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ABSTRACT

This paper deals with the modeling of liquefaction-induced large permanent ground
displacements. Based on the information obtained from case studies and shaking tables tests, a technique is
developed to predict the ultimate ground displacements that will develop when the state of soil liquefaction
is continucd for a sufficiently long period of time. The method is based on principle of minimum potential
encrgy, and cffect of earthquake motion is removed from the analysis. The distribution of the ground
displacement is derived so that the potential energy of the ground would take minimum value. Surface
irrcgularity as well as ground heterogeneity are considered. Both two-dimensional and three-dimensional
models are developed. Finally, the model is extended to include the temporal development of permanent
displacement. This is done by solving the equation of motion where the transient displacement is expressed
as a fraction of the ultimate one. An energy dissipation mechanism is incorporated stabilize the solution.
Analyses made on both laboratory and actual field cases show the validity of the model. Thus, the
technique can serve as an economical and practical tool to predict the potential seismic hazards to urban
facilitics and lifeline networks induced by the latcral flow of liquefied soil.

INTRODUCTION

In recent years, it has been recognized that lateral spreading induced by seismic
liquefaction is among the most troublesome hazards for buried structures and lifeline facilities.
The damage potential of lateral spreads is directly related to the order of magnitude of the
permanent lateral ground displacements. Movements ranging between a few centimeters to
several meters have been observed during past earthquakes.

The evaluation of permanent ground displacements is a difficult non-linear problem.
However, it is important as the evaluation of the damaging effects of liquefaction at a site
requires the ability to predict the magnitude and spatial distribution of permanent ground
displacements. Even though the prediction if a site will liquefy or not can be done with
reasonable degree of confidence, there is no generally accepted method for evaluating



displacements. Current research efforts are now focused on this subject.

Several techniques, ranging from simple empirical formulations to rigorous finite
element procedures, have been developed by various researchers to predict permanent
displacements of sloping grounds and earth structures. It may be useful to review these methods
to present a clear view of the state of the art prediction.

A simple empirical equation for predicting liquefaction-induced displacements of one-
dimensional slopes has been proposed by Hamada et al. (1986). This equation is based on
measurements of ground displacements from aerial photographs taken before and after the
earthquakes. Based on measurements of lateral displacements observed after the occurrence of
earthquakes in a number of locations in western United States, Youd and Perkins (1987)
developed the Liquefaction Severity Index (LSI) which is the maximum possible ground
displacement that is expected to occur in a gently sloping Holocene fluvial deposits. From case
history studies of liquefaction-induced lateral spread, Barlett and Youd (1992) developed an
empirical model using multiple linear regression for predicting the amount of horizontal ground
displacements at potentially liquefiable sites.

One of the earliest and probably the most widely used type of analysis is that proposed
by Newmark (1965). The ground displacement is calculated based on a single degree of freedom
system and rigid plastic soil. The earthquake load is represented by a pseudo-static load. When
the earthquake-induced acceleration is less than a certain critical value, no sliding will occur;
however, when the critical value is exceeded, permanent ground displacement will take place.
The displacement is then derived by integrating the acceleration-time history in excess of the
critical value. It should be noted that the above method, which has been adopted and modified
by several researchers (e.g., Sarma, 1975; Franklin and Chang, 1977; Byme, 1990; Baziar,
1991), is based on rigid-body movement of soil. When considering liquefied soil, however, the
absence of a rigid soil makes the application of the model difficult. Moreover, the model, in its

present form, can not account for the large strains and displacements that occur within the zone
of liquefaction.

Lee (1974) proposed another type of analysis to determine the seismically-induced
permanent deformation of earthfill dams. This method is based on the assumption that the
deformation is due to the softening of the soil as a result of seismic shaking so that after the
earthquake, the dam will deform to a new condition compatible with the new softened stiffness of
the soil. The softened parameters are based on laboratory tests in which the in-situ stress
conditions before and during the earthquake are simulated. Finite element analyses are then
performed using the normal and reduced/softened moduli to calculate the earthquake-induced
ground displacements. Similar method of analysis was used by Taniguchi et al. (1983) to predict
the settlements of embankments during earthquakes. On the other hand, Kuwano and Ishihara

(1988) adopted the model and employed triaxial torsion shear test apparatus to simulate static and
dynamic loading.

A drawback of this method is that a large number of laboratory tests have to be
performed in order to simulate as accurate as possible the in-situ stress state, which, in some
instances, can be too complicated for any soil testing apparatus to simulate. Based on the fact

that liquefied soil can undergo strains as large as 50 to 100%, the absence of available apparatus
hinders the application of this model.
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Much of the present available techniques in evaluating permanent displacements of earth
structures employ non-linear dynamic stress-strain behavior of soil in conjunction with plasticity
theory. These types of analyses include equivalent linear model (Seed et al., 1973; Lysmer et
al., 1975), direct non-linear model (Finn et al., 1976; 1986) and elasto-plastic model (Dafalias
and Hermann, 1982; Pastor and Zienkiewicz, 1986) among others. However, considering the
fact that the analysis of liquefied soil requires highly non-linear analysis, too many input
parameters have to be precisely determined in the laboratory. To compound the situation, the
proper modeling of soil properties for analysis remains a formidable task.

It is apparent from the foregoing discussions that the methods of prediction are strongly
related to the assumptions of the mechanisms by which ground displacements are governed. In
this paper, an alternative model is presented which takes into account field experiences and
shaking table observations, so that the method of prediction may be made as reasonable and brief
as possible without sacrificing accuracy.

CHARACTERISTICS OF LIQUEFACTION-INDUCED GROUND
DISPLACEMENTS

In a companion paper (Orense, 1994), the nature of permanent ground displacements of
liquefied soil was clarified, and the factors influencing the magnitude and spatial distribution
were identified based on a review of actual case histories and the results of shaking table tests.
The characteristics of permanent ground displacements induced by liquefaction were summarized

by the following observations:

1. The permanent displacement is oriented in the downward direction of a slope, suggesting the
influence of gravity. Tension cracks are detected near the top of liquefied slopes in the field
after movement, and they are oriented normal to the direction of the ground displacement.

2. Lateral displacements at the top of the slopes are greater than those at the foot of the slopes.
In addition, subsidence is predominant near the top of the slope while heaving is the case in
the lower portion. The magnitude of the vertical displacement is much smaller than that of

the horizontal one.

3. Shaking table tests show that liquefied ground behaves very similar to liquid; hence, its
movement is highly affected by the total head gradient which is defined in terms of the total
overburden stress and the elevation heads.

4. The magnitude of the lateral displacement in a liquefied sandy layer is minimum at the
bottom and increases towards the surface. When partially saturated layer at the surface is
present, the lateral displacement is continuous at the interface between this layer and the

underlying liquefied layer.

5. Permanent displacement is caused by the gravity force; cyclic acceleration influences the
movement only indirectly by triggering liquefaction and in determining the extent of

liquefaction.
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6. The magnitude and pattern of ground movement depend not only on the slope and
stratification local to the point of concern but on the overall topography of the study area.

The observations that liquefied soil behaves as liquid and that seismic forces affect
displacements only indirectly are important since they imply that the effect of earthquake motion
can be removed from the analysis, and the problem can be analyzed in a static manner. These
observations, as well as the others mentioned above, will serve as the basis for the development
of an analytical technique to predict liquefaction-induced permanent ground displacements, which
will be presented in the next section.

2-D MODEL FOR PREDICTING PERMANENT GROUND
DISPLACEMENTS

This section deals with an analytical model to predict the displacement of two-
dimensional liquefied ground based on the principle of minimum potential energy. Before going
into the formulation of the model, a brief review of the basic concepts of the energy principle
will be presented.

Principle of Minimum Potential Energy

As discussed earlier, liquefied soil behaves as liquid. Consequently, its behavior can be
analyzed and explained in terms of physical laws. One of the most commonly used principles in
the analysis of structural and hydraulic phenomena is the principle of minimum potential energy.
The principle is stated as follows (Washizu, 1968):

"Among all admissible configurations a system can undergo which satisfy the prescribed

boundary conditions, the actual displacements make the total potential energy an absolute
minimum"”

Before applying the principle to the analysis of permanent ground displacements, it is
worth illustrating the applicability of the concept to various physical phenomena.

‘ Consider a block with weight W and attached to an initially unstretched elastic spring
with modulus k, as shown in Figure 1. When the block is released from rest, it will oscillated
and some of the energy are dissipated until the motion ceases.

. The principle of minimum potential energy is employed to calculate the ultimate
displacement u of the system. The change in the potential energy of the system, denoted by II

consist of tae change in the strain energy of the spring and the change in the potential energy of
the mass, i.e.,

= 1k'u2 - Wu
2 1)

where u is the unknown displacement.
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Minimizing the energy expression with respect to u and setting t to zero results in

N
—=ku-W=0 or u:%

du )

which is equal to the exact solution.

Next, the displacement of water will be analyzed. Consider the U-tube shown in
Figure 2. In the said tube, water in both pipes have different initial elevations. Now, assume
that the valve connecting the pipes is suddenly opened. Water will flow until an equilibrium

condition is reached. This equilibrium condition can be obtained by minimizing the energy
function. Before the flow, the potential energy is given by

T = Srud {17+ 17) 3

where A is the cross sectional area of the tube, Y\, is the unit weight of water and H,, and H,
are the elevations of the water in the pipes. When the valve is opened, the elevations of water
inside the two pipes change to H,-AH and H,+0H, where OH 1is the change in water

elevation, and the potential energy becomes

M+ = —;-7.".4 {1 - AP + (Hy + AHY) )
Thus, the change in potential energy is derived as

= -;-7”,/1 {Un - Ay -n} + (i +AMY - B}) )

Proceeding as before,

ol
——D(AII) = %'MA {2(My - AH)- 2(H;+ AN} =0 ©

whence, OH  can be obtained as

_ Hy -1,

A== @
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Therefore, the final elevation of water inside the tube is given by
H,—AII:]I;+AH=# (®)

which shows that the water will move until the water levels on both sides of the tube are
identical.

The examples shown above clearly illustrate the applicability of the principle of
minimum potential energy in describing the movement of both solid and liquid. As shown
above, motion ceases when equilibrium is achieved, which, in turn, corresponds to the point
where energy is minimum. Thus, the principle can be used to predict the maximum possible
displacement than can occur. It should be noted, however, that the principle is not concerned
with how the material reaches this particular point; consequently, the principle can not be applied
to predict the time history of displacement of the object concerned. The formulation of the
temporal development of displacement will be presented later.

Model Formulation

The analytical model is derived from the observations on the nature and mechanism of
soil flow described earlier. The most important of these is the observation that seismic motion
affects ultimate displacements only indirectly by triggering liquefaction and in determining the
extent of liquefaction. Consequently, the effect of seismic motion can be removed from the
analysis and a static approach can be made by taking into account only the potential energy of the
ground. It should be emphasized that the calculated displacement is the maximum possible that
can occur when the state of soil liquefaction continues for a sufficiently long period of time.

The method employs the model ground shown in Figure 3. It consists of an
unliquefiable base (B), a liquefiable layer (H) and a surface unsaturated layer (T). The
surcharge, P, includes the weight of the unsaturated layer and any additional loading. The
ground configuration varies linearly with the. x-axis as follows:

B =B, +az H=H,+bz
T=T,+cz P=P,+ ez (&)

Four assumptions are employed in the analysis:

1. The.lateral displacement u is approximated by a sinusoidal distribution along a vertical cross
section (see Figure 4 ) as

u(z,z) = F(z sinw(z_B)
(7.2) = Flz)sin =5 (10)
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where F(x) is an unknown function of x and represents the displacement at the surface of the
liquefied layer (z=B+H).

2. Permanent displacement occurs under constant volume condition, i.e.,

du OJw
a—z+—a—z--0 (11)

in which w(x,z) is the vertical displacement at any point. Note that the settlement resulting
from consolidation is excluded and should be considered separately.

3. The stress-strain (7-7Y) relation of the liquefied sand is given by

r=Got+r, (12)

where G is the shear modulus and is 7 the residual strength. Note that this relation combines
both linear elastic and rigid plastic behaviors; this is adopted for analytical convenience.

4. The surface unsaturated layer does not liquefy and behaves as a solid bar with elastic modulus
E.

Substituting Equation 10 into Equation 11 and considering zero vertical displacement at the

base (z=B), the vertical displacement function w(x,z) is obtained as follows:

z—B afl +b(z-B),, . x(z—B
w(z,z) = [H—+bF]{ 1(2}{ )}+ +J([ )Fsmw(ﬂ[ ) (13)

Specifically, at z=B+H, the vertical displacement at the surface of the liquefied layer is given by

2 [, dF

Note that from the observation that there is no slip between the liquefied and surface
unsaturated layers, Equation 14 is the vertical displacement of the ground surface as well. In
addition, the change in surface elevation, §H, due to the lateral soil flow is derived from the
difference of the flux of ground movement as shown in Figure 5 and is given by

i(Vo]ume of soil flow)
- [H——+6F] (15)

o

]
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The potential energy of the ground is then formulated by considering the strain and
gravity components of the liquefied and surface unsaturated layers. The unliquefied base is stable
and is not involved in the flow. In the calculation of the strain energy, only the predominant
components of the strain tensor are taken into account. For the liquefied layer, a lateral surface
displacement of 5 m is possible when the thickness of the liquefiable layer is, for example, 10 m,
as in the case of Noshiro City (Hamada et al., 1986). This results in a shear strain of 50%. In
contrast, the length of a slope is typically 500 m, and this gives an average normal strain of
merely 1%. Moreover, the vertical displacement is much smaller than the lateral displacement,
and consequently, the normal straindw/3z, is also small. Since the strain energy is proportional
to the square of the strain, the shear strain Ju/Jz is the predominant component. The surface
layer behaves like a column subjected to lateral compression and only the axial strain u/dxis
important. Thus, the total energy consists of the following:

(1) Strain energy in the liquefied layer

_ L BHH (G (0u\? |  du
Ex—/o /B {?(0_2) +T,a—z}dzdz: (16)

(2) Potential energy increment of the liquefied layer
Ly 2 2
EQ:/O 2B+ H +8H) —(B+ 1) dz (17

(3) Strain energy of the surface unsaturated layer

E3=/°L¥(%)2dz (18)

(4) Potential energy increment of the surcharge

L
E4=—-/t; P x w|z=B+HdI (19)

. Note that the integrand in Equation 17 is similar to Equation 5, the potential energy
expression for water. Moreover, the potential energy is formulated by assuming that the soil
ma.teria}l (with unit weight Y,) remains in the space between x=0 and x=L, i.e., nothing is
going into or out of the interval and no crack development. However, since li’qllei'l’ed soil can
ﬂow beyopd this interval, a correction E,, is required in order to take into account the
increment in potential energy of the displaced volume of soil.

Figure 6 illustrates the condition at the foot of a slope (x=0)

. L. where the displacement
F(x) 1s allowed to occur. To simplify the analysis, the potential energ e displa

y of the volume of soil
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ABE' is assumed to be equal to that of ABE (this is reasonable since the vertical displacement w
is very small compared to the thickness of the liquefied layer AB) and this is given by

B+H .
Byl = /B 71z Fsin T(‘_B) dz

2HB 4H?
" ( + ) F

Il

x x3

==0 (20)

Similar calculation can be made at the top of the slope (x=L), and the potential energy of this
volume of soil is subtracted from the total energy. Thus, the total correction can be written as

2HB 4H?
I )F

x x?

Epleo + Botlo=p= — (
’ =0 (21)

Based on field observations, tension cracks can occur near the top of liquefied slopes.
The presence of such cracks are incorporated by assuming that a crack is filled with sand-water
mixture, as in Figure 7, which exerts lateral pressure on the side of the segment. For the purpose
of the analysis, the case wherein lateral earth pressures are exerted at the top and bottom of the
slope is considered. This pressure, consisting of hydrostatic and additional pressure due to
surcharge, increases the potential energy at x=0 (negative work) and decreases at x=L (positive

work). Thus, the energy contribution is:

x(z — B) ==t
B+H . -
- -2 d
Ep = /E {—[71(B+H z)+ P]x Fsin g } zz=°
2 2\? L [*
- _[M+ﬂ_,,(_)]p @
n T g =0
Therefore the total potential energy of the ground, denoted by II, is given by
I = Ey+E,+E3+Ei+ )
(Ey + Ewaly—o + (Bot + Bial,=p, (23)
which can be expressed as
£ aFyrr + Gz, F) =
n= J, PR g v 0] (24)
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The above equation is then minimized to calculate the actual displacement F(x). This is

a typical problem in variational calculus where the function F(x) is to be determined which makes
the functional II minimum.

Close-Form Solution

According to the mathematical theory of variational calculus, Equation 24 can be
minimized by employing Euler's differential equation, i.e.,

o0F d[ o0F 0
aF dz

dz |3(dF/dz)) = (25)

Upon substitution of the explicit expression of F into Equation 25, the following is obtained:

4 [(4n )dF} Gz? L _ 27 2e
dJ:{(T’” +ET dz —SHF— Tr-(a+b)(P+?”)—?” (26)

By assuming that the liquefied sand behaves as liquid, G is set equal to zero. As a result,
Equation 26 can be simplified into

dF _ Ciz?+ Csz+ A

—E; - 011:2 + Coz + C4 (27)
where
4y b?
C] = 7‘_12
8ybH
C, = L;Tﬁ+Ec
4y H?
C: = 5 +ET,
T
_ 21,b) 2eb}
Cy = —2{(a+b)(e+ - + T
_ _ 2mH, 2eH,
G = n-(a+d) (R M) -2 29)

and A, is parameter which takes into accou

. nt the bound ition. - ion to
the above differential equation can be seal] undary condition. A closed-form solution

y obtained from the appropriate boundary conditions.
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Equation 27 is applicable only to one segment of ground undergoing permanent
movement. However, the equation can be extended and applied to grounds with surface
irregularities or varying properties by subdividing the ground into piece-wise linear segments.
The potential energy of each segment is formulated independently, as given by Equation 23. By
adding the energy of each segment is formulated independently, as given by Fquation 23. By
adding the energy terms corresponding to each segment, the total energy of the whole ground is
derived. Using variational principle as before, it can be shown that the lateral displacement
distribution F(x) for each segment is given by Equation 27, where the constants of integration can
be evaluated by considering displacement and stress continuities at the interfaces.

Thus, by subdividing the ground into piece-wise linear segments, surface irregularity
and material variation are accounted for in the analysis. Equation 27 can be used to solve for the
displacement distribution in each segment, subject to the appropriate boundary conditions as
required by the variational principle. Hence, the problem simplifies into the solution of
simultaneous linear equations in terms of F; (i=/, n), and a continuous function of F(x) can be

obtained for the whole liquefied ground.

Illustrative Examples

The model presented in the previous section is then employed to analyze various cases.
Since it is difficult to make an accurate determination of soil properties at various locations, a
common set is assumed for each analysis. In addition, it is assumed that the liquefied soil

behaves as liquid, with G =T, = 0.

The first analysis was made on the sloping ground of Mae Hill located in Noshiro City
which liquefied during the 1983 Nihonkai-Chubu earthquake. The topography, which is
subdivided into piece-wise linear segments as shown in Figure 8(a), is obtained from the study
made by Hamada et al. (1986). In the application of the model, a fixed boundary is assumed at
the bottom of slope where displacements are negligible and free boundary at the top of slope,
where cracks are observed. Unit weights of 15.7 kN/m? and 17.6 kN/m? are assumed for the
surface layer and liquefied layer, respectively. The Swedish weight sounding tests conducted in
the area show an average value of N5, = 100 in the surface unsaturated layer (Hamada et al.,
1986). From the empirical formula proposed by Inada (1960) correlating the Swedish cone
resistance value, Nsy, with the SPT N-value given by

N =2+40.067TN,u (29)

an equivalent SPT blowcount of N=38 is obtained. Hence, the Young's modulus of the surface
soil is estimated to be 10780 kN/m? by using the empirical equation proposed by Schultze and

Menzenbach (1961):

E=1T1+49N (kgf/cm?) (30)

The observed displacements at the surface are shown in Figure 8(b), together with the

calculated values. It is shown that the prediction slightly overestimates the measures values.
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The second example deals with the result of shaking table test. For this purpose, the
results of Model 6 test of the Public Works Research Institute (PWRI) (after Sasaki et al., 1991),
is selected for the analysis. In this test, a gently sloped gravel surcharge was placed over one-
half the length of the loose saturated deposit. The configuration of the model ground is shown in
Figure 9(a). The unit weights are measures as 14.5 kN/m’ for the surface layer and 19.6 kN/m’
for the liquefied layer. The Young's modulus is estimated to be 98 kN/m?. Shaking was then
applied in four stages with the acceleration increasing in each subsequent stage.

For shaking table tests, a cracked boundary is not directly observed due to the fact that
crack can not be maintained open as no sand flows into it (different from Figure 7); instead, due
to the effect of the end wall, a series of crack opening and closing occurs. For practical purpose,
this end is modeled as a fixed boundary.

The resulting deformation of the ground surface after ihe test is shown in Figure 9(b).

Also plotted in the same figure are the calculated permanent displacements as denoted by the
solid line. Note that the observed values are underestimated.

In order to improve the analysis, it is noted that the right portion of the displacement
distribution shows negative dF/dx, indicting the existence of tensile stresses in the surface layer.
Since sandy soil does not have tensile resistance, the problem is re-analyzed such that the E of the
portion where dF/dx becomes negative is set to zero. In effect, the solution becomes iterative
until the actual boundary of the portions under compression and tension is established. The
improved estimates are shown by broken lines in Figure 9(b), and it is seen that the calculated
values overestimate the measured data as intended. It is to be noted that in this test, the applied
shaking (duration time of 20 seconds per shaking stage) was not long enough to attain the
ultimate displacement, and therefore, overestimation is expected.

It is noted that in the case studies presented herein involving both actual field studies and
shaking table tests, the predicted displacement tends to be an overestimation. Although the
material properties employed in the analyses could be one of the reasons for this discrepancy,
another reason seems that the present analysis is geared toward the calculation of maximum

possible displacement. = When the observed displacements are not the maximum possible
displacements, overestimation is inevitable.

EXTENSION TO THREE-DIMENSIONAL CASE

The previous section discussed the development of a model to predict permanent
displacements in a two-dimensional ground. However, considering that lifeline networks cover
wide areas and are extensively spread, the prediction technique should be ultimately three-

dimensional; otherwise, the analysis of the whole areas may be very costly. In this section, the
three-dimensional extension of the energy model is presented.

Model Description

In the application of the model, the ground surface area is subdivided into several

triangular finite elements as seen from the top; see Figure 10(a). A typical finite element
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employed in the model is presented in Figure 10(b). Each element consists of the following
layers in z-direction: (1) an unliquefiable base, with elevation B, (2) a liquefiable layer with
thickness H; (3) a surface unsaturated layer with thickness 7 and (4) the surcharge, P, which
includes the weight of the surface layer and any additional loading. The ground configuration
varies linearly with the x and y coordinates, i.e.,

B =B,+ajz + by H = H,+ a2z +_b;y
T=T°+ng+b3y P=P°+G4I+b4y (31)

The constants B,, a;, b;, Hp, .., a4, by can be determined from the known values of B, H, T and
P at the nodal points.

For the three dimensional case, the lateral displacements in a vertical cross section of a
liquefied ground in the directions of x and y-axes (denoted by u and v, respectively), are
approximated by sinusoidal distributions in z-direction:

7{z — (Bo+ a1z + biy)]
2(H, + a2z + bay)
_ . w[z = (Bo+ a1z + byy)]
v(z,y,2) = J(z,¥)sin 2(H, + a2z + b2y) (32)

w(z,9,2) = F(z,y)sin

The formulation for three-dimensional case is similar to the two-dimensional case
presented earlier. In this case, however, the surface unsaturated layer behaves like an elastic
plate which has an elastic modulus E and Poisson's ratio v and is subjected to in-plane stresses.
The constant volume condition is re-written as

du Ov Jdw
22ty ta: 70 (33)

and the surface displacement is obtained as follows:

2 dF  aJ
w(z, Y)|i=p+n = -7 [” (E + ﬂ) + a2 F + sz]

+ (01 + GQ)F + (b) + b;)] (34)

In addition, the change in surface elevation, H, at a given location (x,y) due to the lateral soil
flow is derived from the difference of the flux of ground movement and is given by

2 [y (2F ﬂ) b J]
M = = [” (a"*‘ 32 +a2F +b2 35)

Note that +8H indicates heaving, while -6H suggests settlement.
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Energy Consideration

The energy of each ground element is again formulated by considering the strain and
gravity components of the liquefied and surface unsaturated layers as in the two-dimensional
case. The total energy consists of the following:

1. Strain energy in the liquefied layer

_ [PHH[G [rau\? | (8v)? du  dv
Bo= -{z [(a) +(£)] * [a‘*a_}d (36)
2. Potential energy increment of the liquefied layer

E, = % [(B+ 1 +61) - (B+ 1Y (37

3. Strain energy in the surface unsaturated layer
ET aF\?  (3J\? 9F3J\ 1-v (3F 8J\2
» = g |() *5) GRS (G
3 2(]—1/7)[ oz + dy +\ez 3y + 2 0y+3:|: (38)

4. Potential energy increment of the surcharge

Ey=—P X w|;=p+n 39)

Equations 36 - 39 represent the energy components for a soil column located at coordinates (x,y)-
To get the total energy of the element, the equations should be integrated throughout the area of
the element, designated by A. Note that these expressions are essentially the three-dimensional
extensions of Equations 16 ~ 19, which are the energy expressions for two-dimensional case.

The additional energy expressions at the boundaries are given by

B+H
E“:/S/B (11 % 6, % 2) dz dS @)

B+H
E"’=/L/a {6,,x[P+-y,(B+H—z)]}dzdL (41)

where 6, is .the comppnent of the lateral displacement at any point normal to the element
boundary, S is the perimeter of the element and L is the length of the appropriate side (cracked
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boundary) of the element. The quantity inside the bracket in Equation 41 is the hydrostatic
pressure distribution.

Therefore, the total potential energy in each element, represented by the functional II, is
given by

I = / (E1 + E2 + E3+ Ey) dzdy +Ey + By
A

dF OF aJ aJ /
+ G ,F,J)dL
[ 7 (50 R05 5r 505y 37) dzdy 6(z,y, F,J) 42)

From the above equations, it can be seen that II is a function of the unknown surface
displacements F(x,y), J(x,y), their first-order derivatives, and the coordinates x and y. Thus, the
problem is, in effect, reduced to a two-dimensional one involving only the surface lateral
displacements. These unknown displacements can be calculated by applying variational principle
on the functional II. Due to the complicated nature of the expressions involved, a closed-form
solution is not attempted; instead, a two-dimensional (x,y) finite element-based formulation is

employed.

Finite Element Formulation

In the finite element formulation, Rayleigh-Ritz method is employed by representing the
surface displacements within an element by the linear interpolating functions

F(z,y) = aj+ a2z + a3y
J(z,y) = Pr+hPaz+ Py (43)

or, in terms of the unknown nodal displacements

NP+ NoFa+ N3 Fs
NiJy 4 NaJa + NaJs

I

F(z,y)

J(z,v) (44)

where N,;, N, and N; are the familiar shape functions which are expressed in terms of the
coordinates x and y, while F, ..., J; are the unknown displacements at the nodes of the element.
Note that the above interpolating function implies constant-strain condition within the element.

Equation 44 is then substituted into the energy functional II. For each element, Il s a
function simply of the nodal displacements F; and J,. The total energy of the whole system,
which is equal to the sum of the energies of each individual element, is minimized by taking its
variation with respect to the unknown nodal displacements F; and J; and setting it to zero, i.e.,

;)| 4 dlx
;—F F+ZWJJ._0

TTD’];

45)
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where i=1 to n, n = number of nodal points, while k=1 to m, m = number of elements. The
above equation can be solved by setting

3Hk ank
= — =0
F. 0 and a7; (46)

Equations 46 represent 2n equations and, by rearranging these set of equations, they can be
written in a more familiar form

{P} = [K]{U} 4N

where [K] is the stiffness matrix and {P} is the equivalent load vector. Thus, the equation
becomes a typical finite element problem where the displacement vector {U} is required.

In the application of the method, two boundary conditions are considered. Fixed ends
correspond to boundaries where liquefaction does not occur or where displacements are
negligibly small (usually at the bottom of slopes). On the other hand, cracks occurring on top of
slopes are modeled as free boundaries, where Equations 40 and 41 are applicable.

It should be noted that tensile stresses may develop in the surface unsaturated layer as a
result of the lateral movement of the ground. Since sandy soil cannot sustain tensile stresses,
special consideration is needed in order to exclude the tensile behavior. The stresses which
developed due to subsoil liquefaction as calculated from the above analysis are added to the
average static stress in the surface soil given by

So = 1/2 Ko'Y.lT (48)

where K, is the coefficient of earth pressure at rest (assumed to be equal to 0.5 in this study), Y's
is the unit weight of the surface soil and T is the average thickness of the surface layer (evaluated
at the center of the element). This total stress represents the actual stress in the surface layer
during the liquefaction of the subsoil.

Elements which show tensile principal stresses are picked out and the elastic moduli in
the direction indicated by the tension are reduced to one percent of the initial value. The original
problem is then re-analyzed on the basis of the new, now anisotropic properties until "no
tension” state is reached. To avoid unnecessarily large number of iterations, the computation is
terminated when the percentage difference in the nodal displacements obtained in two successive

iterations is less than ten percent. This criterion seems reasonable when compared with the
required accuracy of permanent displacement prediction.

lllustrative Examples

‘ To examine the capability of the proposed method, it is used to simulate the ground
displacements observed in shaking table tests conducted at the Public Works Research Institute
(PWRI) and those measured in Noshiro City during the 1983 Nihonkai-Chubu earthquake. Due



to the complexity involved in determining the soil parameters for case history studies, the present
study again makes use of a common set of soil properties for each analysis. In addition, the
liquefied soil is assumed to behave like liquid, with G = 0 and Tr = 0. For the surface
unsaturated layer, v = 0.30 is used.

The first analysis considers the semi-circular liquefiable deposit of PWRI's Model 8 test
(Sasaki et al., 1991). In this test, a semi-circular liquefiable deposit of 2 m in radius and 0.25 m
in height was overlain by a cone-shaped graved embankment with radius of 1 m and a height of
0.15m at the center. This model ground was shaken in the longitudinal direction in three stages
to determine the effect of the direction of excitation on the lateral movement. The relevant soil
properties are as follows: Y1 = 18.0 kN/m3,Ys =13.3 kN/m3, and E = 294kN/m2. Figure 11(a)
shows the direction of ground flow after the first two stages. From this figure, it is noted that
the surface of the semi cone-shaped embankment and the neighboring horizontal ground seem to
move almost radially, i.e., in the direction of slope.

Figure 11(b), on the other hand, illustrates the spatial distribution of the ground
displacement obtained by the proposed model. In the calculation, the nodal points along the
circumference are assumed as fixed ends, whereas those located along the diameter are assumed
to be fixed in the direction normal to the diameter and free in the direction parallel to the
diameter. Although the calculated maximum displacement of 3.2 cm exceeds the maximum
observed value of 2.7 cm, a comparison of the two figures reveals that the calculated distribution
conforms with that obtained from the shaking table test and the ground displacements occurred in
the radial directions.

Studies conducted by Hamada et al. (1986) revealed that permanent lateral displacements
in the order of several meters occurred in Noshiro City after it was hit by an earthquake of
magnitude 7.7. The permanent displacements in the city as measured from aerial photographs
taken before and after the earthquake are shown in Figure 12. It is noted that the displacement
are larger at high elevations while negligibly small at low places, and that the displacement
vectors are directed downslope around the hilltop.

The proposed method is employed to simulate the observed displacements. The top of
Mae Hill in the southern portion of the city, being surrounded by cracks, is replaced by a hollow
space in the finite element model, and the cracks as free boundaries. Another free end is located
in the north boundary of the element mesh for the southern portion along Highway Route No. 7,
where cracks are also detected. On the other hand, fixed boundaries are assumed on lowland
areas where the non-occurrence of liquefaction is observed. The soil profile is extrapolated from
the cross-sections obtained by Hamada et al. (1986) and the soil properties employed are as
follows: ¥; = 17.6kN/m3, Ys = 15.7kN/m3, and E = 10780kN/m2.

Figure 13 shows the calculated ground displacements, where the maximum permanent
displacement calculated was 6.6 m. Hamada et al. (1986) observed that the maximum
displacement in this area was approximately 5 m. It can be seen that although the analysis
slightly overestimates, the method shows good agreement with the measured data. Moreover, the
spatial distributions are also consistent with those observed, i.e., displacements are large at high

elevations and small at low elevations.
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Since the liquefied soil is assumed to behave like liquid with zero residual strength, the
calculated displacements can be considered as the upper-bound solutions, i.e., these
displacements are the maximum possible displacements that would occur if soil liquefaction
continues for a sufficient period of time.

It is noted that the proposed method, being static in nature, does not require complicated
soil properties as input data. Information on topography, location of liquefied layer, unit weight
of the soil, and the elastic properties of the surface unsaturated layer are the only required
parameters. The heterogeneity of the ground can be considered by allowing different values of
soil properties to various elements, it necessary. Surface irregularity can be taken into account
by varying the thickness of the appropriate layers. Furthermore, since the liquefiable layer and
surface unsaturated layer are assumed as elastic material and liquid, respectively, the computation
is relatively straight forward and is not time consuming. For example, the analysis of Noshiro
City, wherein the area was divided into 314 finite elements, took only 6 minutes of CPU time per
iteration in an ordinary personal computer.

TEMPORAL DEVELOPMENT OF PERMANENT DISPLACEMENTS

The previous sections have discussed the ultimate displacement that could possibly occur
when a liquefied ground is allowed to flow for a sufficiently long time. Generally, the ground
displacement caused by earthquakes of large magnitude (probably greater than 7) seem to be close
to the predicted one because the duration time of ground shaking is long enough. However,
when an earthquake of smaller magnitude occurs at a shallow depth beneath the study area, it is
possible that the ground shaking would be strong enough to trigger liquefaction but the resulting
short duration may induce displacements smaller than the ultimate values. Thus, it is attempted
to take into consideration the development of ground displacement with time. The formulation is
made as simple as possible, like the original model, without sacrificing its reliability.

Theory of Dynamic Analysis

As shown in the previous sections, the prediction of the ultimate displacement was made
by emp!oymg variatlonz_xl principle. Similarly, the temporal solution of displacement is derived
by solving the Lagrangian equation of motion which is also a variational principle of dynamic
type.

For convenience of analysis, the effect of time ¢ on the ultimate displacements u and w
are separately considered, i.e.,

Il

U(z,z,1)
W(z, z,1)

A1) u(z,2)
A u(z,2) (49)

in which A (t) is function of time that varies from zero at the initial stage of shaking up to unity

after a sufficiently long time. The expressions for u(x,z) and Ww(x,z) have already been obtained,
and only A (t) is to be determined.
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The Lagrangian equation of motion is given by

d[a a _
Glxw-m| - Fr-m=v (50)

where A is called the generalized displacement function with its time derivative dgenoted by , T’
and II refer to the kinematic energy and potential energy, respectively. Note that II consists of
the contribution of the strain energy and gravity. ¥ on the right-hand side is the inertia force due
to shaking. In the present case, when a potential function Y exists, the force can be expressed as

oY
V=—or Gn

By using Equation 51 and choosing A () in Equation 49 as the generalized displacement in
Equation 50, the Lagrangian equation of motion becomes

d[o ]
E[ﬁ(r_n_r)]—-ﬁ(r-n-r)ﬂ (52)

The kinematic energy, T', is given by

r= 5|5+ (5] @ 3

where P is the mass density of the soil and the volumetric integration is made all over the
liquefied and surface unsaturated layers where the displacement takes place. Substitution of
Equation 49 into Equation 53 results in

1 2 da\?
E/Vp(u +w2) dVv (ﬁ)

- L (2

=™ & (54)
where m denotes the quantity inside the integration sign. The potential energy, II, at the ultimate

condition (i.e., U = u and W = w) has been calculated earlier (see Equation 23). Substituting
Equation 49 into II in place of u and w results in

—
Il

n=#ﬂ+ﬂ (55)

in which

f = -k (56)

45



Neglecting the component of the inertia force in the vertical direction, the potential
function of the inertia force is given by

r = -/ YU AV
|4
d?u,

where d2up/de? indicates the seismic acceleration at the base of the liquefied layer. When
Equation 49 is substituted into Equation 57,

d?uy
T =n _le A (58)
in which
n=/‘;pu av 69

Upon substitution of Equatiors 51, 54, 55, and 58 into Equation 50, the Lagrangian
equation of motion is transformed into

d2) d?uy

Now, considering a base motion which is a harmonic function of time, i.e.,

d%u .
_dtzb = Asinwt 61)
Equation 60 becomes
d2x )
mF+kA = —f-nAsinwit (62)

which can be easily solved analytically.

It should be mentioned at this point that the formulation presented herein assumes no
temporal change in the thickness of the liquefied layer. On the other, the studies made on
shaking table tests presented earlier concerning the ultimate displacements :1 and w were observed
after pore pressure dissipation. Therefore, the present analysis takes into account implicitly the

effect of pore pressure dissipation. An analysis incorporating explicitly the effects of pore
pressure dissipation and reconsolidation of the ground was not attempted.
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Mechanism of Energy Dissipation

When the equation of motion given by Equation 62 is applied to analyze the behavior of
model grounds, two problems were observed: first, the predicted displacement developed much
more rapidly than that observed in shaking table tests; and second, the predicted displacements
oscillated around the ultimate one without decay of amplitude. Apparently, these problems stem
from the lack of any energy dissipation mechanism in Equation 62. Therefore, an appropriate
energy dissipation mechanism is proposed.

The mechanism of energy loss is developed by observing the behavior of liquefied sand
during the shaking table test. Figure 14 illustrates the configuration of a model ground shaken at
PWRI. The location of various transducers are also shown in the figure.

Figure 15 illustrates the relationship between the horizontal acceleration (A-18) in the
liquefied layer and the lateral displacement at the surface (D-6) relative to the shaking table. The
equation of motion indicates that this acceleration is more or less proportional to the shear stress,
while the displacement gives a rough evaluation of the shear strain in the model ground. Hence,
Figure 15 can be used to examine the stress-strain behavior of the liquefied soil. Except in the
first few cycles, it is seen that the liquefied sand exhibited a temporary shear stiffness and did not
behave similar to liquid, contrary to the idea mentioned before. For a certain period after
unloading of shear stress from its peak values at A and C, the shear stress and tangent modulus
are very small and the sand can undergo significant amount of deformation. After a substantial
displacement in both directions, the shear stress starts to develop and this increase in shear stress
prevents -further movement of the ground. Following the peak shear stress attained at C and A',
the phase of unloading and reloading in the other direction is accompanied again by the rapid
development of shear distortion. Thus, a liquefied ground flows toward the location of the
minimum potential energy as discussed earlier, and the movement is associated with the temporal
development and disappearance of shear resistance of sand.

The variation of lateral movement in the manner of development as described above is
closely related to dilatancy in ground, which either increases or decreases the excess pore water
pressure and thereby affects the resistance of sand against shear distortion. This can be seen
clearly in Figure 16, which shows the relationship between the pore water pressure and shear
stress as estimated from the ground acceleration. It is seen that the excess pore water pressure
drops significantly at the instant the peak shear stress is attained, such as in A and C; this is more
pronounced in C in the positive direction. This behavior of water saturated sand is commonly
observed in undrained shear tests. Conversely, the pore water pressure increases again after the
peak stress, and is maintained at high value until the next peak stress is approached. Therefore,
it is reasonable to say that the high level of excess pore water pressure allows the liquefied sand
to deform without significant resistance against shear except after the shear distortion has
occurred substantially in each half cycle of shaking and the peak shear stress is approached.

Although the soil behavior as summarized above should be modelled precisely for the
purpose of dynamic analysis, this type of approach requires a step-by-step or an iterative
integration of the equation of motion. This is because the change in the deformability of sand is
related to either the shear distortion (Figure 15) or the ground acceleration (Figure 16), both of
which are not known until the equation is solved. Thus, the computation becomes much more
complicated than a closed-form solution which is the goal of the present study.
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In order to simplify the analysis, Figure 17, which illustrates the relationship between
the base acceleration or inertia forcer (A-26) and the ground displacement (D-6) as obtained from
the PWRI experiment, is employed. Initially, the ground displacement can occur freely after the
peaks of the inertia force, A and C. This phase corresponds to the stage after the peak shear
stress when the excess pore water pressure of high as shown in Figure 16. The rate of
development of displacement decreases gradually in the following stage, until the peak inertia
force occurs and the nearly vertical gradient of the curve at  peaks suggests a very limited
possibility of continued flow of the ground.

To model the ground behavior as discussed above, a liquefied ground is allowed to move
in accordance with Equation 62 without viscosity from the moment of peak inertia force (A and
C in Figure 17) to the moment of null inertia force (B and D). At B and D, the ground
movement is ceased abruptly and no more displacement is allowed until the next peak inertia
force occurs at C and A'. This implies that a repeated loading and unloading is necessary,
however small its magnitude may be, in order to keep the ground moving laterally. In other
words, the ground will continue to move as long as shaking is occurring with low level of
amplitude.

Therefore, Equation 62 is solved with the idea illustrated by Figure 17. The value of A
at the end of each cycle of inertia loading, denoted by A ;, is given by

mw? — k 2w 2w

A= 1= (it — 1) cos (r\/zﬁ‘;m) + nA [cos (""\/k?m) — cos? (ﬁ/k?m)] 63)

which is easy to calculate with the initial condition /\o=0 at the beginning of shaking and
liquefaction.

Example Calculation

To illustrate the validity of the model, the development of A with time as observed in
small-scale shaking table test is simulated. The configuration of the model ground is illustrated
in Figure 18. The loose deposit of sand was created in the container by jetting pressurized water
into a sand deposit. The relative density of the ground was 38%. the model ground was shaken
horizontally with an acceleration amplitude of 200 gals and a frequency of 5 Hz. Shaking was
continued for a sufficiently long period of time until the ultimate displacements, u and w, were
obtained. The movement of the targets placed on the ground surface was recorded by a videoY

camera to obtain the experimental value of A defined as the ratio of the displacement of the
target at any time to the ultimate displacement.

Figure 19 compares the experimental A of the model ground and the calculated value
using the model. It can be seen that the agreement is satisfactory. It should be noted that the
model requires limited number of input data such as the unit weight of soil, elastic modulus of
the surface unsaturated layer (if any), and the ground configuration. Dynamic soil properties are
not required because they are already taken into account in the dilatancy modeling.
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To test the validity of the model in predicting the temporal development of displacement
in actual scale, it is employed to simulate the behavior of a 400 m long ground in which the
thickness of the liquefiable layer is 5 m throughout and is overlaid by a 1 m thick surface
unsaturated layer. The slope of the ground is 1%. The unit weight of the liquefied soil is 17.6
kN/m3 while that of the surface layer is 15.7 kN/m>. The elastic modulus of the surface layer is
10780 kN/m2. The foot of the slope is considered fixed, while an open crack is assumed at the
top of the slope. Prior analysis showed that the ultimate displacement is maximum at the top of
slope, with the value equal to 5 m.

The dynamic analysis illustrated in Figure 20 shows that as much as 3000 seconds of
shaking is needed for the loading and unloading of the inertia force to occur so that the
displacement can develop to the ultimate magnitude. Apparently, the main shaking of an
earthquake does not last for this long period of time, although the state of liquefaction and the
high pore water pressure can continue for several minutes. However, it is possible that there are
other sources of ground shaking which is responsible for movement of the liquefied ground.
Firstly, the main shaking of major earthquakes is accompanied by a "coda" wave and a minor
excitation can keep the ground shaking for a longer time. As this continues, the loading and
reloading of the inertia force is repeated and the ground displacement can continue further.
Secondly, the lateral movement of the ground can in turn be the cause of self-generated shaking,
as suggested by an observation of dynamic pore pressure fluctuation in rapidly shearing granular
material (Iverson and LaHusen, 1989).

CONCLUSION

Based on the observations derived from case histories and shaking table tests, an
analytical technique was developed to predict the ultimate ground displacements induced by
liquefaction. The technique of calculation can be summarized as follows:

1. The method is based on the principle of minimum potential energy, and the effect of
earthquake motion is removed from the analysis.

2. The model is concerned with the ground displacements that will develop when the state of soil
liquefaction is continued for a sufficiently long period of time. Thus, the calculated
displacement represents the maximum possible one.

3. Liquefied soil is assumed to behave like liquid. Lateral displacements are approximated by
sinusoidal distribution along a vertical section and the vertical displacements are calculated

based on constant volume condition.

4. The variation of permanent ground displacement with time can be incorporated into the model
by considering the Lagrangian equation of motion. An energy mechanism model which is
related to the dilatancy of the ground is introduced to stabilized the solution.

5. Analyses made on both laboratory and actual field cases showed good correlation with
observed displacements.

Inspite of its simplicity, the example calculations made on both experimental and field
conditions proved the validity of the model. Hence, the proposed method can serve as a practical
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and economical tool to predict the potential seismic hazards to urban facilities and lifeline
networks induced by the lateral flow of liquefied soil.
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Three-dimensional model of ground
for analysis on permanent displacement
induced by subsurface liquefaction
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Figure 10: (a) Finite element mesh; (b) A typical finite element of the model ground
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Figure 11: Model 8 test of PWRI: (a) observed direction of ground flow (after Sasaki
et al., 1991); (b) calculated permanent ground displacements
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Figure 12: Observed permanent ground displacements in Noshiro City (after Hamada
et al., 1986)
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Figure 13: Calculated permanent ground displacements in Noshiro City
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Figure 14: Configuration of model ground in Model 5 test at PWRI
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Figure 15: Approximate shape of stress-strain relation of liquefied ground
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Figure 16: Estimated relationship between pore water pressure and shear stress in
liquefied layer
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Figure 17: Observed relationship between inertia force and displacement of liquefied
ground
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Small shaking table test, E4, 1991

Targets for observing displacement
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Figure 18: Configuration of model ground E-4
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Figure 19: Comparison between the observed and experimental development of A
with time
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