ANALYSIS OF ERROR DETECTION
PERFORMANCE OF A CODE WITH
DECIMAL CHECK DIGIT*

by

Dr. Efren F. Abaya**

INTRODUCTION

Numeric or alphanumeric codes that are manually transcribed for off-line input to a
computer are commonly protected against misreading or mistyping by a "check symbol"
computed using decimal or integer arithmetic operations on the characters of the code.
Examples of such codes include identification numbers, serial numbers, account codes,
and mnemonic codes where the check digit provides protection at the point of data entry
against the more common manual typing errors such as substitution, transposition, dropping
or insertion of characters.

This paper discusses the use of decimal check symbols for detection of errors in
numeric codes. The analytic methods used here and the types of errors encountered are
somewhat different from those used for the binary error detection codes that are more
common in the literature.

The paper first reviews the mathematical basis of codes using decimal arithmetic and the
strengths and weaknesses of this class of codes as far as detecting errors is concerned.

The paper next describes an analytic method for determining the fraction of
undetectable error patterns for various types of errors. The method is applied to a specific type
of numeric account code described in Section 3.0 that uses alternate doubling of digits
and a modulus of 10. For this code, it is shown that roughly 10% of all errors will not be
detected, although for certain error types the percentage is even higher. The method of analysis
described here appears to be applicable also to other kinds of check digit schemes.

Finally, the paper touches briefly on performance simulation as an alternative to
mathematical analysis for evaluating detection performance of these codes.

* Paper Prcsented at the PCS softrain '89 in June 1- 30, 1989
** Consultant, Computer Information Systems, Inc. and Associate Professor, University of the Philippines

DECIMAL CODES
In this paper, "decimal codes" will be used to refer to those codes which compute a check

symbol (or check digit) using decimal arithmetic operations or integer values assigned to
the various data characters in a codeword.

A codeword of length L characters will be denoted by
did2d3ds...dL1dL

where d1 to dL-1 are the data characters and d[is the check symbol. (Since this paper focuses
on numeric codes, the dj are also called "digits".)

Distinct numerical values are assigned to the different characters in the codeword. For
purely numeric codes, the digits "0" to "9" carry their respective numerical values. For
alphanumeric codes, a common assignment for the letter symbols is "A" = 10, "B" = 11,"C" =
12, ..."Z" =35 and "space" = 36.

Weights are assigned to each character position (usually the check symbol position
carries a weight of unity) in order to compute a weighted sum defined by

L
WS =) wi V()
where : i=1
wi = weight of the i-th character position

V(di) = numerical value of character di

The weighted sum is reduced to a value corresponding to one of the code characters by
the process of taking the remainder (or "residue”) when WS is divided by a fixed integer M
known as the "modulus” of the code. Mathematically, this remainder is defined by

L
RWS = Z wi V(di) (mod M) (Eq.1)
i=1
Thus,0 < RWS < M.

For purposes of error detection, the check symbol is chosen so that each validly encoded
codeword satisfies

RWS = 0 (mod M) (Eq.2)

Violations of the above condition indicate detected errors in the combination being checked.
An example of the computation involved in Eq. (1) is given in Section 3.0

Generally, a modulus that is a prime number such as 7, 11, 13, 37, etc. gives the best
performance in detecting errors. However, the modulus 10 is also used and will be discussed
in Section 3.0.

The following are some examples of decimal codes:
1. Symbols "0" to "9" and "A" to "Z", plus "space", carrying numeric values 0 to 36;
progressive weighting of 1-2-3-4-etc.; modulus 37 [1];
2. Digits 0 to 9 (plus X=10 for the check digit positions); progressive weighting
of 1-2-3-4-etc.; modulus of 11 (used in International Standard Book Numbers) [1];
3. Either of the above two symbol sets with geometric weighting of 2-4-8-16-32-etc.;
4. The code presented in Section 3.0.

Decimal codes detect errors commonly cncountered in typing such as alteration or
interchange of digits by the fact that such changes usually lead to a different weighted sum that
violates Eq. (2). This detection is performed without reference to any other data (not even the
original digit combination) and so the code may be decscribed as "self-checking". Other
computationally simpler methods such as range checks and mnemonic combinations [4,5] can
also be used to reduce the incidence of errors and to detect their presence, but the class of
codes described above generally provides more power for detecting errors.

The detection performance of a code can be quantified by the fraction of undetectable
errors defined as

error patterns not detected

fraction not detected =
total # error patterns

For example, if a fraction E of codewords manually encoded contain some errors, and
the fraction not detected is F, then approximately E x F of encoded records will get through
with errors in spite of the check digits. The detection percentage can also be computed for
specific types of errors, e.g., single-digit, double-digit, random errors, transposition, etc.

If a code employs r independent check digits then approximately,
fraction not detected = 1/(modulus)

The following things may be said in general about decimal codes that use ong to check digit:

1. A single digit error will always be detected because of the resulting change in wiV(d)
for the affected digit position;

2. Transposition of two digits in positions having diffcrent weights will usually be
detected because changes in the wiV(d) do not cancel out, while transposition of
digits in positions having gqual weights will pever be detected.

When the modulus M is a power of a prime number, well developed mathematical
theories of Galois fields, integer rings and number theory can be applied for the design and
analysis of decimal codes by treating them as cases of m-ary algebraic block codes [1,2].
However, these theories usually consider random crrors or burst errors which are of a
different nature than those occurring in manual transcription. Morcover, some codes

such as the one to be discussed later employ a composite modulus and hence are not amenable
to these algebraic models.

An alternative way to viéw the structure of a decimal code is that the mod M
multiplication wjV(dj) imposes a permutation or "scrambling” on the digits, as shown in Table I
for the example of a mod 11 code (#2 above). From number theory, it is known that the mod M
multiples of any number X are all different (except for cyclic repetition) if the numbers X
and M have no common divisor except unity. (Mathematically, the two numbers are said to
be relatively prime.) This situation is easiest to securc if M is prime, although this condition is
not necessary.

Define the scrambled value taken by digit d in the i-th position as V*j(d), which dcpends
on the weight wi and modulus M. That is

TABLE 1
VALUES OF Vi* (d) FOR MOD 11 ALPHANUMERIC CODE

—— — ——— — — ———— — —— — ——— —— — - — — ——— — —— — — — G T — ———— S —— G — — —— ——

DATA | WEIGHT. MULTIPLIER
DIGIT | (wi)
(d) |
V0 1 2 3 4 5 6 7 8 9 10
______) e e e e e e e e e e e e e e e e et e e e e e e et e e e e e e e e
:
0 HE ¢ 0 0 (0] 0 0 0 (0] 0 0 0
1 v 0 1 2 3 4 5 6 7 8 9 X
2 HE Y 2 4 6 8 X 1 3 5 7 9
3 Y 3 6 9 1 4 7 X 2 5 8
4 10 4 8 1 5 9 2 6 X 3 7
5 V0 5 X 4 9 3 8 2 7 1 8
8 ! 0 6 1 7 2 8 3 9 4 X 5
7 I ¢ 7 3 X 6 2 9 5 1 8 4
8 HE ©) 8 5 2 X 7 4 1 9 6 3
9 HE 0] 9 7 5 3 1 X 8 6 4 2

= = = — — ————— —— —— ——— —— —— T~ ——— 2 —
—— —— - o —————

Vi@ = wi V() (mod M)

Then the condition for acceptance of a codeword given in Equation (2) can be rewritten as

L
Z Vi (d) = 0 (mod M) (Eq. 3)
i=1

For example, if a mod 11 code has weight w8 = 5 in position 8, then V*8(d) is given by
the fifth column of Table I. An example of the calculation in Eq. (3) will be given in Section 3.0.

A MODULUS 10 CODE
The rest of this paper will concentrate on a modulus 10 numeric code with alternate 1-2
weighting defined as follows:

1. The code is represented as
d1 d2 d3 d4... dL-1 dL
where dL isthe check digit.

2. The code symbols are the digits 0 to 9 with their respective numecric values
(e, V(di) = di).

3. The check symbol position and every other alternate position are assigned a weight
of unity, while in- betwecen positions are assigned a weight of 2.

4. The modulus M equals 10.

5. 1n computing the weighted sum WS in Eq. (1), if the product of a digit value and'its
assigned weight exceeds 9, then the sum of the units and tens digits of the
product is taken instead.

EXAMPLE :

This example illustrates the computation of the weighted sum and the validation of a
codeword.

codeword =123 4567 8903

POSITION WEIGHT DIGIT wi V (di)

NUMBER, i wi di
1 1 1 1
2 2 2 4
3 1 3 3
4 2 4 8
5 1 5 5
6 2 6 142 =3
7 1 7 7
8 2 8 146=7
9 1 9 9
10 2 0 0
11 1 3 3
WS = 50

Since WS = 0 (mod 10) the codeword is acceptable.

Mathematically, the effect of rules (3) and (5) is to "scramble" the digits according to
Table II. With these scrambled values, the RWS can be computed in an alternative way
following Eq. (3) as shown by the example below.

EXAMPLE :

This example illustrates the computation of the weighted sum using scrambled values
from Table II.

codeword =1 23 456 78 903

POSITION WEIGHT DIGIT Vi * (di)

NUMBER, i wi di odd even
1 1 1 1
2 2 2 4
3 1 3 3
4 2 4 8
5 1 5 5
6 2 6 3
7 1 7 7
8 2 8 7
9 1 9 9
10 2 0 0
11 1 3 3

ws = 28 + 2 =5

Since WS = 0 (mod 10) the codeword is acceptable.

®
This last method of describing the code in terms of the scrambling function V j(d) is
convenient for the analysis of error performance that will follow.

ANALYSIS OF ERROR PERFORMANCE
The errors analyzed in this paper fall into the following (non-exclusive) types taken
from [3]:
1. t-DIGIT RANDOM ERROR: Simultancous errors in exactly t random positions of
a codeword.

2. TRANSPOSITION ERROQR: The digits in two positions (not necessarily adjacent)
are switched.

3. DELETE ERROR: An omission of one digit of the codeword, causing the digits
on the right side of the omitted digit to shift one position to the left, e.g.:

TABLE 11
VALUES OF V#j (d) FOR MODULUS 10 NUMERIC CODE

[]
1]
! POSITION OCCUPIED ! Dif‘ference*
DIGIT | Weight 1 Weight 2 ' (mod 10)
H Position Position !
]]
5 : i
0 ! 0 H 0 ! 0
1 ! 1 H 2 ! 9
2 H 2 H 4 ! 8
3 ' 3 ' 6 ' 7
4 ! 4 ' 8 : 6
5 ' 5 H 1 H 4
6 ! 8 ' 3 | 3
7 ! 7 ! 5 | 2
8 H 8 ! 7 H 1
9 | 9 : 9 | 0
]] []

*Mod 10 difference of scrambled values (column 2 minus column 3).

Refer to Appendix B.

codeword : d1 d2 d3 d4 d5 d¢ d7 d8 d9 dio di1
error : di d2 d3 d5 d¢ d7 dg8 d9 dig di1 X

where X is usually zero.

4. TRANSFER ERROR: A digit is moved to another position, causing a range of
digits to shift one position right or left. Alternatively, this error can be
characterized as a circular shift of a range of t digits, e. g. :

codeword: d1 d2 d3 d4 ds de d7 dg d9 di1p di1
error (t =4): d1 d2 d¢ d3 d4 d5 d7 dg d9 dio di1

5. INSERT ERROR: An additional digit is inserted, causing the digits to the right
of the insertion point to move one position to the right, e.g.

codeword : di d2 d3 d4 d5 d¢ d7 dg d9 dig d11
error; did2 d3 X d4 d5 d¢ d7 dg d9 di0

where X is the additional digit, the old check symbol d11' is lost and d10 becomes
the new check symbol.

ERROR PERFORMANCE FOR t-DIGIT RANDOM ERRORS

This section calculates the number of undetectable error patterns involving t digits for

amod 10 code of length L digits.

The analyses in this and the following Sections assumes that every pattern of digits

satisfying Eq. (3) is allowed as a valid codeword. In many applications, there may be
additional range constraints (c.g., on a date) and other structural limitations on the formation

of valid codewords. Such additional constraints usually reduce the number of undetectable
errors below the levels calculated here. '

In general, the number of undetectable error patterns affecting exactly t digits in random

positions is equal to the product of two factors:

-- the number of ways to select a combination of t positions from among L,
designated by the combinatorial formula C(L,t); and

-- the number of ways that digits in t specific positions can be perturbed without
affecting the equality of Eq. (3), designated Nt.

Therefore, the number of undetectable t-digit error patterns is given by
C(L,t) x Nt (Eq.4)

In Appendix A, itis proven that Ntis given by an cxpression of the form

Nt = (9t + 9)/10 for t even
= ©*-9)10 for t odd (Eq. AS)
TABLE III

ANALYSIS OF t-DIGIT RANDOM ERRORS
NOT DETECTED BY MODULUS 10 CODE

' H
NUMBER OF !} Multiplier for Number of i PERCENT OF
ERROR ! i ERRORS NOT
DIGITS ! ERRORS UNDETECTABLE ! DETECTED
: ERRORS :
]]
t : ot Ny : (%)
(] [)
! E
1 ! 9 o | 0
2 ! 81 9 | 11.1
3 ! 729 72 | 9.9
4 H 8,561 657 ! 10.0
5 H 59,049 5,904 | 10.0
68 ! 531,441 53,145 | 10.0
7 ! 4,782,969 478,296 | 10.0
8 ! 43,046,721 4,304,673 ' 10.0
' [}

The total number of error patterns affecting exactly t digits (i.e, exactly t incorrect
keystrokes) is given by C(L,t) x o' because therc are 9 incorrect digits that may be
substituted for the correct digit in any position. The second factor of this product is
tabulated in Table III.

Taking the ratio of the number of undetectable error patterns in Eq. (4) to the number of
error patterns affecting exactly t digits yields N(/9t which is the fraction that passes undetected
by the mod 10 check when the encoder mistypes t digits. It may be seen from Table III that the
ratio is practically equal to 10% for different numbers of error digits t greater than one.

The overall average fraction of t-digit errors that pass undetected is 10%.

ERROR PERFORMANCE FOR OTHER TYPES OF ERRORS
This section calculates the fraction of undctcctable error patterns for error types #2 to

#5 described in Section 4.0.
TRANSPOSITION ERROR. Transposition errors may be classified into two cases:

-- Digits in two even-numbered positions may be transposed without changing
the weighted sum. The same is truc for two odd-numbered positions.

-- A "0" and a "9" occupying any arbitrary positions may be transposed without
detection.

This gives the following expression for the fraction of transposition errors not dctected by
the code:

Cq2) + CL-q2) + 2q(L-q)/%0 (Eq. 5)
C(L,2)
where
q = number of even-numbered digit positions

= largest integer not exceeding L/2.

The divisor 90 in the third term of the numecrator is due to exclusiomof codewords in
which the digits in the positions to be exchanged are identical.

The expression above yields the same value for L=2m and L =2m-1 as shown in Table IV.

Note that the majority of undetectable transpositions involve non-adjacent positions.
It may be scen in Table IV that for codes of length greater than 2 digits, a significant
fraction of 2-digit transposition errors are not detected.

DELETE ERROQR. A delete error may be considered to be the combination of the
dropping of one digit and the subsequent lcft shift of the digits to the right. The effect of
the left shift on the weighted sum is equivalent to the pairwise digit exchange discussed in
Appendix B which increases the weighted sum by any number between 0 and 9. This change
-may be cancelled if the value of the digit dropped is the modulus 10 complement of the
amount added by the left shift.

As long as the dropped digit is not in the leftmost position of the codeword (dj), the
constraint Eq. (3) does not apply to the sub-striag of error digits, so that the range of
positions affected by a delete error can begin with any digit from 0to 9. Therefore, 1/10
of valid codewords are subject to undetectable delk te errors.

TRANSFER ERROR. A transfer error changes digit positions from odd-numbered
to even-numbered or vice-versa. In its effect on the reduced weighted sum in Eq. (2) this is
equivalent to transposing several contiguous pairs of adjacent digits for which it is shown in
Appendix B that the number of combinations that preserve the weighted sum is given by

10

TABLE IV
TRANSPOSITION ERRORS IN MOD 10 CODE

LENGTH, L PERCENT OF ERRORS
NOT DETECTED
2 222
3, 4 34.81
5, 6 41.33
_7, 8 4. 13
9, 10 45.68
11, 12 46.67
13, 14 4735
15, 16 47.85
17, 18 48.24
19, 20 48.54
TABLE V
TRANSFER ERRORS IN MOD 10 CODE
- LENGTH OF PERCENT OF ERRORS
ERROR PATTERN NOT DETECTED
t At
2 1 222
3 11.11
9.99
; 1,008 10.07
10.00
032
‘; 100, 10.00
10.00
g 10,000,128 10.00

the number At in Eq. (B7). For simplicity, we limit discussion to transfer errors of length t less
than L.

Case;: t Even, When t is even, there are At - 10 undetectable transfer errors
(disregarding the starting position of the error string in the codeword). since the number At

11

‘derived in Appendix B includes 10 permutations in which all t digits are identical.

The total number of t-digit transfer patterns is 10' - 10. Hence the fraction not
detected for a length t transfer error is (At - 10)/(10t - 10).

Case: t Odd, When tis odd, the digit that is transferred keeps the same weight.
Hence, this is the same as a pairwise digit exchange of t-1 digits. Reasoning similarly as the
previous case, the fraction of errors not detected is (10 A¢-1 - 10)/(10t - 10).

As shown in Table V the fraction of undetectable transfer errors is practically 10%
for strings of at least 3 digits.

INSERT ERROR, Consider a digit inserted as in the example given previously in’
Section 4.0. Out of ten possible digits to insert, exactly one will retain the reduced
weighted sum in Eq. (2) divisible by 10. Ignoring cases in which the digit inserted and the

digits affected are all identical (which would not constitute an error), the fraction of insert
errors not detected is very close to 0.10.

COMPUTER SIMULATION
An alternative method for investigating the performance of a code is by computer

simulation. This section compares the results reported above with those obtained by some
computer simulation studies on the code discussed in Section 3.0.

For purposes of simulation, the mod 10 codc was taken to have a length L = 11 digits
consisting of 10 data digits plus one check digit. Odd-numbered positions have a weight wj = 1
while even-numbered positions have a weight of 2. Check digit verification follows the
example given in Section 3.0.

Simulation of Random Errors. As discussed in Eq. (A3) of Appendix A, an error is
associated with an "error pattern" E1E2E3..E11 where Ei = 0 if no error occurred in the
i-th digit and Ei = V*j (di/) - v*j (di) is some number between 1 to 9 if digit di is
erroneously converted to di’. An error is not detected if Eq. (A3) is satisfied.

That is

Z Ei = 0 (mod 10) Eq. A3

To simulate random errors in a way that is independent of the actual codeword, random
11 digit strings were generated using the built-in "random" function generator of the
Turbo-Pascal programming language. For each string thus generated, Eq. (A3) was checked to,

12

TABLE VI

COMPARISON OF MATHEMATICAL ANALYSIS AND
COMPUTER SIMULATION OF MOD 10 CODE PERFORMANCE

PERCENT OF ERRORS NOT DETECTED
Type of Error

Analytic Value Simulation Value

H
]
]
!
' :
H H
H ! from 31
]]
] \
1. t-Digit Random | 10.0% : 9.8%
Errors H '
(over all t) H !
]]
2. Transposition ! 46.7% ! 44 4%
Errors ! |
3. Delete Errors ! 10.0% H 0. %
H |
4. Transfer Errors | 10.0% H 5.2%
! (t > 4) ! (over all t)
] 1
]]
5. Insert Errors ! 10.0% ! 9.9%
] 1

determine what fraction would not have been detected. The result for 14,000 simulated
errors shown in Table VI is quite close to the theoretical value.

Simulation of Other Error Types, Simulation of the other types of errors (#2 - #5)

listed in Section 4.0 is different from the method described above because the errors depend
on the actual digit sequence in the codeword. To simulate such errors, random codewords
are generated and exhaustively scarched for all undetectable errors of a specific type. One

such study reported in [3] used six randomly generated codewords with results shown in
Table VI.

For most error types, the results of simulation are in good agreement with the analytic
values with the exception of delete and transfer errors which were underestimated by the
simulation probably due to the limited number of codewords tested.

CONCLUSION

This paper has discussed an analytic method for determining the fraction of
undetectable errors in a mod 10 numeric code. It was shown by mathematical analysis and
verified by computer simulation that roughly 10% of errors of different types are not detected
by the mod 10 code, although for certain errors types the percentage is even higher.

13

ACKNOWLEDGEMENT

The author wishes to thank Victor B. Gruet for providing inspiration and
encouragement and Computer Information Systems, Inc. for supporting this work.

REFERENCES

RICHARD W. HAMMING, " Coding and Information Theory",

New York, Prentice
Hall, 1980, pp. 28-34.

T.R.N. RAO and E. FUJIWARA, "Error-Control Coding for Computer Systems", Ncw
Jersey, Prentice-Hall International, Inc., 1989.

MARI JO RUIZ, "A Comparative Study of Check Digit Schemes,” Internal Report,
Computer Information Systcms, Inc.

K.B.C. SAXENA, "Enhancing System Reliability Through Humanized Codes",
Proceeding 1st South East Asia Regional Computer Conference (SEARCC 76),
Conference Ed., Amsterdam, North-Holland Publishing Co., 1976, pp. 543-547

L. SONNTAG, "Designing Human-Oriented Codes, " Bell Laboratories Reccord, Vol. 49
No.2 (Feb. 1971), pp. 43- 49.

APPENDIX A
DERIVATION OF FACTOR N¢

It was shown in Section 5.0 that thc number of undctectable t-digit errors in a modulus
10 code of length L digits is given by an expression of the form

C(L,t) x Nt.

This Appendix derives an expression for the factor Nt.

Consider a codeword with digits dj

for which Eq. (3) holds. That is, using the
scrambling function in Table II,

Zv*i (di) = o (mod M) (Eq. A1)

14

Suppose that some digits arc converted by errors to di’ such that di = dy if there is no
error in the i-th position, while di # dj’ if there is an error. Then the new residue of the
(possibly incorrect) combination is

L L
RWS' = Z Vi(di)+ Z [Vidi)-V*i(di)] (mod 10)
i=1 i=1
(Eq. A2)
Now RWS’ = 0 (mod 10) and the error is not detected if and only if the second

summation on the right side above is divisible by 10. Let

Ei = [V*i(di)- V*i(di)] (mod 10)

Each Ej equals zero if no error occurred in the i-th digit, and is a non-zero digit between 1 to 9
(mod 10) if an error occurred. Therefore, an error is not detected if and only if

Z Ej = 0 (mod 10) (Eq. A3)

where Ej is between 1 to 9, inclusive.

It follows that Nt is equal to the number of permutations of t non-zero digits Ej
which satisfy Eq. (A3) This numberis calculated below.

Special Case: Single-digit error (t=1). Here every error is detected because
changing any one value in Eq. (A1) will result in a non-multiple of 10. That is, no single digit
can satisfy Eq. (A3). Hence, N1 = 0.

General Case: t > 2. If it happens that the first t-1 error digits by themselves
constitute an undetectable error pattern, so that

]
o

(mod 10)

i=1

then there is no way to chose a non-zero Et to satisfy Eq. (A3). Therefore, the summation
above must be non- divisible by 10, and the last Et makes Eq. (A3) true. The number of
ways to have the above sum not equal to zero is 9t' -N¢-1.

15

This leads to the following recursion formula for N ¢,
Ne =9o1. Np1

N1 =0 (Eq. Ad)
The solution of the recursion cquation is:
Nt = (9t + 9)/10 for t even
= ' - 9)10 for t odd (Eq. AS)

Calculated values of Nt are givenin Table III.

APPENDIX B
PAIRWISE DIGIT EXCHANGE IN MOD 10 CODE

This Appendix derives some results on permutation of digits in the modulus 10 codc
which are used in Section 6.0to analyze detection performance for delete and transfer crrors.

Consider a codeword with L digits for which Eq. (3) holds, i.e., using the scrambling
function in Table II,

i V4 (di) = 0 (mod M) (Eq. B1)

i=1

Every odd-numbered digit has a weight of 2 whercas every even-numbered digit has a weight
of unity.

Suppose that a contiguous subset of t (t even) digits are exchanged in pairs, such that dj is
exchanged with di +1, di+2 is exchanged with di + 3, etc. The problem considered here is how
many codewords remain valid codewords under such pairwise digit exchange.

In the following development, it is convenient to assume that t < L so that there is no
constraint on the choice of code digits in the range of positions to be pairwise permuted.

The effect of the exchange of; say, d1 and d2 is that the weighted sum in Eq. (B1) changes
to

i Vio(di) +[V*2(dl) - V*1(d1)] . [V*2(d2) - V*1(d2)]
iz

Each of the bracketed terms above represents an increase in the weighted sum due to
moving a digit from an odd-numbered position with weight 2 to an even-numbered position
with unity weight. These amounts are tabulatéd in the last column of Table II.

16

Let the increase due to digit d be denoted as

Hd) = [V*2(d) - V*1(d)] (mod 10)

Number

of Cases
H(d1) - H(d2)

0 10 two digits equal
(e.g., "S5")
two digits equal
(IC(DN, n%n)

2

8

W

10
10
10
10
10
10
10
10

O 00 9 A & W N =

TOTAL = 100

Thus, when digits d1 and d2 are transposed, the weighted sum of the codeword
changes, unless the bracketed terms H(d1) - H(d2) cancel (mod 10) in which case the
change goes undetected.

Running through all the 100 pairs of two digit combinations for d1 and d2 gives the
following changes:

In general case when an even number t of digits in contiguous positions within a codeword
are transposed in pairs, the weighted sum increases by

H(d1) - H(d2) + H(d3)-H(d4) +.... +H (d t-1- H(dt) (Eq. B2)

Define

At = number of permutations of t digits for which Eq. (B2) equals zero (mod 10),
including perimufations with repeated digits

17

Bt =

number of permutations of t digits for which Eq. (B2) equals 5 (mod 10)
CG =

number of permutations of t digits for which Eq. (B2) equals any digit
other than 0 or 5 (mod 10)

From the tabulation above,

A2 = 12 C2 = &
B = 8 (Eq. B3)
There are

three ways for Eq. (B2) to reduce modulo 10 to zero:

‘(1) The first t-2 terms in Eq. (B2) reduce modulo 10 to zero, and the last two terms
also reduce to zero. This occurs in At- 2x 12 ways.

(2) The first t-2 terms in Eq. (B2) rcduce modulo 10to 5, and the last two terms
alsoreduce to 5. This occurs in Bt-2 x 5 ways.

(3) The first t - 2 terms in Eq. (B2) rcduce modulo 10 to a number other than 0 or 5,

and the last two terms reduce to the modulo 10 complement, giving an overall
value of zero (mod 10). This occurs in Ct-2 x 10 ways.

Combining the above three cases gives an equation

for the number of

t-digit
permutations which remain valid codewords under pairwise digit exchange:

At = 12At-2 + 8Bt-2 +10Ct-2 (Eq.B4)
By a similar derivation
Bt = 8At2 + 12Bt-2 + 10Ct-2 (Eq. BS)

Since Eq. (B2) must reduce to some value from 0 to 9, all possibilities are exhausted by At, Bt,
and Ct so that

cc = 10'- A¢-C (Eq. B6)
The solution of Egs. (B3) to (B6) is
ar = 214+ 1ot
B = 10121
t-1
Ct = 8x 10 (Eq. B7)

18

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

