZ | 29
mg, =G'[J,+1, +1,]G (30)
Mo = G'[J;, +7,] @31
'mfr =2} +Z7 +Z7 (32)

where m in Equation (27) is the total mass of the component, and the tilde symbol above the
vector 8, in Equation (28) refers to the skew-symmetric operator. The vector S, and the
matrices Jg, Jy J, Jy, and J, are given by

S; =Z,+Z,q; (33
77 -77 |
Jo=| 28 -2} - (34)
Z:z _ Zii

af (2% - Z3)
o= a}{(Z - Z3) (35)

ai(z - 22)

(Zgz + ng) __Z;z _2;3
I.={ -2V (233 + Zii) -77 (36)
Z (@)
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J] = ___p21
—p*

(qzz +q

J2 = _qll
_q31

in which

p'=(Z8+Z8)as1,j=1,2,3

and

Q" =q;Z3q,;i,j=12,3

The quadratic velocity force vectors are given by

Qu =-A[’S, +26Z,q,]
Q, =—G"S,0 -2G"J

3 3 . B
Q; = ZZ%[ZE + quf]

0,(27 - 27)+ 0,(28 - 78+ 0,(22 - z7)a,

(37)

(38)

(39

(40}

(41)

(42)
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where ay; are components of the (3 X 3) matrix @ 2, and the matrix J, is given by

(r +I'33) —ri2 13
J =] —H (r“ + 1‘-33) B 44)
3 2 (1_1 T )
in which
¥ =q; Z} +47Z4q,31,j=1,2,3 3

and the components of the vector S, are given by

3 e
(S2)i= Y, (73 +pil + qi) a; ; i=1,2,3 (46)
j=1

The generalized external force vector will depend on the type of load that is applied to
the flexible multibody component.  For example, if a distributed force vector f,, whose
components are measured with respect to the body reference frame, is applied to the flexible
muatibody component, the generalized force vector due to this load can be determined directly
from Equation (18), which vields

Fr=A j £, dV {47
i _
F9=GTjﬁ'fde “8)
. v .
Ff=fNbe dv “9
v
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Similarly, if a concentrated load vector fp, whose comporients are measured with respect to the
body reference frame, is applied to a particular point P in the flexibie multibody component,
thet one can obtain the gencralized force vector due (o the concentrated load by direct
application of the prmc:ple of virtual work to ylcld

F, = Af, (50)

F, =G"if, (51)
4 e .

Fr =Nf, ) | (52)

where u,, is the position vector of point P measured relative to the body reference frame, and
N, is the shape function matrix evaluated at point P, The generalized force vectors due to other
types of loads such as distributed moments o1 concentrated moments can also be derived from
the prmcxp]e of virnual work. :

STRESS STIFFENING EFFECTS

The premature linearization of the elastic forces in the equations of motion leads 10 a
spurious softening of the structure during the simulation. The spurious softening is present for
all angular velocities and causes numerical instability in the simulation when the angular
velocity reaches a critical value This critical valie, of course, does not exist in reality but is a
mere consequence of the premature linearization of the elastic forces. A simple and
inexpensive procedure for avoiding spurious softening 1s to introduce stiffening effects that are
due to an initial state of stress in the structure. The stiffening effects on the structure can be
expressed as elastic forces that are obtained as the product of the initial stress stiffness matrix
and the elastic deformation. Hence, the total internal elastic forces can be expressed as the
sum of the elastic forces associated with the linear structural stiffness matrix and elastic forces
associated with the stress stiffness matrix,

Pr=kgqe + K q; (53)

where kg is the linear structural stiffness matrix and k, is the initia} stress stiffness matrix. The
initial stress stiffoess matrix is a function of the reference state of stress and the assumed
displacement field for the elastic deformation, and is defined by the following integral:25

k, = [ N"6"aNdV (54
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where the space-dependent functions ON arise from the noulinear terms in the strain-
displacement relation and the (9 X 9) mairix o’ is a function of the reference state of stress.
The reference state of stress is chosen as the state of stress in the structure due to the distributed
inertial forces, constraint reaction forces and external forces that are present when the structure
is subject to the nominal rigid body motion. This nominal motion is obtained by neglecting
terms imvolving elastic displacements in the expression for the acceleration vector in Equation
(14). Since the reference state of stress duc to the nominal motion varies with time,
determining the stress stiffness dircctly from Equation (54) will be computationally prohibitive.
However, if we assume that the total stresses in the structure remain in the linear elastic
regime, we can use the principle of superposition to compute for the time-varying stress
stiffness matrix in a very efficient manner. This procedure is presented in the remainder of this
section.

To start the discussion on the efficient computation of he stress stiffness matrix we
note that the stress stiffness matrix depends only on the assumed displacement field and on the
state of stress in the structure. The stresses in turn depend on the elastic deformation present in
the structure. If we choose the siresses in the structure as those due to the nominal motion of the
structure itself, then the forces that act on the structure are forces that arise from inertia, forces
coming from the constraints, and externally applied forces. These forces form an equilibrated
set of forces with the internal stresses in a quasi-static equilibrium. We can therefore determine
the nominal deformation and nominal stresses in the structure through a sequence of linear
quasi-static analyses. Furthermore, if we consider only one flexible multibody component at a
tire, the principle of virtual work applied to the flexible structure can be expressed as

[ fui-80dV+[ £, -8rdV - _[aom -8rpdV =0 (55)

where F.,, refers to the external forces applied to the structure and a_,, is the nominal
acceleration vector obtained by dropping the terms due to the elastic deformation in the
expression for the acceleration given in Equation (14), i.e., :

Ao = 1, + 001, + DO, (56)

where 'fo is the acceleration of the origin of the body reference frame, o is the angular
velocity of the body reference frame, o is the angular acceleration of the body reference frame,
and w, is the position vector of a generic point in the structure, We note that the external forces
include those coming from the reaction forces at the joints, so that the second term in Equation
(55) represents the virtual work done by the reaction forces and applied forces. By using a
finite element discretization scheme, and assuming linear elastic behavior, the principle of
virtual work expressed by Equation (55) can be transformed into the following set of linear
quasi-static equilibrium equations: : _

kgu,.=P+R 7
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where ki is the conventional linear stiffness matrix, w__ is the vector of nodal displacements
due to the nominal inertia forces, applied forces and reaction forces, R is the time-varying
nodal force vector due to the applied forces and reaction forces act the joints, and P is the time-
varying nodal force vector due to the distributed nominal inertia forces and is given by

P=—[N'(:, + &, +@u, )pdv )

The time-varying nodal force vector P can be cxpressed as a product of a constant matrix and a
time-varying force vector, i.e.,

P=[-[N"B pdv|(c} 59
where the space-dependent matrix B is given by
B=[1,B,B,B,] (60)

in-which I, is the (3 x 3) identity matrix and the sub-matrices B,, B,, and B, are given by

B,=|-x, 0 x (61)
x, -x, 0
0 -x, -x,

B,=|-x, 0 -—x, (62)

x, 0 x,
B3 =[x, X3 0 (63)
0 x, x,
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where X;, X,, and x5 arc the coordinates of a generic point in the structure, measured with
respect to the body reference frame. The time-dependent vector {c} is defined as

T P 2
{c} =[r1r2r3a1m2a3mfo)2w§mlcozco2&)3@30)1] 64

where the components of fo , o, and o are measured with respect to the body reference frame.
Considering the linear quasi-static equilibrium equations written in Equation (57), the nodal
force vector P can be expressed as a linear combination of constant nodal force vectors

12
P=3cP (65)
i=1

where each of the constant nodal force vectors P, (i = I, ...12) are obtained from Equation (59)
by setting the element in the * row of {c} equal to unity and all other elements to zero.
Likewise, the nodal force vector R can be expressed as a linear combination of constant nodal
force vectors

R=>AR, (66)

where R is the constani nodal force vector corresponding to a unit value of the i concentrated
force component force component, 1, is the value of i*" concentrated force component obtained
during the dynamic analysis, and m is the number of concentrated force components associated
with mechanical constraints and external forces applied on the flexible multibody component.
Herein, the concentrated force componeats also include concentrated moments associated with
applied torques or torques that are generaied by mechanical constraints. By assuming linear
elastic behavior in the entire structure and by using the superposition principle, the deformation
vector and the stress state vector due to the inertia forces and reaction forces can also be
expressed by linear combinations similar to that of Equations (65) and (66),

124+m

unr.\m = Zciui ©7)
i=1
124m

Com = 2 G0, (68)
i=1
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where c,,,; =),i(j = 1,...m) , W, 18 the time-varying nodal deformation vector due to the
nominal motion, o is the time varying vector of stress states due to the nominal motion, and
W, and o; (i = 1, ...12+m) are constant nodal deformation vectors and constant stress state
vectors corresponding to each of the constant nodal force vectors P; and R;. By virwe of the
fact-that stress stiffness matrix as defined in Equation (54) depends only on the state of stress
and on the assumed displacement field, the stress stiffoess matrix associated with nominal
inertia forces, reaction forces and external forces can be compuied as the linear combination of
constant stress stiffness matrices, i.¢.,

1Z4+m

k, = zci(kg)i | (69)

where each of the consiant stress stiffness matrifcs (kej; G = 1, ... 12+m) is evaluated from
Equation (54) with the (9 x 9) stress matricés o, , which is associated with the stress state o
replacing the (9 x 9) stress matrix o* which is associated with the reference siress state o,
These constant stress stiffness matrices are computed only once in a preprocessor module before
the solution of the dynamic equations is started. Equation (69) is based on the assumption that
the deformation remains smali,

It is important o recognize the tremendous savings in computation time that Equaticn
(69) provides when compared to the direct computation of the stress stiffness matrix from
Equation (54) Equation (69) allows us to determine the time-varying stress stiffness miatrix
without having to evaluate the integral in Equation (54) at every time step. Instead, all that is
needed to compute for the time-varying stress stiffoess matrix is the summation of constant
matrices, each of which is muitiplied by a scalar quantity which varies at every time step.

AUGMENTED LAGRANGIAN PENALTY METHOD OF SOLUTION

Consider now the entire multibody system as an assembly of the individual multibody
system components. The configuration of the multibody system can still be described by the
generalized coordinates (R, 0, g associated with each multibody componeni, and the
generalized d'Alembert principle expressed in Equation (15) is still valid. However, the
generalized coordinates (R, 6, qg) are no longer independent because the motion of specific
points in different bodies are related according to the type of mechanical joints that interconnect
them. This interdepence of the generalized coordinates can be expressed in the form of a vector
of kinematic constraint equations, such as

®(R,0,q,,t)=0 (10)

Because of the fact that the gemeralized coordinates are not independent, the generalized
d’Alembert principle of Equation (15) can not be used directly 10 generate the equations of
motion as in the case of a single multibody system component. To generate the equations of
motion for the entire flexible multibody system, we use the augmented Lagrangian penalty
method?®, The augmented Lagrangian penalty methed of formulating the equations of motion of
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constrained multibody systems is essentially a synthesis of the regular penalty method and the
classical Lagrange multiplier method. In this method, a dynamic penalty system" associated
with each constraint equation is appended to the equations of motion corresponding to the
unconstrainéd system, and Lagrange multipliers dre also added as correction terms to the
penalty system. The resulting equations of motion for the constrained flexible multibody
System will thus take the form similar to that of Equation (21) but will also include penalty
terms and Lagrange multipliers associated with the constraint equations:

Mg + D a[d +2uQd + Q*0|+ DA =F-P+Q an

where (DT is the transpose of the constraint Jacobian matrix, % is the vector of Lagrange
mltipliers, o is a diagonal matrix of penalty numbers, and the quantities inside the brackets
characterize the dynamic penaity system associated with each of the constraint equations. The
first and second time derivatives of the holonomic constraints are given by

D=0 .G+, (72)

O=0G4j+Dq+D, )

where the subscript denotes partial differentiation and the superposed dot denotes the total time
derivative. The augmented Lagrangian peralty method requires an iteration procedure to
compute for the correct value of the Lagrange multipliers. This iteration can be performed
simultaneously with the Newton iteration or modified Newton itcration during the solution of
the nonlinear equations at cach time step in a numerical time integration scheme. The iterative
equation for the Lagrange multipliers is given by

y - )L(i) + a[&) +2pQd + qu)]{i) 74

The iterative process described by Equation (74) involves only a few additional operations
during each iteration but it significantly improves the convergence of the solution of the
dynamics equations of motion compared to that of the regular penalty method.

MODAL REDUCTION AND COMPONENT MODE SYNTHESIS

The finite element formulation of the dynamics of flexible multibody systems as
presented in the previous sections in computationally expensive because of the large number of
elastic degrees of freedom in the finite element model. Except for very trivial cases, finite
element models of multibody companents normally contain in the order of thousands to tens of
thousands degrees of freedom. 1t is therefore necessary to formulate a scheme for reducing the
number of degrees of freedom in order to implement a fiexible multibody dynamics code in a
manner that is economicaliy viable. Towards this end, a modal reduction scheme is utilized to
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minimize the number of elastic degrees of freedom in the flexible structure. Although at first
glance, the superposition of different modes of vibration in a nonlinear problem appears to
violate the principle that mode superposition is valid only for linear problems, the validity of
mode superposition is in fact not violated in the -present formulation because the elastic
deformations are measured from a floating reference frame, and therefore the deformations
remain small throughout the motion. The mode superposition principle can therefore be
considered as a similarity transformation that implements a change of basis from the finite
element deformation coordinates to the modal deformation coordinates.

It should be noted that for bighly nonlinear problems, the instantaneous frequencies of
.the system exhibit significant changes continuously, and the use of dynamic mode superposition
would not be as efficient as the direct integration methods. However, for dynamic sysieims with
local nonlinearities, the use of mode superposition in conjunction with the pseudo-force method
offers an adiractive alternative to direct time integration methods?’. This is particularly true in
the dynamics of fiexible multibody systems where most of the nonlinearities are confined to the
rigid body coordinates and at the finite element nodes located at the attachment points. Each
muliibody component is paturally treated as a substructure with interfaces at the mechanical
joints, and the behavior of the dynamic system can be accurately predicted through component
mode synthesis. Furthermore, since the elastic deformation of each component is known to
remain small throughout the motion, the mode shapes based on the initial tangent stiffness can
be used as the basis of the elastic displacements throughout the motion. In cases where
geometric stiffening effects are significant, the mode superposition procedure can be used with
the pseudo-force method where only the residual forces due to geometric nonlinearities need to
be transformed at each time step.

There are two methods that can be used in implementing modal reduction in flexible
multibody dynamics, depending at which stage of the formulation that modal reduction is
introduced. In the first method, modal reduction is introduced after the finite element
invariants have been computed. In the second method, modal reduction is introduced at the
outset, hence, modal invariants are computed in leiv of finite element invariants. The first
method is preferred since ihe finite element invariants are based on a formulation that is
consistent with the displacement interpolation used in generating the structural stiffness matrix.
The result is that the consisient mass matrix and consistent quadratic velocity force vectors are
preserved in the modal reduction. The advantage of this method is that the rotary inertia
properties and the exact mass distribution are captured automatically. On the other hand, the
disadvantage of this methed is that it can be used only if the analyst has access to the coding of
the finite element analysis software. More common in practice, the analyst does not have
access to the coding of a commercial finite clement software. In this case, the first method is
not an option, and the analyst has tc use the mode shape vectors obtained from the finite
clement software to approximate the modal invariants. In addition, the mass distribution in the
flexible multibody component can be characterized only through the lumped masses at the
nodes. This approximation will yield valid results as long as the highest frequency that is
excited during the motion has a2 wavelength that spans across several nodes. Otherwise, this
limitation can be mitigated by making a reasonable estimate of the rotary inertia tumped at each
node. Details of the two methods of implementing modal reduction are discussed in the
remainder of this section,
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Modal Reduction: Consistent Mass Formulation

Consider again the equations of motion for the flexible multibody system as expressed
in Equation (71). The equations of motion can be written in the following partitioned form:

m, m[q4,] |®F . . , F 0] [Q,
I b e R MR

where the generalized coordinates (g,, qp) denote the rigid body coordinates and finite element
- deformation coordinates, respectively. We now introduce a change of basis from the n finite
clement displacement coordinates to p modal coordinates, with p< <n, through the following
linear transformation:

g = [Wd“’s] ?id 6)

where the columns of the sub-matrix 1, consists of the retained dynamic modes and the
columns of the sub matrix g are the appropriate static correction modes, and 7 is the vector
of modal deformation coordinates. The above combination of dynamic and static modes define
the new basis for the elastic deformation. These modes are computed only once at the start of
the simulation and are based on the undeformed configuration of each of the flexible multibody
component. Applying the transformation given by Equation (76) to Equation (75) and pre
multiplying the second sef of equations in Equation (75) by the transpose of the modal
transformation matrix yields the reduced set of equations of motion in terms of the rigid body
coordinates and the modal deformation coordinates. :

[ B ¥ }[q] + [ i ]{x +ofd + 2000 + o)l = [ (F+Q) } @)

ym,  yimgy | i o] lI]’T(Ff -P+ Qf)

It is important 0 note that modal mass mairix is a full matrix when static correction modes are
used. Furthermore, the different modes are coupled through the constraint reaction forces and
through the force vectors on the R.H.S. of Equation (77). Therefore, direct integration
methods are still needed to integrate Equation (77), but the reduced system is much smaller than
the original system, Finally, we observe that the consisteni mass formulation in the mass
matrix and in the guadratic velocity force vector is preserved because the modal transformation
is applied after the finite element invariants have been computed.

Modal Reduction; Lumped Mass Formulation

A common situation that a multibody dynamics analyst finds in practice is that the
structural data for a flexible multibody component is available only in the form of finite element
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output from 2 previous linear dynamic analysis. The structural dynamics analysis will normatly
provide the natural frequencies and corresponding eigenmodes, as well as some selected static
correction modes. At best, the dynamics analyst can obtain the mass distribution in the form of
lumped masses at each of the nodes in the finite element model. As a consequence, the finite
element invariants given by Equations (22) - (26) can not be evaluated exactly. One alternative
is to approximate the finite clement invariants by the so called modal invartants. The modal
invariants are computed by a summation of discrete variables instead of the integration of
continuous variables as shown in Equations (22) - (26), with the lumped mass at each node
replacing the continuous mass distribution and with the values of discrete mode shape matrix
evaivated at each of the nodes replacing the continuous shape function matrix. The modal
invariants are given by the following summations:

N
Zi=Yxim' k=123 (78)
i=1
- N ’ . - -
Zy =Y xixym';jk=123 9
i=1
N - .
Zy=) ¥im'ik=123 (30)
i=l1
- N - . .
Z¥ =3 xW¥im';jk=123 (81)
i=]
'k N ¥, . .
Zg=2 ¥ "¥im';j k=123 (82)

i=]

where the N is the number of nodes in the finite element model, mi is the lumped mass at node
i, xik is the coordinate of node i along the k™ axis of the body reference frame, and \y;: is the
(1 x p) Tow vector extracted from the mode shape matrix and correspooding to the deformation
of node i along the K7 axis of the body reference frame. The elements of the mass matrix and
the clements of the quadratic velocity force vector are computed in a similar manner as
presented in Section 2, with the modal invariants replacing the finite element invariants and
with the modal deformation coordinates replacing the finite element deformation coordinates.
The equations of motion are formulated by using the augmented Lagrangian penalty meithod and
the system of equations are reduced by pre muitiplying the equations associated with the elastic
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motion by the transpose of the mode shape matrix. The resulting reduced set of equations can
be written as : :

mrr mrn é1r (Dj 4 X 2 (Fr+Qr | |
m mm][n]+ o; {A+a[fl)+2p.Q(D+Q cp]}: (F,,+Q,,-)i’,1) _(83)

where the holonomic constraint equations are now expressed in terms of the modal deformation
coordinates, i,e.,

®(R,0,n,t)=0 (84)

The elements of the generalized force vector F due to external forces can be derived from the
application of the principle of virtual work, which results in the following:

N
F, =AY f' (85)
i=1
N . .
E=G") uf (86)
i=1
N - .
F, =) y'f 87

i=1

where # is the force applied at node / and whose component are measured with respect to the
body reference frame, vy is the (3 x p) matrix extracted from the mode shape matrix and
associated with the translation deformation of node 7. In Equation (86), u' is the instantaneous
position vector of node / whose components are measured with respect to the body reference
frame. The coordinates of this vector are determined from the equation

v =x'+¥n (88)

where xi contains the coordinates of node | in the undeformed configuration. Expressions
similar tc Equations (85) - (87} can be formulated for applied moments at the nodes.
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Returning to Equation (83), we also note that the modal mass matrix m,, is a full
matrix because the mode shape matrix 1w is a2 combination of dynamic modes and static
correction modes. The generalized force vector due to internal elastic forces is given by

P = [/\s +A g]n 89

in which the generalized structural stiffness A, is a constant, block-diagonal matrix given by
R (90)
and the generalized stress stiffness matrix A is a time-varying, full matrix given by
=¥kY oD

The modal reduction of the elastic forces associated with the stress stiffening matrix is valid as
long as the elastic deformation remains smwall. By using the procedure described in Section 3,
we can efficiently compute for the time-varying generalized stress stiffness matrix by
expressing it as linear combination of constant generalized stress stiffness matrices with time-
varying scalar coefficient, i.e.,

12+m

= g;ci.WT(kg)i v ©2)

Finally, we observe that the reduced set of equations shown in Equation (83) are fully coupled
through the system mass matrix, the constraint force vectors, and through the generalized force
vectors. Therefore, direct time integration methods are needed to integrate the reduced System
of equations,

DYNAMIC STRESS COMPUTATION

Dynamic stress computation has often been treated as a procedure that is scparate from
multibody dynamics. The current CAE practice in industry is to post- process the results of
multibody dynamics by taking the time-varying reaction forces between rigid or flexible
muliibody components and using them as inputs to the structural dynamics analysis of each
multibody component via the finite element method. The structural dynamics analysis of each
component way be geometrically linear or nonlinear, depending on the magnitude of the motion
that is imposed on some attachment points in the component. Structural dynamics analysis
using large finite element models is computationafly prohibitive except for very short duration
evenis. This is especially true for complicated components which require a very fine mesh. As
a consequence, the analyst usually resorts to performing a quasi-static analysis of a few selected
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load cases taken from the reaction force history provided by multibody dynamics. This
procedure for stress computation is adequate for cases where inertial forces due to component
fiexibility are not significant. However, for cases where inertial forces are important, the
stresses resulting from quasi-static analysis are not accurate when compared to a full dynamic
stress analysis.

An alternative to the aforementioned procedures for computing dynamic stresses is 1o
make the dynamic stress computation an integral part of flexible multibody dynamics where the
dynamic stresses are computed along with the flexible body motion at every time step during
the simulation. Again, there are two methods of implementing the stress computation within
the flexible multibody dynamics analysis, depending on whether the analyst has access to the
coding of the finite element analysis software, If the analyst has access to the finite element
source code, then the dynamic stresses can be determined direcily from the stress-displacement
relation

o =CB%¥y (93)

where o is the stress vector, C is the constitutive stress-strain relation matrix, and B is the
strain-dispicement relation matrix for a particular element. The computation of the stresses at
selected points of interest may be performed as a post-processing procedure at every time step
once the elastic deformation has been determined. The operation described by Equation (93)
may be implemented as function calls to some modules in the finite element code. If the analyst
does not bave access to the finite element source code, which is the more common case, then
the operation described by Equation (93) can not be implemented. In this case, an effective
solution for the computation of dynamic stresses is to employ a quasi-static procedure similar to
the one described in the section pertaining to the stress stiffening effects. This procedure is
based on the assumption that, in a quasi-static sense, the stresses in the flexible multibody
component form an equilibrated set of forces together with the inertia forces, reaction forces,
and applied forces. Hence, the quasi-static equilibrium equation for the flexible multibody
component can be expresses in the form

kgu, = fl + fR + fA | , | (94)

where ug is the time-varying nodal deformation vector, and f; fi, and £, are time-varying force
vectors due to inertia, constraint reaction, and applied loads respecuvely The force vector
due to inertia may be decomposed an inertia force due to the nominal motion of the body which
is obtained by neglecting terms associated with the elastic deformation in the expression for the
acceleration, and an inertia force due to the elastic deformation, i.e.,

fI — flnom + fIdEf (95)

where the inertia force duc to the nominal motion is given by
N - . -
frm == m‘(fo +om, + o)mu;) (96)

i=1
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and the inertia force due to elastic deformation is given by
N = - - -
£ =->"m {(a + 33 )¥'n+ 20 H + ‘P‘n} o7
i=1

The lumped mass formulation is used in Equations (96) and (97) because the mode shape matrix
provides the deformation only at the nodes. It can be shown that the inertia force due to the
elastic deformation may be expressed as a product of a constant matrix and a time-varying
vector, so that Equation (97) may be writien as

N
fldcf — ___Z mi\{)ia{b} (98)

i=1

where \yi* is an augmented (3 x 9p) matrix of mode shapes at a particular node, p is the
number of modes, and the elements of the (9p x 1) time-dependent vector are given by

¥

b =a + @[, n +2[B] 0+ 8, 1k=1231=1..,p ©9

where the operator []k denotes the element of matrix in the j® row and k' column, and 3. ik is .
the Kronecker delta operator. By assuming linear efastic stress-strain behavior and small elastnc
deformations, the time varying force veciors in Equation (94) can be expressed as a linear
combination of constant force vectors with time-varying scalar coefficients. Furthermore, the
constant force vectors due to nominal inertia forces, constraint reaction, and applied forces are
the same as the constani force vectors previously derived in Section 3, so that the time-varying
force vector in the quasi-static equilibrium equations of Equation (94) may be written as

124+m 3 3 p '
£+ fp + 6, + £ = S P +Z§Zbﬁdp;:;f (100)
i=1 =1 k=1 1=1

where m is the number of concentrated force components due to applied forces and reaction
forces, and p is the number of modes used to describe the elastic deformation. The time-
varying scalar coefficients ¢j and b;yy are determine from the results of the flexible muitlbody
dynamics analysis, and the constant force vectors P, and P‘::‘ are computed in a pre-
processor module before the dynamic simulation is started} By using the principle of
superposition, the dynamic stresses can be obtained in a similar manner, i. e,

12+m ’ 3 3

oft) = ch +22ib o (101)

J=t k=1 l=1
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where the constant stress influence matrices o; and g u are constant stress influence matrices
which are computed only once in a pre-processor module The operation described in Equation
(101) can be performed as a post processing procedure at every time step during the dynamic
simulation after the multibody dynamics equations of motion have been solved and reaction
forces have been determined. Hence, the dynamic stress computation simply requires a
superposition of (12+m+9p) stress influence matrices at each time step during the dynamics
simulation. In contrast with stresses obtained from a conventional quasi-static analysis, the
stresses given by Equation (101) include inertia terms that anise from the gross nominal motion
and inertia terms that arise from the elastic deformation. Finally, to save cn memory space and
computation time, only the stresses at a few selected points of interest need to be computed.
These selected poinis of interest may be determined from s previous quasi-siatic analysis
wherein the applied forces are those coming from rigid multibody dynamics.

SUMMARY

A formulation for the dynamics of fiexible multibody sysiems has been presented. The
formulation i based on the use of floating reference frames to describe the configuration of the
multibody system. The deformation field in each multibody component is discretized by using
the figite element method. The eguations of motion are formulated through the generalized
d' Alembert priaciple, and the differential-aigebraic system of equations describing the entire
muitibody system is reduced to a set of ordinary differential equations by using the augmented
Lagrangian penaity method. The dimension of the resulting equations are reduced through a
modal reduction of the deformation coordinates, The formulation alse includes an efficient
computational method for the stress stiffening effect which is needed to correct the spurious

_ softening effect that arises from the premature linearization of the elasiic forces. The siress
stiffaess matrix is computec as a lincar combination of constant stress stiffness matrices which
are computed only once in 2 pre-processor module. The same formuistion is employed to
efficiently compute the dynamic stresses in each component of the fiexible muitibody system.
The dynamic stress ate computed from a simple superposition of cousiant stress infiuence
matrices which have been previously computed from a series of linear static analyses. The
dynamic stresses thus obtained are comparable to those obtained from a full dynamic stress
anatysis but provides a substantial savings in computation time,
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