EXPERT SYSTEMS IN PRODUCTION: AN EXPLORATORY STUDY Victoria D. Ong Instructor and Nestor O. Raneses Associate Professor Department of Industrial Engineering and Operations Research College of Engineering, University of the Philippines Diliman, Quezon City, Philippines #### **ABSTRACT** The paper concerns itself with the applications of a branch of artificial intelligence called "expert systems". It describes some of expert systems' industrial engineering applications according to category, model or prototype name, developer, problem domain, decision output, development tools, and methodology or assessment. The study focuses on the wide-ranging applications of expert systems in production especially in the areas of materials handling, process specification and planning, production planning and scheduling, simulation and data analysis, operations analysis, facility and workplace design, database management, equipment diagnosis, robotic, and quality assurance. A survey of 100 expert systems production applications reveals its main uses as follows: planning (23%), diagnosis (17%), design (14%), and control (14%). The paper finally ends with the prospects and projection of research and development on expert systems in the field of industrial engineering in the Philippines. ## INTRODUCTION Artificial Intelligence involves the transfer of intelligence to machines. When AI attempts to simulate the decision-making processes of the human expert's mind, the particular field is called *expert systems*. More technically, expert systems (ES) is a form of artificial intelligence which embodies in the computer software knowledge and inference procedures to solve problems normally requiring human expertise [1]. Expert Systems software basically deals with the processing of expertise, in contrast to conventional programming which involves the procedural manipulation of data and facts. Using special-purpose programming languages or ES shells, knowledge and heuristics are coded into the knowledge base of the system (equivalent to database in traditional computer systems). The knowledge base is then manipulated by a separate control strategy called the *inference engine* which draws the inferences and provides explanations based on information from the knowledge base [2]. Traditionally, the development and implementation of expert systems had been done using mainframe and minicomputers due to its huge memory, fast processing, and large storage requirements. Nowadays, with modern developments in both hardware and software, microcomputer-based application is exhibiting a positive pattern of growth. Regardless of the hardware requirement of expert systems, certain prerequisites need to be satisfied in order to maximize the technology's benefits and avoid its pitfalls [3]. They are as follows: the domain of application is narrow; there are few experts in the domain; the experts can perform significantly better than amateurs; the expertise can be stated in a form that permits knowledge to be represented and inferences to be drawn; the expertise can be formulated on an incremental basis; there is argument among the specialists about the knowledge; there is a need to disseminate the expertise for cost or performance reasons; adequate time and resources can be committed; and the potential benefits are high. # INDUSTRIAL ENGINEERING APPLICATIONS OF EXPERT SYSTEMS So far, industrial engineering applications of expert systems have been successfully utilized in Australia, Japan, United Kingdom, United States, and other advanced countries. Applications of expert systems in industrial engineering have not only increased the productivity of experts but have improved the efficiency of systems as well. Production planning applications, which involve the analysis and construction of schedules, have brought about reduced processing time and more consistent transaction processing. In the area of materials handling, control and monitoring of automated material handling systems had been able to increase production rates in manufacturing plants. To heed the call for world-class goods and services, expert systems on quality have also been utilized in the production floor. To date, different industrial engineering application areas of expert systems have been recorded. These are on the areas of scheduling, materials handling, process specification and planning, production planning and scheduling, simulation and data analysis, operations analysis, facility and workplace design, information systems, equipment diagnosis, robotic, and quality assurance. Since the inception of expert systems in the early 1980's, numerous applications have been developed in various disciplines. Bayer et al. [4] classifies ten applications of expertise, as follows, Interpretation: analysis of data to determine their meaning; Diagnosis: determination of a disease based on the interpretation of data: Monitoring: continuous interpretation of signals; Prediction: inferring probable consequences of given situations; Planning: design of actions; Design: configuration of objects under constraints; Debugging: prescription of remedies for malfunctions; Repair: execution of a plan to administer a prescribed remedy; diagnosis, debugging, and repair of student behavior; and Control: interpretation, prediction, repair, and monitoring of system behaviors. To categorize expert systems technology by application type, a survey was conducted on 100 industrial engineering-related expert systems designed or developed mainly for production. The survey revealed the percentage distribution of the technology by application type, shown in Figure 1. Planning LEGEND: 6 Interpretation 2 Diagnosis 7 Prediction 3 Design 8 Instruction 4 Control 9 Debugging Repair 10 Monitoring Figure 1 Percentage Distribution of Industrial Engineering Applications of Expert Systems ## PRODUCTION APPLICATIONS OF EXPERT SYSTEMS Among the 100 expert systems surveyed, a sample listing of production-related applications are tabulated in Table 1 according to application type, model or prototype name, developer, problem domain, decision output, development tool, and status or assessment. Table 1. Production Applications of Expert Systems | Production
Applications | Expert Systems
Model/
Prototype | Developer | Problem
Domain | Output | Computer System and/or Program- ming Language | Status and/or
Assessment | |--|---|--|--|--|--|--| | 1. ASSEMBLY
LINE
ANALYSIS | Bicycle Assembly
Line Advisor [5]
(BALA) | Khek Cuon Yong | Determination of value-added measure for design of bicycle, knowledge transfer | Aid for design engineer in economic analysis of operations; Instruction of new operators about bicycle assembly procedures | VP-Expert
shell | | | 2. EQUIPMENT DIAGNOSIS | COOKER [6] | Texas
Instruments and
Campbell Soup
Company | Detection and repair advice on equipment | Trouble-shooting
and maintenance
tips in soup
manufacturing | Micro-
computer/
Personal
Consultent
shell | One of the most
widely-known
commercial
expert systems | | | | Texas
Instruments | Diagnosis of equipment malfunction | Trouble-shooting
tips in
semiconductor
manufacturing | Micro-
computer/
Personal
Consultent
shell | Production
Usage | | 3. FACILITY
AND
WORK-
PLACE
DESIGN | FAcility Design
Expert System [7]
(FADES) | Purdue University | Design and
planning of
facilities | Advice on system selection, equipment justification, conflict identification, and layout | VAX/
PROLOG | Addresses
general facility
design problems
with focus on
programmable
manufacturing
operations | | | Sitting Workplace
Analysis and Design
[1] (SWAD) | University of
Miami | Design and analysis of workplace using principles of motion economy and workplace simplification | Workplace
design and
calculations | Micro-
computer/
Advanced
BASIC | Presents an initial step in facilitating design and analysis off sitting workplaces | | 4. INFORMATION
SYSTEMS | Image Database
Management [3]
(IDBM) | | Manipulation and
management of
pictorial
information in
database
systems | Database
management
system to store
images, pictures,
and graphs | Micro-
computer/ C | Refinement to allow storage and retrieval of numeric and textual information, and to allow operations with software packages | | 5. MATERIALS
HANDLING | MAterials Handling
DEsign (⁸) (MAHDE) | University of
Virginia and
General Electric | Examination of meterial handling system design problem as related to facility design | Configuration of
materials
hendling
equipment within
a facility | | More restricted in scope then FADES | | Production
Applications | Expert Systems
Model/
Prototyps | Daveloper | Problem
Domain | Output | Computer
System
and/or
Program-
ming
Language | Status and/or
Assessment | |--|--|--|---|--|---|---| | 6. OPERATION
ANALYSIS | FALCON [9] | University of
Delaware | Identification of
probable causes
of disturbances in
chemical process
plants | List of probable
causes of
disturbances | USP | Interprets data
consisting of
numerical values
from yauges and
status of alarms
and switches | | 7. PROCESS
PLANNING | GARI [5] | Descotte and
Latombe | Determination of
machining
process plans | Plans for the
sequencing of
machining cuts of
mechanical parts | MACUSP | Domain is
restricted to the
metal cutting
industry | | | Technostructure of
Machining [5] (TOM) | University of
Tokyo and
IPK/IWF Berlin | Planning of
machining
process | Process plan for
for the machining
of mechanical
parts | VAX/
PASCAL | | | | CABIe PROcessor
(CABPRO) [8] | Allied-Signel, Inc. | Reduce
manpower effort
in process
planning | Work directions
used to fabricate
multiwire c: "'es | Networked
workstations/
HERB shell
(prototype);
C and USP
(production) | Significant time
savings;
Continuing effort
to improve user
interface | | B. PRODUCTION
PLANNING
AND
SCHEDULING | Interactive Critical
Path Analysis [3]
(ICPA) | Brighton
Polytechnic,
United Kingdom | Project network
construction and
analysis | Network
representation
and critical path
calculations | Micro-
computer/
BASIC | Easy, friendly, and no computing skills needed for operation; lacks resource-handling activity unless modification of databases is done | | | Intelligent Scheduling
and Information
System [5] (ISIS) | Camegie-Mellon
University | Formulation of a
job shop
schedule | Job shop
schedule | SRL; USP | Highly rated by expert schedulers in a factory environment | | | Production
Scheduling Advisor
[6] | Stone & Webster | General planning when production requirements cannot be met based on data | Decisions on
which constraints
to eliminate in
order to meet
demand | Micro-
computer/
Information
Builders
Level 5 | Combines expert
system with
graphics,
spreadsheet, and
linear
programming | | 9. QUALITY
MANAGE-
MENT AND
CONTROL | Ritz Line Expert
System [6] | RJR Nabisco | Quality assurance advisor for supervisors and operators | Advice on how and where to correct the problem in production line | Lisp machine
(prototype);
micro-
computer
(production) | Successful
project; positive
user response to
system | | | | University of
Cincinnati and
Northern
Kentucky
University [10] | Interpretation of
statistical quality
control charts,
diagnosis of
assignable
causes, and
determination of
corrective action | Advice and recommendation salong with relative confidence factors | Micro-
computer/
EXSYS shell | The need for further study on pattern recognition | | 10. REAL-TIME
CONTROL
SYSTEM | Hybrid EXpert
System CONtroller
(HEXSCON) [3] | SRI International | System control | Tracking and warning signals and corresponding countermeasures | Micro-
computer/
PASCAL | Wide range of problem domain; variations in memory capacity, hardware, response time factors to suit function | | | Chemical Process
Control Expert
System [3] | Nelsons Acetate
Ltd. | Application and interpretation of techniques and processes for ensuring the quality of process | Automatic interface to plant instrumentation and a simplified user interface for plant operators | KES shell | Consists of
primary and
secondary rules
in five knowledge
bases | | Production
Applications | Expert Systems
Model/
Prototype | Developer | Problem
Domain | Output | Computer
System
and/or
Programmi
ng
Language | Status and/or
Assessment | |--|---------------------------------------|--------------------------|---|--|---|--| | 11. ROBOTICS | ROBot Expert
(ROBEX) [5] | Sunku and
Badiru | Planning and implementation of robots | Advice to manufacturing engineers on robot system implementation | VP-Expert
shell | Found to teach
engineers about
robot capability;
future
enhancements
being considered | | 12. SIMULATION
AND DATA
ANALYSIS | Intelligent SIMulator
(ISIM) [6] | Al Technologies,
Inc. | Simulation tool
for process
engineers,
designers, and
control engineers | Allows any user unfamiliar with simulation technology and modeling to generate knowledge bases and understand simulation | Mercury KBE
object-
oriented
programming | Varied range of applications | Sources: Compiled from various sources The study showed some pertinent findings regarding expert systems applications in production: applications are relatively non-procedural and domain-specific; research pioneered by academe and sustained through linkage with the private sector; availability of applications in microcomputers with hardware enhancements in processing speed and memory allocation; programming flexibility with the availability of implementation languages (e.g. Pascal and C) in addition to expert systems languages and shells; and provision of interfaces with other software systems (e.g. database, computer-aided manufacturing). # RESEARCH AND DEVELOPMENT OPPORTUNITIES IN PRODUCTION Opportunities for improvement in productivity, quality, and efficiency abound in Philippine industries. Technical know-how and expertise on these improvement areas, however, need to be made more readily accessible, comprehensible, and affordable to the all sectors of manufacturing and all members of the production organization. With the capability of expert systems technology to replicate human expertise, industrial engineering tools, techniques, concepts, and expertise could be made available to management, supervisors, operators, and technicians as decision support systems. Possible areas of expert systems development in production are enumerated below. Work Measurement: motion and time measurement, time standards analysis, computation, and interpretation Systems and procedures: productivity analysis Manufacturing processes: processes selection, technology transfer, hardware configuration Industrial Organization and Management: operations management tutorial; data interpretation, training, personnel training, quality measurement and improvement Operations Research: modeling and interpretation systems Simulation: modeling and interpretation Information Systems: tutorial and design Badiru [*] recommends other potential applications in industrial engineering: computer-aided manufacturing, computer-aided design, computer-aided education, flexible manufacturing, human resources management, office automation, technical diagnosis and maintenance, logistics, reliability, safety, project management, and statistics and data analysis. ## CONCLUSION The technology of expert systems has been delivering beneficial results for users worldwide. Rightful credit goes to universities who have pioneered research in AI and ES and, consequently, to the manufacturing companies who through their Research & Development arms capitalized on such a technology. With the successes that the technology has reaped in various disciplines, the manufacturing sector in the Philippines could tap the technology to disseminate technical expertise among the sectors of industry, academe, and government. Presently, the academe has been looking into its relevant application areas. With the availability of the necessary hardware, software, and the appropriate expertise, ES technology could address a wealth of problems confronting Philippine manufacturing sector. Improvements in productivity and quality could be realized provided that the development and implementation of expert systems is justified in the long run. ### REFERENCES - [1] Abdel-Moty, Elsayed and Tarek M. Khalil (1987). "A Computerized Expert Systems for Work Simplification and Workplace Design", Proceedings: World Productivity Forum and 1987 International Industrial Engineering Conference Washington, D.C., May 17-20, 1987. Georgia: Institute of Industrial Engineers, 1987. - [2] Jensen, Finn; Patrick O'Connor; and Henry Malec (editors). "The Utse of Expert Systems in Total Quality Management: An Exploratory Study", Quality and Reliability Engineering International, 7:19-26. - [3] Gupta, Amar and Bandreddi E. Prasad (editors)(1988). Microcomputer-based Expert Systems. New York: IEEE Press. - [4] Turban, E. and P. R. Watkins (editors) (1988). "PEP: An Expert System for Promotion Marketing", Applied Expert Systems. Netherlands: Elsevier Science Publishers B.V. - [5] Badiru, Adedeji B. (1992). Expert Systems Applications in Engineering and Manufacturing. New Jersey: Prentice-Hall, Inc. - [6] Maus, Rex and Jessica Keyes (1991). Handbook of Expert Systems in Manufacturing. New York: McGraw-Hill, Inc. - [7] Fisher, Edward L. and Shimon Y. Nof. (1984) "FADES: Knowledge-Based Facility Design", Proceedings: Engineering the Future Chicago, May 6-10, 1984. Georgia: Institute of Industrial Engineers. - [8] Joshi, Anand (1987). "Expert System Concept for Supplier Qualification". Proceedings: World Productivity Forum and 1987 International Industrial Engineering Conference Washington, D.C., May 17-20, 1987. Georgia: Institute of Industrial Engineers. - [9] Hellerstein, Joseph L; David A. Lein; and Keith R. Milliken (1990). Expert Systems in Data Processing. California: Addison-Wesley Publishing Co., Inc. - [10] Evans, James R. and William M. Lindsay (1987). "Expert Systems for Statistical Quality Control", Proceedings: World Productivity Forum and 1987 International Industrial Engineering Conference Washington, D.C., May 17-20, 1987. Georgia: Institute of Industrial Engineers.