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ABSTRACT

This paper presents an approach to monophonic music analysis using guided, continuous,
overlapped fast Fourier transformation. This method is based on the physiological activity of the
ear which can be modelled as a bank of contiguous bandpass filters. The analysis involves pitch
detection, determination of note duration and identification of instrument limited to flute, clarinet

and trumpet.

INTRODUCTION

Monophony in music pertains to the sound produced by a single instrumentalist
playing one note at a time. The lowest level of music analysis deals with sound parameters:
pitch, duration and timbre. Pitch is defined by the fundamental frequency of a tone.
Duration is the length of time that a single tone is heard relative to other tones. Timbre is the
tonal quality produced by an instrument which distinguishes it from other instruments.

“Digital signal procesding is concerned with the representation of signals by
sequences of numbers or symbols and the processing of these sequences.”" [6] In this
case, the purpose of such processing will be to extract the sound parameters from

monophonic musical signals.

The approach to music analysis discussed in this paper is the emulation of the ear's
action, which is best described as follows:

"Of clear significance in the auditory perception process are the signal processin
opcrations gcrformed by the cochlea. The cochlea has many outputs, with 30,00%
ncurons encoding 1500 to 2500 cochlear inner hair cell signals. Each neuron encodes
a narrow band hair signal having a few hundred Hz of bandwidth, using a point
rocess code, with the time between pulses coding the information being signalled

into the neural network". [7].
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From this description of the hearing mechanism, the signal processing that the
musical signals should undergo could be thought of as a bank of band-pass filters followed
by a fundamental frequency detector. The output of this bank gives directly the pitch of a
tone and upon further analysis, estimates the duration of the tone and identifies the
instrument producing the tone.

THEORETICAL BACKGROUND

The basic mathematical tool in signal processing is the Fourier Transform. It makes
possible the analysis of a signal in either the time domain or the frequency domain. Some
properties of a signal are not apparent in the time domain waveform; specially if it is
distorted. In the case of music signals, inherent tremolo (amplitude modulation, see Fig. 1)
and vibrato (frequency modulation) could distort the signal so much that the shape and
period of the waveform will vary from one period to another. This is exemplified in Fig. 2,
which shows the evolution of a C4 tone. In the first line, there are 2 local maxima and 2 local
minima in each period. Inthe second line, there is 1 local maxima and 1 local minima. Inthe

last line, there are 5 zero crossings in one period, compared to the single zero crossing per
period in the previous portions.

In the f.requency domain, the spectral line corresponding to the fundamental
frequency or pitch of the signal will stand out with tremolo seen in the sidelobe, 0 - 6 Hz

?way from the fundamental and vibrato seen as the slight shifting of the fundamental spectral
ine.

The Fourier Transform is mathematically expressed as

s(f) =[ s(t) et gt (1)

[--]

. where s(t) is the time domain waveform and S(f) is the Fourier Transform of s(t). The
Fourier Transform decomposes s(t) into a sum of sinusoids. If the signal is periodic, S(f) wil
be discrete with nonzero components at frequencies which are multiples of the signal's
frequency. If s(t) is nonperiodic, S(f) will be a continuous function of frequency.

for sigr]als which cannot be represented analytically, the Discrete Fourier Transform
(DFT) is used instead of the continuous Fourier Transform. The mathem

for the DFT is atical representation
N-1 .
S(n/NT) = X s(KT) e12Pnk/N
k=0 (2
n=0,1.2,....,N-1
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where s(kT) is the sampled value of s(t) at t=kT, T being the sampling period.. S(n/NT) is t!1e
DFT of s(kT). The DFT may be derived as a special case of the continuous Fourier
Transform. A graphical development of this is found in BRIGHAM [2].

The effect of getting the N-point DFT of a signal is equivalent to passing the §ign§|
through a bank of N contiguous band pass filters (BPF), where the bandwidth of each filter is
1/NT (T is the sampling period) and the center frequency of the ith BPF is i/NT. The resul% of
the DFT is scaled discrete version of the continuous Fourier Transform where the scaling
factor is To/T (To is the length of the rectangular window and T is the sampling period).. In
connection with the previous discussion, it is obvious that the DFT could emulate the hea'rmg
action. If the DFT equation is implemented for a sequence of N samples, N2 multiplications
must be performed. The number of multiplications required for the DFT increases
exponentially with N. Since computer processing time is proportional to the number of
multiplications to be performed, decreasing the number of multiplications would shorten the

processing time. The Fast Fourier Transform (FET) algorithm is an implementation of the
DFT that aims to do this.

After performing an FFT, pitch may be determined by looking at the resulting spectra.
Fig. 3 shows the evolving spectrum of a trumpet tone C4. Visually, one can establish the
fundamental and the harmonic lines to be the 11th, 21st, 31st, etc. lines. In between these
lines are inharmonic smears which are inherent since 1) the analog-to-digital conversion
introduced quantization errors; 2) the 1024-point FFT is being performed on a sequence th?:lt
is not an integral multiple of the period; and 3) the 1024-point rectangular window which is

multiplied to each 1024-point sequence is equivalent to a convolution in the frequency
domain of a sine function and the harmonic spectral lines.

The first item is inherent to any system that includes analog-to-digital conversion

Increasing the number of bits will increase the bit-resolution, thereby decreasing the

quantization error; but it is essentially economy that determines the choice. As the number of
bits is increased, the price of the IC also increases.

The second item’s contribution is uncr
rests on the fact that the number of samples
to lessen the smears by widenin
sequence and might result in an

ontrollable since the speed of the FFT algorithm
being transformed is a power of 2. It is possible
g the rectangular window, but this would lengthen the data
analysis that is too slow for the rate of note-changing.

The third item maybe corrected b
Blackman or Hamming window to the data
two windows, the main lobe is much wider,
much lower when compared to that of the re
smooth edges of the Blackman and Ham
samples with either Blackman or Hammi
smears; this is due to the lower energy i
window.

Y applying a smooth-edged window, like the
sequence before performing the FFT. For these
at the same time the energy in the side lobes i
ctangular window. This is a consequence of the
ming window. The effect of pre-multiplying the
ng window is the lowering of the energy in the
n the side lobes of the Blackman and Hammind

Informal experiments using the Blackman

. and Hamming windows on the sameé
trumpet tone produces very little improvement in the

spectrum, since the smears or leakagés
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in the main lobe were amplified. Having exhausted proven means of sharpening the
spectrum, a different approach was developed. One approach is to look for the line with the
highest amplitude and designate it as the fundamental. The second, third and fourth line of
Fig. 3 indicate that this approach fails since the line with maximum amplitude line could be
the fundamental or any of the harmonics.

This is where the idea of spectrum flattening comes in. Spectrum flattening issued to
emphasize the harmonic amplitudes by removing the smears or leakages and based on the
distances between the harmonics, establish the fundamental frequency or pitch in speech
analysis [21]. The routine developed for spectrum flattening consists of three stages:

1) threshold cancelling - where all spectral lines below a threshold (10% of the maximum
amplitude) are zeroed.

2) the local maxima are located and these are designated as the harmonic spectral lines.

3) double checking is done to remove stray lines (these are lines of significant amplitude)
falling near the harmonic spectral lines.

Figures 4A. and B. show the raw spectrum and the flattened spectrum of a tone,
respectively. In the flattened spectrum the fundamental and the harmonic spectral lines are
distinct, making fundamental frequency detection possible.

HARDWARE AND SOFTWARE

The data acquisition hardware consists of a buffer, an anti-aliasing filter and an
analog-to-digital converter (ADC). The buffer is a unity gain voltage follower and the
anti-aliasing filter is an 8th order Butterworth lowpass filter with a cutoff frequency of 8 kHz
and an overall gain of 6.83. The 8 kHz cutoff frequency will allow up to the 4th harmonic
frequency of the highest note pitch of interest, 2093 Hz. The sampling rate of the ADC is
26686 Hz. This surpasses the Nyquist requirement of 2 * 8 kHz = 16 kHz for sampling.
Thus the digitized data is reliably undistorted. Control of the ADC and data recording is
done through an assembly language program.

The sound sources that were used were a Yamaha Portasound Keyboard for the
synthesized sounds and recorded live instruments for the natural sounds.

The FFT implementation used was developed by Bergland and Dolan [1] and is based
on the original Cooley-Tukey FFT algorithm, memory-optimized, by taking advantage- of the
symmetry of the transform of real signals.

For N = 1024 and a sampling rate of Fs = 26686 Hz, the frequency resolution
(frequency difference between two spectral lines) is 26. 06 Hz (fr = fs/N).
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PITCH DETECTION

From a musical point of view, pitch Is that attribute of auditory sensation in terms of
which sounds may be ordered on a scale extending from low to high, such as a musical
scale. Pitch depends on the fundamental frequency of the sound stimulus. The human ear
is capable of hearing sounds with frequencies between 20 Hz and 20,000 Hz with the
appropriate loudness [5]. For low frequencies to be heard, the peak-to-peak amplitude of
the sound must be large enough to be detected by the ear. For high frequencies, the
peak-to-peak amplitude of the sound must be small enough to prevent injury to the ear
drum. At low frequencies, the ear can distinguish two consecutive tones or pitches with
fundamental components which are 1- 2 Hz apart. At higher frequencies, the distinction
between two consecutive tones is possible only if the frequency difference in the
fundamental components is about 20 - 50 Hz [3].

In this paper, the musical scale used to define pitch Is the equal-tempered musical
scale of Western music. Table 1 shows the different pitches possible in this scale and the
corresponding frequencies of the fundamental up to the fifth harmonic. The table shows the
Portion of the scale which contains the pitches relevant to this paper, D3 to C7. The whole
scale spans from CO to B9 with C4 termed as the middle C.

Pitch detection in music analysis involves the determination of the fundamental
frequency of a tone and its corresponding pitch on the musical scale.

Given the time domain waveform of a signal emanating from a musical instrument (see
Fig. 2), the fundamental frequency may be determined by taking the reciprocal of the period.
One way of doing this is by taking the time duration between zero crossings. This method
which works very well for strictly periodic waveforms, fails when applied to musical signals.
Fig. 5 shows a plot of number of samples between zero crossings versus time for a single
tone. The number of samples between zero crossings is not constant as expected. This
Phenomenon may be attributed to the natural vibrato of musical instruments. It is defined as
the slight shifting of the fundamental spectral line. Another possible culprit is waveform
evolution (see Fig. 2).

Given the frequency domain representation of a musical signal, see Fig. 4 B., the
fundamental is easily seen to be the lowest spectral line of significant amplitude. If the
frequency resolution is known, then the horizontal axis of the Fourier Transform may be
scaled accordingly, with the 0 Hz position corresponding to the dc component. Thus the
frequency of the fundamental is easily determined.

The author’s initial algorithm for pitch detection involved only the detection of the
fundamental frequency of the tone. The lowest two notes in the frequency range of interest
are D3 and D#3 of the clarinet which have fundamental frequencies of 146.83 Hz and 155.56
Hz respectively. The difference between these two frequencies is 8.73 Hz. This implies that
the frequency resolution of the FFT to be used must be 8.73 Hz in order to distinguish
between the two lowest pitches. With a sampling rate of 26686 Hz, this required at DFT of
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N = fg/f = 26686/8.73 = 3056 samples )

The nearest power of 2 from 3056 is 4096. (N must be a power of 2 when using the
Fast Fourier Transform routine).

Figures 6 A. and B. show the results of 4096-point FFT performed on the D3 and D#3
tones of the clarinet. The fundamental of the note D3 falls on the 24th line while that of the
note D#3 falls on the 25th line. Since the resolution of the 4096-point FFT works for the
lowest pitches, it will work for the higher pitches where the fundamental frequencies are even
farther apart.

On, a PC-XT, a 4096-point FFT will take about 50 sec. Aside from the long
computational time, the analysis window was too long:

tw = 1/26686 X 4096 = 0.1535 sec. (4)

The FFT of a sound sample will result in a sharp spectrum if the tone was sampled
during its steady-state portion. Otherwise the energy in between harmonic frequencies will
be high. This means that the fastest note that a player may execute such that the pitch is
perfectly detected should have a steady-state portion that lasts 2 X 0.1535 sec = 0.307 sec.

The multiplication by 2 is explained this way. If continuous short-time 4096-point FFT
will be performed on the music to be analyzed, the 4096-point rectangular window's
beginning and end will be randomized with respect to note beginnings and ends. It
becomes random because the player's tempo is not synchronized with any metronome.
Therefore for a note to be detected, it should last 2 X 0.154 sec, so that if the beginning of
the 4096-point window falls anywhere in the 8192-point duration of the note, the pitch will still
be detected. This allowable note speed, is equivalent to the instrumentalist playing a quarter
Note at 391 M.M. This Is very slow, with the player limited to playing Andante, or moderate
Speed.

An improvement in _the allowable note speed will result if instead of taking the
short-time FFT continuously, an overlapping by 2048 samples of the 4096-point windows is
done. This simple solution will double the note speed allowable to an eighth note at 391 M.M.
But this is only Moderato tempo. This improvement would be at the cost of performing twice
the number of FFT operations in the original method, so the processing time is doubled.
This overlapping technique is equivalent to a person reviewing the recording a second, third
or fourth time to catch a fast note.

The above scheme works well enough within its limitation, however it does not fully
use the whole span of the spectrum. In an aural experiment made by Luce and Clark [15],
they removed the fundamental of a tone and asked musically literate subjects to identify the
pitch of the original and the modified tone. The subjects identified the two notes as having
the same pitch. This implied that even without the fundamental, the pitch may be
determined by just listening to the harmonics. An informal explanation to this could be that
the ear, after hearing the harmonics, probably determines the least common muiltiple of the
frequency of the harmonics and decides that this must be the frequency of the fundamental.
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Among the three instruments, the flute has the least number of spectral components.
In fact, beyond the third harmonic component, the magnitude of the spectral lines are
negligible. To use the third harmonic for pitch distinction, the frequency resolution of the
FFT must be 26.2 Hz. This is the frequency difference between the third harmonic
components of the two lowest notes, D3 and D#3 (see Table 1). This frequency resolution
will require a DFT of

N = fs/f = 26686/26.2 = 1019 samples (5)

or a 1024-point FFT. If the 1024-point FFT is overlapped by 512 samples, the shortest note

for pitch analysis should last 1024/26686 = 38.3 msec (musically, this is a 16th note at d=
390 M.M.).

Table 2 lists the spectral line positions of the fundamental up to the 8th harmonic of
the different pitches from D3 to A4 for a 1024-point FFT. Pitch detection boils down to

determining the position of the third harmonic spectral line and looking up the
corresponding pitch from Table 2.

A decision tree fully based on Table 2 needs fine tuning because the frequency of the
fundamental and the harmonics seldom fall exactly on the spectral line's discrete frequency-
This is due to the discrete frequencies of the DFT. Fine tuning was done by determining the
actual spectral line positions of all the notes (see Table 3).

~ When a ‘rest' (absence of tone) is FFT'd, the resulting spectra will be that of
equipment noise and will be of very low amplitude.

INSTRUMENT IDENTIFICATION

Timbre is the musical parameter which allows a listener to distinguish one instrument
from another. Visibly, this distinction may be established from the time domain waveform.

Sounds produced by different instruments will have different waveforms. An approach
to instrument identification in the time domain would be to make templates of the shape of
the waveform produced by each instrument. However, as shown in Fig. 2, the sound
waveform varies from one period to another, therefore several templates will be needed to
identify one instrument.

Instrument identification is best performed in the frequency domain because the
spectral content of a tone plays the most important role in determining its timbre. The
presence of high frequency components would make a tone sound bright and the lack of it
would make the tone mellow. The presence of strong inharmonic frequencies would make a
sound unpitched. The absence of even harmonics would make a tone sound reed-like. The
presence of very few harmonic components would make a tone sound very simple. The
presence of all frequency components (white noise) would sound like a rush of air. White
noise passed through a comb filter will sound like a jet passing by [3].
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Table 1: Frequencies (in Hz) of

the Fundamental to the

Equal

Fourth Harmonic 1in the Scale of
Temperament

note 1st 2nd 3rd 4th

D3 146.8 293.7 440.5 587.3
D#3 155.6 311.1 466.7 622.3
E3 164.8 329.6 494 .4 659.3
F3 174.6 349.2 523.8 698.5
F#3 185.0 370.0 555.0 740.0
G3 196.0 392.0 588.0 784.0
Gi3 207.7 415.3 623.0 830.6
A3 220.0 440.0 660.0 880.0
A3 233.1 466.2 699.2 932.3
B3 246.9 493.9 740.8 987.8
o2} 261.6 523.3 784.9 1046.5
Ci#4 277.2 554.4 831.5 1108.7
D4 293.7 587.3 881.0 1174.7
Di4 311.1 622.3 933.4 1244.5
E4 329.6 659.3 988.9 1318.5
F4 349.2 698.5 1047.7 1396.9
Fi4 370.0 740.0 1110.0 1480.0
G4 392.0 784.0 1176.0 1568.0
G#4 415.3 830.6 1245.9 1661.2
A4 440.0 880.0 1320.0 1760.0
A#4 466.2 932.3 1398.5 1864.7
B4 493.9 987.8 1481.7 1975.5
C5 523.3 1046.5 1569.8 2093.0
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(cont’d)

Table 1

note 1st 2nd 3rd 4th
C#5 254.4 1108.7 1663.1 2217.5
D5 5987.3 1174.7 1762.0 2349.3
D#5 622.3 1244.5 1866.8 2489.0
ES 659.3 1318.5 1977.8 2637.0
F5 698.5 1396.9 2095.4 2793.8
Fi5 740.0 1480.0 222Q.0 2960.0
G5 784.0 1568.0 2352.0 3136.0
G#5 830.6 1661.2 2491.8 3322.4
AS 880.0 1760.0 2640.0 3520.0
A45 932.3 1864.7 2797.0 3729.3
BS 987.8 1975.5 2963.3 3951.1
C6 1046.5 2093.0 3139.5 4186.0
C#6 1108.7 2217.5 3326.2 4434.9
D6 1174.7 2349.3 3524.0 4698.6
Dik6 1244 .5 2489.0 3733.5 4978.0
E6 1318.5 2637.0 3955.5 5274.0
F6 1396.9 2793.8 4190.7 5587.7
Fi#6 1480.0 2960.0 4439.9 5919.5_-
G6 1568.0 3136.0 4703.9 6271.5_—
Gik6 1661.2 3322.4 4983.7 6644.9
A6 1760.0 3520.0 5280.0 7040.0
A#6 1864.7 3729.3 5594.0 7458.6
B6 1975.5 3951.1 5926.6 7902.1
C7 2093.0 4186.0 6279.0 8372.0
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Table 2 - Spectral Line Positions for N = 1024
note 1st 2nd 3rd 4th Sth 6th 7th 8th
D3 7 12 18 24 29 35 40 46
D43 7 13 19 25 31 37 43 49
E3 7 14 20 26 33 39 45 52
| F3 8 14 21 28 35 41 48 55
F43 8 15 22 29 36 44 51 58
G3 9 16 24 31 39 46 54 61
- G#3 9 17 25 33 41 49 57 65
A3 9 18 26 35 43 52 60 69
A#3 10 19 28 37 46 55 64 73
B3 10 20 29 39 48 58 67 77
C4 11 21 31 41 51 61 71 81
C#4 12 22 33 44 54 65 75 86
D4 12 24 35 46 57 69 80 91
‘_¥D#4 13 25 37 49 61 73 85 97
‘_¥E4 14 26 39 52 64 77 90 102
‘_;F4 14 28 41 55 68 81 95 108
5-7F#4 15 29 44 58 72 86 100 115
B G4 16 31 46 61 76 91 106 121
‘—76#4 17 33 49 65 81 97 113 128
A4 18 35 52 69 85 102 119 136
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Table 3 — Actual Spectral Line Positions for N = 1024
for notes which are identifiable from the
position of the fundamental

NOTE FUNDAMENTAL | 2nd HARMONIC | 3rd HARMONIC
Cé 41 82 122, 123
BS 39 77, 78 115, 116
A4S 37 73 108, 109
AS 3s 69 02, 103

1 °
G45 33 65 96, 97
G5 31 61, 62 91, 92
F#5 30 58 87
F5 28 55 82, 83
ES5 26, 27 52 77, 78
D5 25 49, 50 73, 74
D5 24 46, 47 69, 70
Ci#5 22, 23 44 65, 66
__/
C5 21 41 61. 62
B,
B4 20 39 58, 59
]
A#4 19 37 54, 55, 56
]
G4 17 33 29
|
G4 16 31 46, 47
e
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(Cont'd)

Table 3 - Actual Spectral Line Positions for N = 1024
for notes which are identifiable from the
position of the 2nd and 3rd harmonic

FQOTE FUND. |2nd HARM. |3rd HARM. |4th HARM.|5th HARM.
Fi4 15 29, 30 44 58 72, 73
‘—%4 14, 15 28 41, 42 55 68, 69
‘_54 14 26, 27 39. 40 52 64, 65
‘_5#4 13 25 37 49 61
D4 12 24 35 47 57, 58
Ci4 12 22, 23 33 44 54, 55
‘_C4 11 21 31 41 51, 52
B3 11 20 29, 30 39 48, 49
‘;A#3 10 19 28 37 46
A3 9, 10 18 26, 27 35 43, 44
G43 9 17 25 33 41
\_Eé 9 16 24 31 39
\‘;#3 8 15 22, 23 30 36, 37
‘_;% 8 14 21 28 35
§_h3 7 14 20 27 33
‘D#S 7 19 31
\‘ka 7 18 29
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Analysis of wind instrument tones by STRONG and CLARK (23] indicated thg interplay
of the spectral envelope (from the plot of the relative amplitudes of the harmonics vefsus
frequency) and the temporal envelope (from the plot of the amplitude enve‘lope versus time,
see Fig. 1) in characterizing the timbre of an instrument. In order to identify the instrument
producing a tone, a comprehensive analysis of all orchestral instruments is called for. Even
STRONG and CLARK [22] indicated that methods other than the auditory process would
entail complicated schemes. Narrowing the choice to three instruments makes the problem
of instrument identification manageable. A look at the spectrum of the three instruments

after spectrum flattening makes the job easier. Samples of flattened spectrum for the note
C4 for each instrument are shown in Fig. 7.

After examining the spectra of all the pitches that may be produced by each
instrument, the author concluded the following. The clarinet tone is identified with the
absence of even harmonics. The flute tone is identified with the absence of high frequency

harmonics. The trumpet is identified when the number of harmonic spectral line present IS
greater than 4.

DETERMINATION OF NOTE DURATION

The output of the continuous short-time FFT used in pitch detection is the pitch of @
1024-point sample lasting 38 msec. The exact beginning of the note producing this pitch
cannot be ascertained since the beginning of the 1024-point sample is random with respect

to the occurence of notes. Since the problem of determining duration is basically timé
measurement, the first approach should be in the time domain.

The sound produced by musical instruments may be divided into three parts: attack,
stea@y-state and decay. In between the steady-state of two notes is the decay portion of the
previous note and the attack portion of the succeeding note. This is manifested in the plot of

the average magnitude or the temporal envelope as valleys. The extraction of note duration
thereby reduces to determining the time between these valleys.

The formula for the average magnitude is

s/2
Ma =X  |x[m]|w[n-m]
m=-s/2

6)

The averaging window used, w[n-m] is a rectangular window of unity value; s is the
window size and x[m] is the sequence to be averaged.

Since the rate of note changing is much less than the sampling rate, decimation in
time may be done without losing information. This is implemented by taking every Nt
sample and discarding the N-1 samples in between, for an Nth decimation. As for the
window size, the longer it is, the flatter the average becomes. When the window used is to0
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long, the valleys between notes disappear, making it impossible to determine the start and
end of a note.

The effect of decimating and getting the average magnitude is equivalent to the
operation of an envelope detector implemented using a peak detector followed by a lowpass
filter (LPF). The LPF is the equivalent of decimation since the frequency of note changing Is
in the band pass and the higher frequencies containing pitch information is band stopped.
Getting the average magnitude Is equivalent to peak detection. Figures 8 and 9 show the
result of applying this method to a chromatic passage consisting of 32 equal duration. In
Fig. 8, the music was played by the trumpet, staccatto1 style. The 32 notes played are easily
seen to be of equal duration since the valleys and peaks are equally spaced and very
prominent. In Fig. 9, the music was played by the clarinet, legato2 style. Notice that the

peaks and valleys are no longer equally spaced and the expected 32 peaks and valleys are
not prominent anymore.

From the preceding discussion it is obvious that the playing style of the instrumentalist

affects the effectivity of using decimation and magnitude averaging In determining the
duration of a note.

Another factor that will affect this method is the amplitude modulation (tremolo) that is
an inherent characteristic of wind instruments. Figures 10 to 12 show the temporal
envelope for low, medium and high pitches for each instrument. Each plot represents a lond
note lasting 1.6 seconds. This is done to emphasize the amplitude modulation that occurs.

For low clarinet tones, the valleys are not deep enough to be mistaken as the start of

a new note, but for the rest of the samples, specially for high notes, the valleys are deep
enough to be mistaken as the start of a new note.

In'a musical score, the duration of a note or a rest (the absence of sound) is relative
rather than absolute. If the score is presented in the manner shown below,

1Staccatto style of playing a wind instrument is characterized by the staggered blowing action of the
instrumentalist, separating the notes from one another and accentuating cach one.

2L egato style of playing a wind instrument involves the single blowing action for a string of notes,
merging one note to another.
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the musician could infer the relative durations of the notes. If the duration of the third note is
used as a basis, the ratio of note duration would be 4:2:1:2. When the result of the
overlapped 1024-point FFT is transcribed in this manner the duration of the notes can be
estimated. A musical score presented this way completely characterizes the musical
passage. The problem with this representation is that one cannot differentiate a note of long
duration from a series of short notes having the same pitch, i.e., the following score,

/
\_ Q Q Q Q
J

could mean an F4 note played 4 units of time or 4 F4 notes played 1 unit of time each, or 2
F4 notes played 2 units of time each, or 2 F4 notes, one played 1 unit of time, the other

played 3 units of time.

0 remove this ambiguity, information about the maximum spectral magnitude (MSM) of each
1024-sample frame Is needed. Since each tone is composed of an attack, steady state and
decay portion, then the successive MSMs of a tone will be composed of a high amplitude
MSM (corresponding to the steady state) in the middle of 2 Jlow amplitude MSMs

(corresponding to the attack and decay).

CONCLUSION

In the preceding discussion, DSP was used basically for extracting certain features in
musical signals to establish pitch, instrument identity and note duration. The algorithm
discussed can fully extract the necessary features needed to decompose (the opposite or
composing) music. It emulates the hearing process. And just as the brain guides the
hearing process, DSP must be guided by an "expert system" which consists of several
decision levels, each of which is fed with the output of a specific DSP routine.
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