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ABSTRACT

System identification is an important step towards the aim of evaluating the existing condition,
assessing the degree of damage and deterioration and predicting the response of structures. In this
regard, this paper aims to provide the structural engineer a background on the application of system
identification in the field of structural engincering using Kalman filter techniques. The basic
concepts in system identification and parameter estimation are described and the linear discrete
Kalman filter algorithm used to carry out the system identification is summarized. To illustrate the
system identification by Kalman filter, a single degrec-of-frecdom system was analyzed. A survey of

researches related to this field is also presented.

Keywords: Structural Engineering, Structural Dynamics, System Identification, Parameter

Estimation, Kalman Filter

INTRODUCTION

The general subject of system identification started in the area of electrical engineering
and had later extended to the fields of mechanical, control and aeronautical engineering. In the
past decade, the problem of system identification had started to be recognized in the ficld of
structural engineering and its importance has steadily increased in recent ycars in conncction
with the prediction of the response of structures due to various cxternal loads and also with
respect to the estimation of the existing condition for assessment of the degrec of damage and
deterioration of structures. Various system identification techniques applicable to structural
engineering have been developed [1-2]. In recent years, system identification using filtering

techniques such as Kalman filter has attracted many researchers.

This paper aims to provide the structural engineer a background on the application of
system identification -to structural engineering using Kalman filter. The general concepts in
system identification and parameter estimation and the relation to filtering are discussed. The
linear discrete Kalman filter algorithm used to carry out the system identification and parameter
estimation is summarized. A weighted global iteration procedure used to achieve convergence in
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the estimation of the parameters is also described. An example illustrating the application of
system identification using Kalman filter is presented by analyzing a single degree-of-freedom
system. Researches related to the topic are also surveyed.

THE GENERAL PROBLEM OF SYSTEM IDENTIFICATION IN
STRUCTURAL ENGINEERING

Civil engineering structures are designed and built to perform certain functions. After
many years of service, structures will be damaged due to adverse environmental loadings. A
building will be affected by strong winds and large earthquakes. Bridges will deteriorate as a
result of repeated loading due to traffic loads causing fatigue. The problem of evaluating the
existing condition of structures should be a concern of the structural engineer. This is important
in connection with the maintenance, repair and rehabilitation of civil structures. In this regard,
the field of system identification has a special significance.

The problem of system identification as applied to structural engineering can be described
with the use of Figure 1.

Observed Output

' y’i accelerometer
=== --—-l/

UNKNOWN SYSTEM

* system response
% structural parameters

Known Input :
ground acccleration a

Figure 1. A System Identification Problem in Structural Enginecring,
(a) multistorey building (b) lumped mass model
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The behavior and characteristics of an unknown (e.g., multistorey building) is represented
by the state (e.g., building response and structural parameters) of the system. The state of the
system changes with time due to a known input (e.g., ground acceleration). In order to determine
the state of the system, the engineer builds a measuring device (e.g., accelerometer) and takes
measurements or observations of his system. The measurements are generally corrupted with
noise caused by the electronic and mechanical components of the measuring device. To identify
the state of the system, the engineer needs to represent his system by a mathematical or analytical
model; the parameters of which are unknown. In structural dynamics, structures have been
represented discretely by lumped mass or finite element models with stiffness and damping as
parameters. The dynamics of the structures relating the input to the output is then formulated
using the equation of motion. The general problem of system identification is then defined as the
process of using the observed input to a system and its observed output or response to derive an
analytical model of the system which can be used to predict its response to future inputs [4]. In
structural engineering, the mathematical models of structures have been well developed. Hence,
the problem of system identification usually reduces to that of identification of unknown
structural parameters in the mathematical models. This problem is called parameter estimation.

THE FILTERING PROBLEM

Definition of Filtering

The filtering problem can be described graphically in Figure 2. The quantity or process,
Xi, which represents the state of the system is observed through a noisy measurement Y. The
system noise resulting from the input to the system is w; and the measurement noise is vt. A filter
is used to produce an estimate Xt of Xt from the observations. This problem of determining the
state of a system from noisy measurcment is called filtering.

Wi
Xt SYSTEM Xt S
-1
Xt v
Vi MEASUREMENT i Yt
) (SN A
A
X1t FILTER X X,
-1

Figure 2. The Filtering Problem [5]
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State Space Formulation

In order to know the state of system, one has to know the dynamics of the system, i.e. one
has to know how one state is transformed into another as time passes. The dynamics of a system
is described in terms of state transition. For continuous systems, the dynamic system is usually
expressed as a difference equation. Since our interest on the state is usually centered on a
discrete time, the discussion will focus only on discrete systems.

A discrete time process Xk (scalar or vector) called the state of the system, that describes
the value at time, tx = kAt, of some property (or propertics) of a system, can be generally
described by a state equation as

Xk+1 = DXk, tk+1, tk) + T(Xk, tk) wk+1, k =0,1... (3.1)
where ®() is called the state transition function and wk +1 represents the system noise.

The state Xk may not be observed directly. Instead a vector of measurements, ykx may be
observed at time tk which is a function of Xk but is corrupted by a measurement noise vk. The
relationship between the measurements and the state is given by a measurement equation as

Yk = h(Xk, tk) + vk, k =1,2... (3.2)

Given now a sequence of observations Y1, Y2,.. ., Yk. The filtering problem involves computing
an estimate of Xk based on these measurements by overcoming the presence of noise.

The common problem in system identification is when the dynamics and observations are
linear. This means that the state transition function ® and the measurement function h are linear
in Xk. The dynamic system of a linear discrete system is then written as

Xk+1 = P(tk+1, tk) Xk + [(Xk, tk) Wk+1, (33)
Yk = M(tx) Xk + v (3.4)

Since nonlinear systems are solved by reducing them into equivalent linear systems, only discrete
linear systems will be considered in the succeeding discussion.

The Discrete Linear Kalman Filter

The discrete linear Kalman filter will now be described briefly. The equations used in the
Kaln.lan filter algorithm will be given without proof. The reader can refer to the references for
details [5-6]. In the following discussion on Kalman filter the notations A(k/k) and Ak + 1/k)
are used for simplicity. A(k/k) refers to the value of the quantity A at time tx given the

observations up to ty while A(k + 1/k) refers to the value of the quantity A at time tk +1 given the
observations up to time tx only.
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Our dynamic model is represented by the state and measurement equations, respectively:
Xk+1 = Dtk +1, tk) Xk + T(Xk, k) wk+1, k =0,1,2,... (3.5)
Y = M(tg) Xk + vk, k =1,2,.. (3.6)

The noise wx and vk are white Gaussian independent random variables wigh ZCro means
and covariance matrices, Q and R, respectively. The initial estimate of the state is X(0/0) and the
error, (Xo - X(0/0) is also a Gaussian random variable with zcro mcan and error covariance
P(0/0).

The Kalman filter is a recursive procedure. At the beginning (k = 0), the initial estimatc
X(0/0) of the state and its corresponding error covariance P(0/0) are assumed. The state at k =
1is then predicted by

X(1/0) = ®(1/0) X(0/0). (3.7)

When time at k = 1 arrives, the measurcment Y} willﬂbe available. The estimate atk = 1
is then corrected or filtered by a weighted average of X(1/0) and Y using the following
expression

X(1/1) = X(1/0) + K(1) [Y1 - M(1) X(1/0)] (3.8)
where the quantity vi = Y] - M(1) 5((1/0) is a correction term referred to as the filter
innovation and K(1) is weight called the Kalman or filter gain. The Kalman gain is chosen such

that the variance estimation error is minimum. The calculation of the Kalman gain involves the
quantities, P(k/k) and P(k + 1/k) called error covariance matrices and they are defined as

P(k/k) = E{[{X(K/K) - Xx] [X(k/k) - X«]T}, (3.92)
P(k + 1/k) = E{[X(k + 1/k) - Xk+1] [K(k + 1K) - Xi+1]T}. (3.9b)
The filtering is performed recursively to find the estimate i(k/k) at time tx when Yy,
Y2,...Yk havebeen measured.

The equations involved in the Kalman algorithm will now be given without proof. These
equations are used recursively starting withk = O uptok = N as follows:

(1)  Store the filter state X (k/k) and P(k/k);
(2) Compute the predicted state:
X(k + 1K) = @ (k + VK)X(K/K); (3.10)
(3)  Compute the predicted error covariance matrix:
P(k + 1/k) = P(k + VK) Pk + 1/k + DT (k + 1K)
+ Tk +1)Qk + DIT(k + 1) (3.11)
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(4) Compute the Kalman gain matrix:

Kk + 1) = P(k + 1/k)MT (k + D)[M(k + 1) P(k + 1/k)MT
k +1) + Rk + 1)] (3.12)

(5)  Process the observation Yk + 1:

X(k + Uk + 1) = X(k + 1K) + K(k + 1) [Yk + 1-M
(k +1) X(k + 1/K)] (3.13)

(6) Compute the new (filtered) error covariance matrix:

Pk + 1/k +1) = K(k + )Mk + 1)]Pk + Uk)
+[I-K(k + 1) M(k + 1)] + Kk + 1) R(k + l)K k + 1). (3.19)

(7) setk = k + 1and return to step (1).

The variables involved in the algorithm are described as follows:

5((k/k): n x 1 filtered state estimate at tx given Y1, . .
P(k/k): n x n error covariance matrix in é(k/k)

®(k + 1/k): nx n state transition matrix

I'(k) : n x r system noise coefficient matrix

Q(k + 1): rxr system noise covariance matrix

X(k + 1/k): nx 1state estimate at tx +1

P(k + 1/k): n x n error covariance matrix in X(k + 1/k)
M(k + 1): m x n measurement matrix

R(k + 1): m x m measurement noise covariance matrix
K(k + 1): n x m Kalman gain matrix

Yi: m x 1 measurement (observation) at ti

PARAMETER ESTIMATION AND THE WEIGHTED GLOBAL ITERATION

Estimation of the parameters of a system can be easily incorporated in the Kalman filter.
If £ represents the response of the system and 6 denotes the system parameters, the state vector
will then consist of state variables x and augmented state variable q defined as

« &
1\ (3.15)
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The dynamics of the system can be defined as a state equation using this state vector.
Assuming that the parameters are constant with time then

6t +1 =6 (3.16)

Eq. (3.16) can be incorporated in the general state equation considering the total state vector and
the Kalman filter can be carried out to estimate the parameters by first assuming initial values to
them. The system model in the filter, may however be different from the actual system, due to
approximations in the model, improper initial values for the system parameters, etc., so that the
estimates of the parameters may converge to incorrect values or else diverge. Many remedial
schemes were developed to achieve convergence. Recently, a weighted global iteration was
proposed by Hoshiya and Saito [8] and successfully applied to identification of many structural
dynamic systems.

In the weighted global iteration procedure, global iterations of the Kalman filter are
carried out by overweighting the error covariance matrix at each global iteration to achieve faster
convergence. One global iteration means performing the Kalman filter algorithm recursively
using the total set of observed data from k = 1to k = N. At first, filtering is performed with
initial guesses X(1)(0/O) and P(1)(0/0) to obtain X(l)(N/N) and P(1)(N/N) where the subscript (1)
denotes the first global iteration. Then the second iteration is carned out utilizing the estimates
of X(1)(N/N) and P(1)(N/N). The estimates of the parameters at X(l)(N/N) are used as initial
values in X(o)(O/O) The diagonal elements of P(1)(N/N) corresponding to the parameters arc
multiplied by a weighted value and used as initial values in P(z)(O/O) The initial values for the
state variables in X(2)(0/0) and P(2)(0/0) will be the same as that in the first global iteration.
Subsequent iterations are performed until convergence can be achieved in the parameters.

APPLICATION IN STRUCTURAL ENGINEERING

Single Degree of Freedom System

A sample problem will be given to illustrate the application of Kalman filter as a tool for
system identification and parameter estimation. The dynamic characteristics of a one storey
building and its reponse to external loads such as seismic or wind loads are desired. In order to
evaluate the dynamic properties, the roof system is subjected to a harmonic load test and an
accelerometer was installed at the roof to measure its horizontal acceleration. Using only the
measured horizontal acceleration data, we are required to estimate the dynamic characteristics of
the building.

To determine the dynamic characteristics of the building, first we have to represent our
system by a mathematical model. Let us assume that the one storey building can be idealized as a
single degree-of-freedom system as shown in Figure 3.
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m —>Fcospt

S R

Figure 3. A Single Degree-of-Freedom System
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The dynamics of our model can now be described mathematically. The differential
equation of motion for a linear single degree-of-freedom system is given by the second order
differential equation [7],

my + cy + ky = Fcospt 4.1)
or

§ + 2hwy + wly = fcospt 4.2)

where m, ¢ and k are mass, damping coefficient and spring constant, respectively; h and w
are respectively the damping ratio and natural frequency; p is the frequency of the force with
peak amplitude F or f = F/m.

Our problem is now reduced to the identification of the parameters of the mathematical
model using the measured acceleration data of the real structure. If we will use Eq. (4.2), we
have to identify the following dynamic parameters: h, w, f and p of the single degree-of-freedom
system.

To identify the system parameters, we have to formulate the state and measurement
equations. First, we have to define our state vector. Let the responses, y, y and j be the state
variables and the parameters, h, w, f and p be augmented state variables which are assumed
constant with time. The state vector is then defined as

X = {x1 x2 x3 4 X5 X6 X7}"
={yyyhwfp (43)
The dynamic system can be expressed in discrete form by using the linear acceleration
method [7]. In the linear acceleration method, the following equations are used.
At At

Yk+1 = Yk + yk — + Jk+1 —, 4.9)
2 2
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. NG Al
Yk+1 = Yk + Yk At + §k — + k41 —. (4.5)
3 6 .
Using the two linear acceleration equations and the equation of motion given by
Yk+1 + 2hwik+1 + Wyk+1 = fcosptk+1, (4.6)

a state equation in difference form relating the state at tx +1 to the state at tx can be derived as

xi(k + 1) ) Dixi(k) + Di2xa(k) + Diax3(k) + Diaxe(k) cos[x7(k)tk+1] )

x2(k + 1) D2ixi(k) + D22xa(k) + Daaxs(k) + D 4x6(k) cos[x
« - 2 7(K)tk +1]
X (1) = ))Z,Ek 1- 3 ) D3ixi(k) + Daaxa(k) + Dssﬁgllg + Da4xg(k) cos[x7(k)tk +1]
xs(k + 1) xs(k)
xs(k + 1) xs(k)
{ x7(k + 1) | x7(k)
= g(X(k), tk, tk+1) + L(X(K), tk)wk+1 4.7)
where,
D=1+ 2(At)2Dﬂ6, D12 = (At)(1 + (At)D3/6),
D13 = (At)°(1 + Da/2)/3, Du = - (At)’Dy/6,
D21 = (At)D2/2, D22 =1 + (At)D3/2,
D23 = (At)(1 + D4)/2, D24 = - (At)D1/2,

D31 = D2,D32 = D3,D33 = D4, D34 = - Dy,
with,
D1 = (1 + (A)xa(k)xs(k) + (Ar)? Z(k)/6)™

D2 = D1%(k)
D3 = D1(2xa(k)xs(k) + (A% (k)

and,

D4 = D1(AYxa()xs(k) + (A1) xE(k)/3)

where wk is the system noise vector with covariance matrix Q(k) and I is the coefficient
matrix of the system noise. It must be noted that the parameters x4 - x7 are constant parameters
to be estimated.

The measurement equation relating the measurements to the state vector can also be
derived. If the acceleration of the mass will be measured and used as observation, the
measurement equation will be ’

Y4 = [0) 0’ 1, Oa 0’ 0’ O]X(k) + ‘U(k), (48)
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Figure 4. Numerical Convergence of Parameter x4 = h
Using Weighted Global Iteration Procedure
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PARAMETER : X5
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where v(k) is the observational noise vector with covariance matrix R(k).

It can be seen that the derived state equation is nonlinear and corresponds to Eq.(3.1).
Hence, to apply the discrete linear Kalman filter algorithm, the state transition matrix in the
algorithm must be obtained. The state transition matrix (see appendix) can be lincarized with its
elements given by

3 gi(X(K/K), t, tk+1)
ik + 1/k) = 49)
ax]'

Incorporating the state and measurement equations in the Kalman filter algorithm and using the
acceleration data as observations, the parameters x4 - x7 can be estimated.

Numerical Example

To test the identification of the single degree-of-freedom system, numerical calculations
were carried out. Let us assume that the SDOF system has the following properties: m = 20, ¢
= 50,k = 12500, F = 5,h = 0.05, w = 25, p = 25 and f = 0.25 with initial values, y(0) = y(0)
= 0.

Using standard techniques in solving linear differential equations, an analytical solution of
the equation can be obtained, that is y(t),.y(t) and j(t) can be derived. The derived solution of
(t) was used to generate the measurement data using a time interval of At = 0.01 sec. Zero
initial values were used for the state variables x1 - x3. For the initial error covariance matrix,
0.001 was assumed for the diagonal elements corresponding to the state variables and 100 for the
augmented variables (parameters). A value of R = 10.0 was assumed for the measurement
noise. A sampling time of 2.0 sec. which corresponds to a data set from k = 1 to k = 200 was
used. In the weighted global iteration, a weight of 100.0 was applied. The Kalman filter
algorithm was implemented using 6 global iterations; the results of which are shown in Table 1. It
can be seen that the estimates at the sixth global iteration are relatively in good agreement with
the true values.

Table 1. True and Estimated Values of Parameters

Parameter h w f P
True Values 0.05 250 0.25 25.0
Initial Values 1.0 1.0 1.0 1.0
Estimated Values 0.05454 24.95 0.2646 25.05
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Figures 4-7 show the convergence behavior of the parameters during the identification
procedure using the weighted global iteration. It is shown in the figures that the first global
iteration does not produce the optimal estimates of the parameters. Only after a number of
global iterations that the parameters converged to the optimal values. At the sixth global
iteration, convergence of all the parameters was achicved. The numecrical results show that the
weighted global iteration is necessary to achicve convergence of the parameters and it works well
even with poor initial guesses of the paramcters. It must be noted that convergence of the
parameters is affected by many factors such as the time interval At total sampling time, assumed
initial values of state variables and paramcters and initial error covariance matrix. Hence, to
verily the correctness of the identification, these factors must be given consideration.

Survey of Related Researches

Researches on the application of system identification in structural engincering using
Kalman filter are numecrous. Identification of damping and stiffncss paramcters of
multidegree-of-freedom (MDOF) systems of the shear type (Figure 8) was investigated by many
rescarchers [8-9]. Identification of modal parameters of MDOF systems was also studicd [10].

3
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Figure 8. MDOF system of shear type

Applications to bridge structures have also been considered. Hoshiya and Maruyama [11]
identified the dynamic parameters such as velocity, weight, natural frequency and damping
coefficient of a running load on a beam (Figure 9) including the natural and damping coefficient
of the beam. Yun and Shinozuka [2] identified the structural parameters of a damaged bridge
structure. Modal parameter identification of an in-situ bridge deck using field data was also
investigated [13-14].
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TA

Figure 9. Running Load on Beam System

Offshore structures which are idealized as lumped mass systems subjected to wave forces
have been investigated to identify the structural parameters and inertia and drag coefficients
associated to wave forces [15-16]. Studies on nonlinear systems of hysteretic, non-degrading or
degrading type have also been conducted [17-19]. More recently, identification of structures
using a substructured approach was utilized with the objective of identifying efficiently the
parameters of structures with many DOF [20] or to identify the parameters of only a small section
of a structure [21].

The survey of researches on the field of system identification as applied to structural
engineering shows that much work has to be done. Most of these researches used only
numerically generated measurement data for the identification of parameters. Very few
researches used field data. This means that research is still on its numerical testing stage.
Presently, experimental studies are being conducted using laboratory models inord.er to yerify the
validity of the identification techniques [10]. Upon completion of such venﬁcatfon, field
experiments are expected to follow. Here, the system response and parameters will be identified
using the measured field data of in-situ structures. Only at this stage that the usefulness and
importance of system identification in structural engineering can be fully recognized.

CONCLUSION

A general picture of the problem of system identification using Kalman filter and its
relation to the field of structural engineering was presented. The general concepts in system
identification and parameter estimation and the relation to filtering were described. The linear
discrete Kalman filter using a weighted global iteration was summarized. An illustrative example
applying system identification and parameter estimation to a single degree-of-freedom system
was also presented. To give the reader an idea of the extent of work being done on this field,
researches related to the topic were presented. From the survey of the researches, it can be
concluded that much work has still to be done particularly on the application of system
identification to in-situ structures. It is hoped that through this paper the interested reader will
gain some understanding of the basic problem and will refer to the references for details and
ultimately will contribute to the development and advancement of this challenging and important
field of system identification in structural engineering.

26



REFERENCES

1.

10.

11.

12,

13.

14,

15.

F. Kozin and H.G. Natke: System Identification Techniques, Structural Safety, 3(1986),
pp-269-316.

H.G. Natke and J.T.P. Yao: Structural Safety Evaluation Based on System Identification
Approaches, Vieweg, Germany, 1988.

S.C. Liu and J.T.P. Yao: Structural Identification Concept, Journal of Structural Division,
Proceedings of the ASCE, Vol. 104, No. ST12, Dec. 1978, pp. 1845-1858.

M.A.M. Toramani and H.E. Lee: Model Identification of an Arch Bridge for Dynamic
Analysis, Proc. ICOSSAR 1989, pp. 1459-1465.

P.E. O’Connel (Ed.): Real Time Hydrological Forecasting and Control, Proc. of First
International Workshop, July 1977

A.H. Jazwinski: Stochastic Processes and Filtering Theory, Academic Press, NY, 1970
M. Paz: Structural Dynamics, Van Nostrand, NY, 1980.

M. Hoshiya and E. Saito: Structural Identification by Extended Kalman Filter, J. Engrg.
Mech., ASCE, Vol. 110, No. 12, Dec. 1984, pp. 1757-1770.

K. Toki, T. Sato and J. Kiyuno: Ideitification of Structural Parameters and Input Ground
Motion from Response Time Histories, Struct. Engrg./Earthquake Engrg.,, Proc. of the Japan
Society of Civil Engineers, Vol. 6, No. 2, Oct. 1989, pp. 413-421

O. Maruyama, C.B. Yun, M. Hosheya and M. Shinozuka: Program EXKAL?2 for
Identification of Structural Dynamic System, NCEER Technical Report, No.
NCEER-89-0014, May 1989.

M. Hosheya and O. Maruyama: Identification of Running Load and Beam System, J.
Engrg. Mech., ASCE, Vol. 113, No. 6, June 1987, pp. 813-824.

C.B. Yun, W.J. Kim and A.H.S. Ang: Damage Assessment of Bridge Structures by System
Identification, Proc. ICOSSAR 1989, pp. 2179-2186.

AW.C. Oreta and T. Tanabe: Application of Modal Parameter Identification to
Reinforced Concrete Bridge, Proc. Int. Symposium in Concrete Engineering, Nanjing,
China, 18-20 Sept. 1991, Vol. 3, pp. 1356-1361.

A.W. C. Oreta and T. Tanabe: Identification of Modal Parameters of a Reinforced
Concrete Bridge by Kalman Filter Theory, Proc. of the Japan Concrete Institute, Vol. 13,
No. 2, pp. 1051-1056.

A.M. Paliou and M. Shinozuka: Identification of Equivalent Linear Systems, Structural
Safety Evaluation Based on System Identification Approaches, H.G. Natke and J.T.P. Yao
(Eds.), Vieweg, 1988, pp. 161-181.

27



16.

17.

18.

19.

20.

21.

C.B. Yun and M. Shinozuka: Identification of Nonlinear Structural Dynamic Systems, J.
Struct. Mech., Vol. 8(2), 1980, pp. 187-203.

C.H. Loh and Y.H. Tsaur: Time Domain Estimation of Structural Parameters, Eng. Stnuct.,
Vol. 10, April 1988, pp. 95-105.

M. Hoshiya, O. Maruyama and M. Shinozuka: Identification of Bilinear Severely
Hysteretic Systems, Proc. ICOSSAR 1989.

M. Hoshiya, and O. Maruyama: Identification of Nonlinear Structural Systems, Proc. Sth

Int. Conf. on Applications of Statistics and Probability in Soil and Structural Engrg.,
Vancouver, Canada.

C.G. Koh, LM. See and T. Balendra: Estimation of Structural Parameters in Time

Domain: A Substructure Approach, Earthquake Engineering and Structural Dynamics,
Vol. 20, Aug. 1991 pp. 787-801.

A.W.C. Oreta and T. Tanabe: Localized Identification of Structures by Kalman Filter,

Submitted for possible publication to the Proc. of the Japan Society of Civil Engineers
(Struct. Engrg./Earthquake Engrg), 1991.

28



	2021_02_19_15_22_51_005
	2021_02_19_15_22_51_007
	2021_02_19_15_22_51_008
	2021_02_19_15_22_51_009
	2021_02_19_15_22_51_010
	2021_02_19_15_22_51_011
	2021_02_19_15_22_51_012
	2021_02_19_15_22_51_014
	2021_02_19_15_22_51_015
	2021_02_19_15_22_51_017
	2021_02_19_15_22_51_018
	2021_02_19_15_22_51_019
	2021_02_19_15_22_51_020
	2021_02_19_15_22_51_021
	2021_02_19_15_22_51_022
	2021_02_19_15_22_51_023
	2021_02_19_15_22_51_024
	2021_02_19_15_22_51_025

