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ABSTRACT

A fundamental problem in many types of digital communication receivers is that of discriminating
between the presence or absence of a signal of known form mixed with additive noise. This paper
considers the structure of two detectors designed for different optimality criteria respectively known
as the most powerful (or Neyman-Pearson) detector and the locally optimum detector. It is shown
that an affine relation between the nonlinearitics of the two detectors is a necessary and sufficient
condition for the two detectors to reduce to identical forms. This property is used to search for noise
densities which have common detector structures.

INTRODUCTION

A fundamental problem in many types of digital communication receivers is that of
discriminating between the presence or absence of a signal of known form mixed with
additive noise. Oftentimes, the decision process is mathematically modelled as a statistical
test between two hypotheses. Then the design of an optimum receiver or detector
becomes, to a first approximation, equivalent to the design of an optimum statistical test.

This paper considers the structure of two detectors designed for different optimality
criteria respectively known as the most powerful (or Neyman-Pearson) detector and the
locally optimum detector. Conditions are derived under which the two detectors reduce to
the same detector structure. Stated differently, the conditions derived imply that the
underlying statistical tests are identical.

A most powerful detector can be employed in situations where the signal shapes and
amplitudes are completely known (so-called "sure" signal). On the other hand, a locally
optimum detector has been proposed for detecting small signals of unknown (possibly
variable) amplitude. Generally, these two detectors take very different mathematical forms or
physical structures. However, if the same detector structure should happen to be
optimum for both criteria, then the designer has a very favorable situstion in the sense that
desirable detection properties are obtained with both large and small signals.



It is shown that an affine relation between the nonlinearities of the two detectors is a
necessary and sufficient condition for the two detectors to reduce to identical forms. It
follows from this that a first order linear difference-differential equation with retarded
argument given in Eq. (16) is a necessary and sufficient condition for a detector to be
simultaneously optimum in both senses for the problem of detecting a signal in additive
noise with statistically independent samples.

For the case of a constant signal in independent, identically distributed noise samples
the difference-differential equation gives two noise probability density functions--the normal
or Gaussian pdf and the extreme value distributions, including the Gumbel distribution--as
the pdf’'s for which both detectors become identical. Except for these noise pdf's therefore, it
seems that the designer must choose between the two design criteria.

This paper is organized as follows. The next section reviews the relevant theories of
most powerful and locally optimum detectors and defines the notation and terminology
us.ed in the paper. Section Ill defines the concept of a bioptimum detector and derives the
principal existence results stated as a difference-differential equation. Section IV solves the
difference-differential equation and derives the noise pdf's mentioned above.

REVIEW OF DETECTION THEORY

The statistical approach to the problem of detecting a known time-varying signal in

z:j_ditive noise is briefly described below to introduce the terminology and notation used in
is paper.

. Tt?e Detection Problem. A received waveform at the receiver input is sampled at
discrete intervals to produce a series of measurements described by the sample vector

~

X = (X1,X2,... Xm)T.

In one case, the received signal consists only of noise, so that the following null
hypothesis Ho holds: "

Ho: xi = ni  i=1,2,.. m (1)

where the nj are statistically independent random variables with known probability
density functions (usually assumed to have zero means)

~ m

fo(X) =in 1foa (xi) @)

In the other case, the received signal consists of a known signal plus the additive
noise, so that the following alternate hypothesis H1 holds:

Hi: xi = 6si+ni I=1,2,..m (3)



where 6 Is a positive amplitude parameter for the transmitted signal sequence S = (s1, s2,...
Sm)T. Then the pdf of the samples can be written as:

~ -~

f1 (X;6) = fo(X-69S)

m
=3 foi (xi-6si) 4
i=1

in which the dependence of f1 on the parameter 8 is explicitly shown for emphasis.

The detection problem of the communication receiver is to decide on the basis of the
sample vector X whether the desired signal S is absent (Ho) or present (H1).

The detection problem described above models the reception of unipolar digital
pulses. By a simple modification, it may also be used for other common signalling methods
such as Manchester coding or frequency shift keying (FSK).

A detector (henceforth used synonymously with hypothesis test) separates the
m-dimensional space of samples X into two disjoint and exhaustive regions--the acceptance
region Ro leading to a decision to accept the null hypothesis, and the rejection or critical
region R1 leading to a decision to accept the alternate hypothesis. A decision may resuilt in
two kinds of errors. If the null hypothesis is falsely rejected, a Type | (false alarm) error is
committed, which occurs with false alarm probability (size of the test)

~

a =J fo(X) dX (5)
R1

If the null hypothesis is falsely accepted, a Type Il (miss) error occurs with probability

~ ~

1- B6) =JR £1(X;6) dX ©)
0

The power function S(6) measures the performance of the detector with different
signal parameter values.

Most Powerful Detectors. The so-called Neyman-Pearson criterion [8,11] maximizes
the power function for a given amplitude parameter 6 (i.e., minimizes the probability of a
Type Il error) while maintaining the false alarm probability not greater than a specified value.
This detector is used when the signal shapes and amplitudes are completely known.

The resulting most powerful (or Neyman-Pearson) detector has a critical region
composed of all sample vectors satisfying



f1(X;6)
L = log -——=— > NP 7

fo(X)

Using Egs. (2-3), the log likelihood ratio L may also be expressed as a sum of
nonlinear functions (or nonlinearities) in the following manner:

m
L = Z gnpi(xi8) > tnp
i

fOi(xi-Gsi)
o [NTCCH) B oY JE—— (8)

The detection threshold tnp is chosen so that the size of the test as given by Eq. (5) s
a for the fixed and known parameter 6.

If the same detector (7) is most powerful for all (positive) values of 6, then it is said t0
be "uniformly most powerful".

The detector just described is an example of a more general class of likelihood ratio
tests that compare the likelihood ratio L against a threshold as in Eq. (7). This class includes
maximum a posteriori (MAP) or minimum probability of error detectors, Bayes detectors, and
minimax detectors [10]. Although designed to optimize different criteria, they differ only in
the values used for the threshold of Egs. (7-8).

Locally Optimum Detectors. A different situation occurs when 6 is small but has
unknown magnitude, e.g., a weak signal in a strongly fading channel. A robust type of
detector for this problem maximizes the slope of the power function 8 (6) at the origin while
maintaining a specified false alarm probability -[4,8]. Subject to some simple regularity
conditions [2,4], this so-called locally optimum detector has the following critical region

> tLo (9)



This function may also be expressed in sum form as

m
Lo = 2 gLoi(xi) > to
i=1

3
gwoi(xi) = ----log foi( xi - 8si)
a0 6=0

-si f'0i (xi)/foi(xi) (10)

The detection threshold tLo is chosen so that the size of the test'is a.
Note that the two detectors described by Egs. (8, 10) both have the

nonlinearity-summer-comparator structure commonly found in the literature [7], differing
only in the nonlinearities gnri and gLoi and perhaps the thresholds tNP and tLo.

DERIVATION OF DIFFERENCE-DIFFERENTIAL EQUATION

This paper characterizes the conditions under which the most powerful and locally
optimum detectors reduce to the same structure or test. That is, both have the same
nonlinearities and critical regions, and therefore the same detection performance.

Define a detector with nonlinearity-summer-comparator structure to be bioptimum for
testing

Ho: 6 = 0
Hi:6 =6 >0 (11)
if for all 8 under Hs, the detector is simultaneously most powerful and locally optimum.

Note that a detector is bioptimum if and only if it is uniformly most powerful for
discriminating between the two hypotheses.

The following result relates the most powerful and locally optimum nonlinearities for a
bioptimum detector.

Theorem 1. In independent noise with at least two samples, a detector is bioptimum
itand only if for each i = 1,2,..m

gnpi(xi;0) = a(b) groi(xi) + bi) (12)

Where a(g) is a positive function of 6 only.



Proof of Sufficiency. Suppose Eq. (12) is true. Then the critical region of the most
powerful detector can be expressed in the following form by using Eq. (8)

m tNF - Z bi(6)
Lne = 2 Quoi(Xi) > --mmmemeemeeeee-
i=1 a®)

= t'NP (13)

Notice that Lnp = Lo. Now forany 6 > 0 the thresholds tLo and t'np are determined using

Eq. (5). Since this integral is independent of 6, it follows that the thresholds are equal and
that the given detector is bioptimum.

Proof of Necessity. To show the only if part, assume that a detector is bioptimum.
Then Egs. (8) and (10) describe the same critical region and it should be possible t0

algebraically transform one inequality to the other. That is, there should exist a
transformation T such that

m m
T(Z gneilxi; 6) = = gLoi(x) (14)
i=1 i=1

This functional equation was studied in [1] where the result paraphrased below was

proven. For consistency with the present discussion, the notation of this paper has been
adopted.

Assume that the ranges of each of the functions gnei CONtain @ nondegenerate
interval about the c_)n%ln. If the transformation T has a property that excludes the
density of its graph in the real plane, then the general form of T'is given by T(2) =
€z + b forsome constants cand b. Furthermore, there exist constants bi such
that the gnei and guo; are linearly related as inEq. (12).

There are many easily obtained conditions on T that would exclude the density of its
graphinthe real plane, including

® continuity at a single point; or
® monotonicity in an arbitrarily small interval; or

® measurability on an arbitrarily small interval [9].

Therefore, the postulated property of T is easily attained.

The conditions on the ranges of gnpi are likewise easy to verify. For the pdf's in the
detection problem must be differentiable (almost everywhere) in order for a locally optimum
detector (10) to exist. This means that the nonlinearities in (8) are all continuous. The point
gnpi = 0 corresponds to an intersection of the graphs of the pdf's under the null gnd
alternate hypotheses, which occurs at or near the threshold values of most detection
problems.



Since both conditions of the paraphrased result are satisfied, the desired equation
(12) holds. QED

The condition posed in Thm. 1 significantly restricts the possible forms of noise pdf's
for the additive noise detection problem, as the following result shows.

Theorem 2. A bioptimum detector for the detection problem (11) exists only if the
pdf’s foi(xi - Bsi) under the alternate hypothesis are all members of the exponential family of

pdf's described by [6]

f(x;6) = exp(QE)R(x) + P(x) + S(6)) (15)

Proof. Assume that a bioptimum detector exists. By Egs. (8,12)
foi (xi- 6si) = exp(a(@)gLoi(xi) + bi(6) + Infoi(xi))
showing that the pdf is from the exponential class. QED

) The main result on the forms of nonlinearity functions for bioptimum detectors (which
Implicitly determines the forms of pdf's also) is given by the following.

Theorem 3. In additive noise with independent samples, a necessary anq. suffici_ent
Condition for a bioptimum detector for (11) to exist is that the detector nonlinearities satisfy

the difference-differential equations

asig'Loi(x) = gLoi(x) - gLoi(x - 6si) (16)

for any x and constants a >0, 6 >0 and si. (The notation g’ denotes the first derivative.)

Proof. The noise density for which gLoi is Iocally. qptimum can be obtained by

Solving Eq. (10) as a first-order differential equation. When this is done we get
-Xi

foi(x) = Kexp(- I gLoi(z) dz/si)

-

(17)

where K is a normalizing constant. Substituting this into {Eq. (8) giyes a re-lation
between the most powerful and locally optimum nonlinearities at the i-th sampling time:

gnri(x;8) = Infoi(x - 6si) - In foi(x)
= Jx awoi(2) dz/si (18)
X-0Si



This integral equation can be differentiated to get an equivalent relation:
gnri(x0) = [gLoi(x) - gLoi(x - 6si) 1/si (19)

The above equation is true for any detection problem. For bioptimum detectors,

Thm. 1 gives a second necessary and sufficient relation that must be satisfied.

Combining Egs. (12) and (19) and letting a = a(f) yields Eq. (16) as a necessary and

sufficient condition for a bioptimum detector to exist in independent noise problems.
QED

SOLUTION OF DIFFERENCE-DIFFERENTIAL EQUATIONS

Eg. (16) belongs to the well-studied class of first order homogeneous linear
difference-differential equations (LDDE) with retarded argument, also known as delay LDDE
[3]. For the succeeding development, we assume a constant signal case, so that signal
samples may be normalized to si = 1. At the end of this section, we will consider the more
general case of time-varying signals. Then we have the delay LDDE

ag'lo(x) = gro(x) - gro(x - 6)
a 6 >0 (20)

subject to the condition that the solutions correspond to valid pdf's. That is, Eq. (17)
should be integrable as follows

© X
J exp J gLo(z) dzdx < = (21)

- @ - oo

Derivation of Series Solution. It is known that the delay LDDE has a continuous
solution in the range x > 6 that has a continuous first derivative for x > 6 and a continuous

second derivative for x > 26. Moreover, a linear combination of solutions is also a valid
solution to the same delay LDDE [3].

In fact, the function exp(sx) is a solution if and only if s is a complex root of the
transcendental characteristic equation

a. s.exp(sx) = exp(sx) - exp(s(x-9))
or
C(S) = as-1+ exp(Hs) = 0 (22)

Among the important properties of the so-called characteristic roots of the above equatiOn
are the following [3]:

1. The complex roots occur in complex conjugate pairs which are always simple. This is
easily seen by solving simultaneously C(s) = C'(s) = 0 which givess = 1/a -1/6, a
real number.



2. There are at most two real characteristic roots. In fact C(s) in Eq. (22) has exactly two
real roots, one if which is s = 0, which may be seen by graphing the equation. If a 6

thens = 0 isa double root. Ifa < 6 the other real root is positive. If a > 6 the other
root is negative.

3.  There is at most one multiple root of multiplicity two given by s = 1/a - 1/6.

4. All the roots lie entirely to the left of some vertical line in the complex s-plane. In fact,
by pplying the Argument Principle [5], every complex root of Eq. (20) may be shown

to have a negative real part [2].

5. There are roots with arbitrarily small (i.e., negatively large) real part.

6. The characteristic roots can be arranged (i.e., indexed) in the order of increasing
absolute value, or of decreasing real part, or of increasing imaginary part.

According to a theorem for delay LDDE's [3] all continuous solutions of Eq. (20)
are given by:

Whena =6
go(x) = Z ciexp(rix) + co + cix (23)
i=2
Whena *+ 6
go(x) = Z ciexp(rix) + co + c1exp(oix) (24)
i=2

The r are complex characteristic roots and o1 is the nonzero real root, if there is one.
The constants c¢i can be arbitrarily chosen as long as the series converges to a real number
for all x.

Egs. (23-24) can be used to search for nonlinearity forms that yield pdf-like forms
when subjected to integration as in Eq. (17). It still remains to be verified that the
corresponding fo is indeed a pdf, i.e., that Eq. (21) is satisfied.

Normal Distribution. Taking the lastthree terms in Eq. (23), which is equivalent to
taking the double root zero, and integrating according to Eq. (17) gives the pdf form

fo(X) = exp(co + c'ix + b®) (25)

This is easily recognized as a gaussian or normal pdf. Thus

fo(x) - (21: )-1/2 aexp( -(x-/l)2/2 02) (26)



for arbitrary mean u (although zero mean is common) and variance . In the
constant signal independent identically distributed noise sample case, the detector
nonlinearities are

ane(x;0) = (x-;z)G/o2 - 6212 &P

go) = (xu)/ o (27)
It may be seen that Eq. (12) is satisfied. Because of the linear relationship of nonlinearities.

the critical regions of both the most powerful and locally optimum detectors may be
expressed as

m
T x>t (28)

which is seen to involve the sufficient statistic for the mean of the normal distribution.

Extreme Value Distribution. Taking the last three terms in Eq. (24), which is
equivalent to choosing the zero root and a nonzero real root 4, and integrating according to
Eq. (17) gives the pdf form

fo(x)

Kexp(c't expd x) + b'x) (29)

Trying various combinations for the arbitrary constants ¢’y ard b’, we find that the

integrable solution is the extreme value distribution (also called the double exponential
distribution) [6]

ACC1
fo(x) = e exp( cix - czexp(d x) ) (30)

where I" is the gamma function, and the constants satisfyc2 > 0andci1i > 0.

This family of pdf's includes the Gumbel distribution [6] or "first double exponential
distribution"

fo(x) = Kexp(-exp(x)-x)
as well as Gumbel’s second exponential distribution
fo(x) = Kexp(-exp(x) + x)

The detector nonlinearities for the case of a constant signal in independent identically
distributed noise samples are

anp(x;8) = cz2(1 - exp(-16))exp(d x) - c16

10



go(x) = c2dexp@d x) - ¢ (31)

The critical regions of the most powerful and locally optimum detectors can be
expressed in terms of a sufficient statistic as

m
Z exp@Ax) >t
i=1

Time Varying Signals. We now turn to the detection of a time varying signal in
additive noise with independent identically distributed samples. Here the samples under the
alternate hypothesis are independent but not identically distributed. In general, the most
powerful and the locally optimum detector nonlinearities will also be time-varying. Thm. 1 is
still the necessary and sufficient condition for a bioptimum detector to exist. Therefore,
pdf's satisfying Eq. (12) under signal-varying conditions must also satisfy it under
constant-signal conditions.

It may be verified by computing the most powerful and locally optimum nonlinearities
that a bioptimum detector exists for a time varying signal in additive gaussian noise. In fact,
the two tests have a common critical region

m
Zsixi >t
i=1

This detector performs a discrete-time correlation of the received samples with the
known signal samples.

It' may be similarly verified that a bioptimum detector does not exist for the extreme
value distribution unless the signal is constant. Thus the gaussian pdf is unique in this
respect.

CONCLUSION

This paper has studied the structure of most powerful and locally optimum detectors
for discriminating between the presence or absence of a known signal in additive noise. It
has been shown that the two detectors reduce to the same structure whenever the detector
nonlinearities have the affine relationship expressed in Thm 1. This further implies that
the nonlinearities must satisfy a difference-differential equation given in Thm 3. Two
integrable solutions of this equation yield the gaussian pdf and the extreme value pdf as the
noise pdf's for which most powerful and locally optimum detectors coincide. Unfortunately,
it seems that there are no other pdf's within this model, so that in most realistic detection
problems, the designer cannot have both types of detectors.
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