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ABSTRACT

This paper reports the general findings of a rescarch project for stochastic modcling and forccasting
of monthly and five-day inflows to the multi-purpose Angat reservoir. The stochastic models investigated
were the purc-runoff autoregressive-moving-average (ARMA) types, both of scasonal and nonscasonal
forms, and cither with or without state estimation techniques or Kalman filtering; and rainfall-runoff

ARMA-typc or ARMAX (ARMA with cxogenous input). The rescarch demonstrated the applicability of the

best-selected models for forccasting dry-season low flows and wet-scason modcrate flows. Recommendations

for possible model improvements were also made.

INTRODUCTION

The government of the Philippines has implemented an intensive  countrywide
infrastructurc program in water resources for the past two decades. This has bcen aimed at
maximizing the benefits that the nation as a whole can derive from its incrcasingly scarcc water
resource for its rapidly growing population. Among thesc projects arc multipurposc dams,
hydroclectric power schemes, flood control and warning systems, as well as irrigation and water
supply distribution systcms. Propcr management of these projects could, among other benefits,
boost the economy by way of increased agricultural and energy production, and raisc the
standard of living through the provision of safe and adequate water supply and the mitigation of

flood hazards and damages.
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The benefits accruing to water resources development projects are naturally realized
only during opcrations. Water, the basic resource, is recognized as a renewable resource, yet its
occurcnce is complicated by uncertaintics with regard to time, place, quantity, and quality. The
hydrological cycle, although understood to be basically controlled by the astronomical and
climatological cycles which bring about the scasons, contains aspects of multi-scaled randomness
or uncertainty associatcd with highly variable atmospheric and basin conditions. These
uncertaintics perennially pose scrious challenge and problems to managers and operators of
water resource systems. Proper, reliable, responsive, and safe operations would therefore
rcquire a dependable and accurate scheme for forecasting the occurence and quantity of water
inflows. Past historical hydrological data and criteria derived therefrom, originally utilized for
design, are no longer sufficicnt bascs for operations.

Stochastic or time-serics models afford casily portable and practical real-time
hydrological forccasting mcthods. These need not be complex mathematical models and
software systcms; on the contrary, microcomputer systems can casily accomodate the speed and
memory requirements of the said modcls. To obtain fast response and adaptive functioning of
these models in real time, model parsimony (or’simplicily) and flexibility arc always aimed at.
Properly traincd junior engincers can casily operate these computer systems in conjunction with
hydrometric data updates communicated from the ficld. When more powerful computer
resources become available to forecasting offices and cxtensive data collection schemes are put
in place, the usc of more sophisticated and data-extensive physically-bascd models and systems is
nevertheless encouraged.

DEVELOPMENT OF FORECASTING MODELS

In the years 1985 to 1987, the National Hyraulic Research Center (NHRC) in
cooperation with the Department of Enginccring and Computer Sciences of the U. P. College of
Engincering undertook a rescarch and development activity for developing and evaluating
stochastic streamflow forecasting modcls (Liongson et al, 1988). The objective was to develop a
class of hydrological forecasting modcls for water inflows, suitable for applications to the
real-time operations of multipurpose dam and storage facilitics, thereby potentially serving the
operational requirements for irrigation, hydropower, flood control, municipal water supply and
other purposes. In view of the importance of the Angat reservoir (Fig. 1) as the major source of
water supply for Metro-Manila, hydro-electric energy for the Luzon power grid, and irrigation
water for the farmlands in provinces north of Manila, water inflows to this site was selected as
the subject of a case study. Available post-World War II streamflow, rainfall, and Angat
reservoir operations data were gathered, screened, and utilized for modeling purposes. The data
series was divided into two roughly equal segments: pre-construction data for model building
and calibration, and post-construction data for model verification.



Several structurally distinct types of time-scrics modcls were investigated. As a class of
models, thesc modcls have been extensively studied, applicd, and documented in both
hydrological and statistical professional literature (Box and Jenkins, 1976; Bras and
Rodrigucz-Iturbe, 1985; Salas et al, 1980). In this study, the particular types considered were:

(a.) Purc runoff ARMA (autoregressive-moving-average) models, modificd Box-Jenkins
type, both nonscasonal and scasonal forms (Hipel et al, 1977, McCleod et al, 1977,
Salas et al, 1982; Salas and Obeysckera, 1982; Tao and Dellcur, 1976).

(b.) Pure runoff ARMA modcls, with state-cstimation techniques or Kalman filtering,
which is based on the theory of minimizing the forccast error variance given a
model forecast and a subsequent mcasurcment (O’Conncl, 1980).

(c.) Rainfall-runoff ARMA-type modcls or ARMAX (ARMA with exogenous input),
with state estimation techniques or Kalman filtering (O’Conncl, 1980).

In addition, two alternative scales of forccast lead time and time unit of prediction were
sclected, on the basis that potential model application would be limited to medium-term

rcal-time Angat operations for hydropower, water supply, and irrigation:
(a.) Aggregate 5-days

(b.) Monthly

The mecthods of model parameter estimation were:

(a.) Off-line or "block-data" estimation method, resulting in flow forecasts with fixed

parameters.

(b.) On-line recursive estimation method, resulting in combined flow and variable

parameter estimates.

Listings of generic ARMA and Kalman filtering programs for the mainframe computer
were secured from research contacts abroad and were modified, adapted, and augmented for
implementation with the PC-compatibles at NHRC.



MODEL TYPES AND FEATURES
Four (4) distinct models were developed and these are described as follows:

(a.) Monthly Runoff nonseasonal ARMA(p,q); fixed parameters
(Note: seasonality is considered in the mean and variance but not in

the ARMA parameters)

Zt, = @1 Zt—l + @2 Zt_z + ... + <bp Zt—p
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where t = monthly time subscript
Zt = transformed and seasonally standardized flow deviatc:

_ F(Qp) - seasonal mean of F(Qy)
scasonal std. deviation of F(Qy)

where F(.) is either the identity, power, or
logarithmic transformation, required to skew-

normalize the original flow data Qt. This trans-
formation applies likewise to the other models described below.

P, @ = orders of the autoregressive and moving average terms, respectively

Pr, P2, ... &, = autoregressive parameters

01, 62, ... B4 = moving-average parameters

€ t = independent random error or residual

When q =0, the model becomes simply an AR(p) or autoregressive model:

Ze = &3 Ze_y + ¢ Ze—2 + + ¥p Ze—p t+ Ec

On the other hand, when p=0, an MA(q) or moving-average model is obtained:

Ze = € — 0; €Eey — O3 €pz — ... — B4 €Ec—a-



(b.) 5-Days or Monthly Runoff AR(p) with Kalman Filtcring

(1.) Pure Statc Estimation (fixed parameters)

System Equation:
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where t = 5-days or monthly time subscript

Yt = model flow deviate (transformed and seasonally standardized)
Zt = measured flow deviate

., ..., ®p_a1, P = AR parameters (fixed)

Wt = model noise
Vt = measurement noise

Ip-1 = (p-1)x (p-1) identity matrix




(2.) Combined State-Paramcter Estimation (variable parameters)

System Equation:

where t = 5-days or monthly time subscript

Yt = model flow deviate
Qi
Zt = measured flow deviate

Wt = model noise

V1t, V2t = measurement noise

Ip = (p x p) identity matrix

Ip-1 = (p-1) x(p-1) identity matrix
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(c.) 5-Days or Monthly Rainfall-Runoff ARMAX(p,0,1) with Kalman Filtering

(1.) Purc State Estimation (fixed parameters)

System Equation:

Yt = @T ' 6 Yt_._ 1 + w1 <
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Pe 0 o B Pe—a Wae
Mcasurcment Equation:
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Rt, 00 1 pt V2t

where t = 5-days or monthly time subscript

Yt = (px 1) model flow deviate vector

Pt model rainfall deviate

¢ = (px1) AR parameter vector

& = rainfall-runoff coefficient

8 rainfall autoregressive coefficient
Zt = measured flow deviate
Rt = measured rainfall deviate

W1t, W2t = model noise

V1t, V2t = mecasurement noise



(2.) Combined State-Paramcter Estimation (variable paramcters)

System Equation:
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wherc ¢t = (px1) AR parameter vector (variable)
dt = variable rainfall-runoff coefficient
Bt = variable rainfall autoregressive coefficient,

and the other variables are similarly defined as before.

(d.) Seasonal ARMA Models - Pure Runoff Models with
Seasonally Varying ARMA Parameters.

p(v)
Yia*v.t = pX @y (V) Yie+v.t—k

k=1
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where i = year index

s = number of scasons (12 months)
v = scasontoseasonindex = 1,2,3, ...s
t, t-k = within scason time indcces

= 1,2,...6 five-day groups
Yis+v,t = flow deviate for year i, scason v, 5-day t
p(v) = AR order for scason v
@ k(v) = lag-k AR paramctcr for scason v
q(v) = MA order for s¢ason v
6k(v) = lag-k MA paramecter for scason v

€is+v, t = independent error or residual

MOdeling and Forecasting Results

For the Angat case study, the modeling effort was divided into four phases:

(a.) ARMA Modeling and Forecasting of Monthly Streamflows

A step-by-step procedure (Figs. 2 and 3) of ARMA modecl construction - identification,
estimation, and diagnostics - was used to model and forecast the monthly inflows to Angat
Teservoir. Statistical properties (mean, standard deviation, correlation coefficient, standard
forecast error, and peak forecast error) on the one-step ahead (one-month) forecast for the
various competing ARMA models were computed in order to comparc the actual performance
and to check if the forecast preserved the statistical propertics of the historical data. The AR(3)

model comes out best, followed by AR(1) as second best (Figs. 4 and 5).
(b.) ARMA Modeling and Forecasting with Kalman Filtering of Monthly Streamflows

The use of state estimation techniques or Kalman filtering (Fig. 6) for monthly
Streamflow forecasting was also investigated. Time series models of the ARMA and ARMAX
types were cast within the state-space framework of the Kalman filter (Figs. 7, 8, and 9) and used
to forecast the one-month ahead inflows at the Angat reservoir. The forecasts were of two types,
Pure state estimation and combined state-parameter estimation. The former assumes that the
model parameters were time invariant while the converse was assumed in the latter. The
Performance of the identified forecasting models were compared and then evaluated through the



use of the mean, standard deviation, correlation cocfficient, standard forecast crror, and pcak
forecast crror of the forecasted scrics, relative to those of the historical series. The model
sclected to be used within the Kalman filter framework was a combination of the AR(1) and
AR(3) modcls (Figs. 10, 11, 12, 13, and 14).

(c.) Seasonal ARMA Modelling and Forecasting of 5-Day Streamflows

A scasonal forccasting model (Figs. 15 and 16) for the 5-day inflows of the Angat
rescrvoir was developed using the ARMA modcling methodology for stationary time scries. In
developing thc modecl, three assumptions were made, namely: (1) the periodicity of the time
scries is monthly whercof the number of scasons in a ycar is twelve; (2) each month is composed
of six average five-day inflows; and (3) the paramecters of the model of cach month can be
obtaincd independently from the other months. The best fit models for the independent monthly
scrics were arrived at by following the ARMA modcling procedure and the paramcter estimates
of the modcls were taken as the periodic paramcters of the scasonal forccasting model. The
forccasting modcl was cvaluated by comparing the gencrated Iead one forecasted inflows to the
observed data in terms of the mean, standard deviation, corrclation cocfficient, standard forccast
error, and peak forccast crror. The forecasts were found to closcly approximate the measured
low inflows and the recession limbs of modcrate floods. On the other hand, the forecasts

gencerally underestimated the observed peak inflows and the recession limbs of high floods. The
twelve scasonal models were:

January - MA(1) July - AR(1)
February- ARMA(1,2) August - MA(2)
March - MA(1) September - MA(1)
April - MA(2) October - MA(1)
May - MA(1) November - AR(1)
June - AR(2) December - MA(3)

(d.) ARMA Modeling and Forecasting with Kalman Filtering of 5 - Day Streamflows

State-space techniques and Kalman filtering were applied to the class of ARMA models
for the purpose of real-time forecasting of 5-day inflows to the Angat reservoir. Unknown noise
statistics were estimated using an adaptive recursive estimation algorithm. Forecasts were
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obtained using both statc estimation and combincd statc-parameter estimation techniques.
Combined state-parameter estimation allowed the model paramcters to be recursively updated
(Fig. 17). The use of the multivariate ARMAX model to take explicitly into account the effect of
rainfall on the runoff process was also considercd. Modcl performance was evaluated by
comparing important statistical propertics of thc observed and forecasted series - mean,
standard deviation, correlation cocfficient, standard forecast error, and peak forecast error. The
AR(1) model was considered best, with only minor improvement with the ARMAX model (Figs.
18 and 19).

GENERAL CONCLUSIONS AND RECOMMENDATIONS

Under the different model options and comparison criteria, it was hard to discriminate
in a straightforward manner among the few but best competing models of the ARMA type. They
all provided the forecasts close to the measured values of dry scason low flows and recession
limbs of wet scason moderate flows. On the other hand, they all underestimated peak flows as
well as recession limbs of extremely high floods. The minor differences in the statistical
performances of competing models occured only in small and sometimes insignificant degrees.
In any case, the derived models were judged to be suitable for forecasting dry season flows and

wet season moderate flows.

The above results were not surprising and in fact could be anticipated since ARMA
models or their variations esentially exploit and parameterize the short memory property of
hydrologic processes, best exemplified by flow recession. The reservoir inflow models, confined
to the basic ARMA type, were not, per se, flood forecasting models. The time scales adopted,
namely, one month and five days, were too long for possible accurate forecasts to be made of
high flows derived from short duration random storm rainfall events. Flood forecasting models,
not necessarily of the ARMA type, which could better perform should contain physically based
model variables such as short-duration rainfall forecasts, basin loss and effective rainfall
amounts, and basin and channel hydrograph routing parameters. The latter would also deal with
shorter time scales (as lead time and time unit of forecasts) ranging from fractions of an hour to

at most two or three days.

The state estimation techniques or Kalman filtering applied to the ARMA models did
not contribute any major improvement in the forecasting performance relative to the modified
Box-Jenkins ARMA modeling and forecasting procedure. Nevertheless, the adoption of
state-estimation techniques was recommended since it allowed in general for making combined
flow forecasts and recursive parameter updates as more flow measurements became available.
On the other hand, seasonal 5-day ARMA models did not show any improvement over the
nonscasonal 5-day ARMA models.
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The monthly and 5-day forccasting models which uscd state-cstimation techniques mf.!)
. . sin
be improved by incorporating additional variables (statc or cxogenous) such as antecedent ba
moisture condition or soil moisture, basin losses, or clsc effective rainfall.
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Syz=tam Equation:
Xe = e—1Xe—1 + FeWe
Measurement Equation:

Z*; = H-O;Xq; + Vt

Propagated State:
Ae ey = 8e—1Xe—1,2—1 * FeWe

Asz=ociated Error Variance—Covariance:

Pere—2 ~ Se—1FPe—1,2—218c—2 " + FeQele™

Filter Innovation:
Ve = Lo — HeXve re—2 — Ve

Filtered State:
malman Gain:

Ke = Pt/t—lHtT(Htpt/t—lHtT + Re) ™2
fissociated Error—-Variance Covariance:

Fere = (I - KeHe)Pe,e—2

Figure 6. Discrete Linear Kalman Filter

19




AR (1) Model

State Egquation: Xe = 3e—-1 + We
o] - (e ]+
Measurement Equaticn: Ze = HeXfe + Ve

=0 e

Systam and Meacsurament Noise Covariance
Matrices:

= [Uwcl} R = [cvzlw

AR(2) Madel

(]

State Equation: Xe = FXe—-: + We
e Bre—2 Boe—z {—Yt—l ] W

+
Yeo1 1 0 LY=_: OJ

Measurement Equaticn: Ze = HeXe + Ve
o r ]
[Yt] = L 1 Q ] Ye + [Vt]
Yt—&

Systam and Measurement Noise Covariancea
Matrices:

— —— ——— —— —— -

Figure 7. GState-space Formulation of AR (1) and

AR (2) Models (State Estimation Problem)
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AR (1) Model
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Figure 8. State—-space Formulation of Combined State-—
Parameter Estimation Problem
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State Equeation: Xe = 3Xe—1 + We
.
Ye {2 A Ye—o1 Wet
- +
e 0 505 1 IFe—1 We
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State and Measurement Noise Covariance
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Figure 9.

State-space Formulation of ARMAX Model
(ARMA process with exogenous variables)

22




o
¥ -
g ripe—
s ~—&,
s : =
- - P L Y GRS e SO
ln.l.‘”l[ll”mﬂ.\ﬂl : P/. ~———— J~ o
e ;- S A
e, " [
..)...J U= o =
S 0 o= I
J— \.I\.l.\.:!!.l..v ~ R b=
~ z . o s -
- W .\&% :
= - 4= :
.rffAluuv,;A 5 - l.?.ﬂanw..M S :
! — —— -
= F
IR C BN - ....wﬁ
—_— T~ -2 | . .A..A..w‘\\ -
?&JMH”V# : [} == -
- o 02 Ak = 2
3 E [ 0 = 8
Il.\.r..h..(un. by — D J =
A e - T Yk
- e ey ER - ] :
T T e, & . 2
S + -
P ER B, -
- -FT < " -
v IllflMlll(lo N % Q -
St B !
e 2 )
—— n. Y]
3Nk 0
= = In 47
" F 2 ~
T -

|
TTT

167

=

m

-
KRR TRRK]

)
\
196

w2,
T Tl

T T - L.m.A .

-
l
1953

I
"
©

0 <
° o

2.8
9.7
8

a.5 -

*
(o)
(*puccney))
(MNOW) w,
) MU1AN (sRrupnnoy;)
(FOr) morigie

1631 1982 1983 1634 193S

23

1530

AL RLLALEERED

1979

AR (1) Forecast with State Estimation

MEAZURED

1978

10.

1977

Figure



—rf) o=
et e St p——
Pniw.. : 2>
sy (o = cll\...\e”[fllv’..of
— r——g |2
T .\\l\«umx : o lo\.\.wh
- e =TT
e T T m o llﬁ.lna.\lﬂ
ﬁ:é.\v - -vl‘su...“uu.v.
et ravpred o Hn
\;WVJA. - %M.
P IR S
a..(\...u\.«.\i\‘. g ] MC _G.unn..u“Ma“.\hH‘l.v
o ] izal B 0 Ql-lf..»\.w‘.\wll.ﬂ,./,
N . )
o

)
=
: STAST
4
\L

|
i
3

|
[
1

\?
¢ /
IL&?/
AE03) TR
X
&
i
‘!
[S
\

AN S ————— b-f
o plodl - " é:\t\n\‘.|4.(~.
T Tl T = T e

e o)
2
I
o ¢ | :
)
s

anTTTTy

128G

I~
e ee——— " o
T £ 9 S,
T T = H i~ At
T =" I - rl,lb..vo
R o S =
= ko P A
.6 T ] . IQ mm .
pe S - %e] T
e - - —~
.r./r..w - A m.w
[ =) -1 —fV-
AP E R T l\xllvﬂ“o\‘
P Vet ™ [h —
L0 c R ————
o2 a__, 3 .l..o.H.,#
t.\m m o ?.\\. \.\
T E R e
o e—" . P
Tll\lm - e _ St
e s J ¥
e M 3
M D] ) "
et w- o 1 I ! I 1 T I n en\\_\k..
1 1 1 1 | ! 1 [ o e o o~ w w « nu -
CRR, T S S S S A 6 6 © ¢ © B ©o ©o ©°
o © © ®©» © o ) s ©

TPUCINOY, ?3:22_0:5
,?_: w Bo".ﬂ: (FIOW) MQIANI
riom E

1639

Illlll:IIl(\IlIllIlllullll
156

P

HEPICEIEN

FR s A

IR AL
1353
TREZAST
-

-

1342
AR(SY 7
P13

R4

1983
24

DA

TIME (VEAR)
Forecast with State Estimation

1975 i
AR (3)

L

HEASURED

1575
11.

IO LD

1977

Figure



INFLOW (MOM)
(Thaunonds)

INFLOW (PM42M4)
(Thouaands)

Figure

. -
Q.5 — I
:
0.7 — i
% |
0.5 — )
! .'
C.5 ’\I' E E l {
8.e A i : i 1 l
ol i L ip [n
. i ! il 'j -y .
o3 e 1 :C;'i ”‘l;h ,IL#,, I? Lion ll jp
S O L L L G
21 “L" }:-\}‘, ,rglﬂl: ] 4.-t‘ ‘/r, {,,\\J\Jior
) 3 vk i ! !
ot S\ LN :\A’rh i h__.w/ \‘:_,f :\;J ﬁ}j
\‘P‘:g ;"“'C: \.? ‘ . Tie 1 |.||n 1 ll.lll;!ll clestbten b b AVTTTTTNT Illl:;lll
019II:".'.I '1;6';“"' I‘l;;\l?“” 1l97‘:l . 1672 1673 1674 1675 ll975
TIRI (YTAR)
MILSIRIT ° A= I)SES FCREIZAST
T.1 . ST Forscast (1038 - 197¢€
1
0.6
r'
0.7 —=
i
C.E — i
C.5 — ll
G4 / /\ / | é
: Lo Mk
\ ﬂ?x
L
s

1677

12.

pe;
TII T T T T T T e T T T L T I s rs v T Al e e i s TN T T T VI e L v e e re it

1678 197¢ 1880 1981 1982

1983 1964 19es
MEAZURID < AR[1)S= FORECAST
ARUIMEFR Torecast {1877 - i1ggf)

AR (1) Forecast with State—Parameter Estimation

25



INFLOW (MC1)

(Vhousarnds)

0 — T T T L L Ty Tives LIRS ol !
1583 1583 197G 157 iS72 1673 - 1975 S7e
NNE (YEWR)
MEASUFSD ° ARMAX Y 21)SP
ATMA Y SL1YEP Forecast 1283 - 1373
1
a9 —
0.8 —
Q.7 =
!
(}33 0.3 —
23
;; 9.5 =
Cc 2 h
=3
[ |
I~ 03 - !
9 \
a3 - ¥ f" Wiz K ; 1 I \
AT | e { ‘T A
wd [ ] noEA
- P { P! ]
LT Fn LT i \
Q‘f;:f'\ § Xﬁ%f Wi \ ! \ \\—
W =~ % RS U W
a
N [RIETY) 1lT[.unnll.lﬂlllll-lllllflI"IIll.uul|.h[lIll|IIIIll.ltll--luIlll.llllnllllllln.tlu_nTrr‘-Tr
1377 1973 137¢ 198G 1383 1982 1953 19582 1285
TIME (YEAR)
—  MEASURED 2 AAMAX(1,3.0)SP
.‘\.'.—".i'!."'_:( 1 J :)SE’ F:dre._:_:_z‘- FraTT - _‘2“2
Figure 13.

ARMAX (1, 0, 1) Forecast with State—-Parametéel
Estimation

26



;
|

1575
/' |
>

=

1
\,

o Torbellon,

1S3+
2

I
i
f

L
‘:'f/"
AR ERERERL 1 LRSS RIETLA

: et -
~=,. [ ] — T = '
w&.. : —=r
Yl.l?&ﬁll.il,ﬂ.lk!\.\“ﬁ. 3 "_ mﬂ _ a Wm _
|\!.|H.l......’..ﬂ/ i nh . W > . L .\.\7& H "N ..ﬂ [
.w.{..y» E g o ? e, Ee N
T E o oRE : g o
\‘\\%.. £ -t e~ v~ 2 % -t
reX" Fio . o E -
., =2 b P F W o
e s T, Bt T
T s, [ 7 — Tt - - "
—._ E 0] = -
, .m Sy U]
: 0= B ~
9k L, w =
.\ﬂv S Y T - Wy
- ity ey e e e = BN~ ) 9;5 = W !
Voaita - 0w ) B > !
=R e e w b
Taet——  k = l e o I S bl
i ey - = O TSy E - i
A e |8
N Y o
N . T < Q - -
e~ - —_ -
RS R i b 80
[!ﬂ' .U '

_l:JiIJIIJI%J%rlmw K

I [ _ull--_c.-.l._.,...\\_%ll. -
\ \Q ) < .
] ¢ © nu M M S
Aa?.::u:?:u
(M1ON) mo1-
) MO ?.Eon:oct
(HOW) moramy

AR (1/3) Forecast
27

14.

Figure



(7]
b o O
Q) ~ [qV {6
D> | wao
@ - [T
5 ~ .o
D | 2o
b |
(U]
Y
n n
(@] —~~ o~
R [ qV]
'C’ L e
(e} . -
ol Oy
;! I
0 Vs
Ny~ )
:> [l ]
A .
™= ()
"
—
C\)
L\
O L
ol Q)
845
{ ',> —{
O — N
1] o'
1) qi
A x,
O n
- o
‘0 g~
o h > O o~
o O ~
3] A,
[V
AW <,
o
(0]
n —l )
0y
1))
0n
»
0 K ki
42 Lo«
\ g 3
0 o9 L
X3 .0
 qQ
"> fry

o =* ¢
) 0 W
wun o
el gt g

OO0
|

N AN e
[QVNSHRRNT
Nes v e

"~

(l) -|; (I-)

oo

" <

) et

IU}Y
b MY

N N
YO
fer” N
[
r <

Chd}

N

ol -

(D =1 ()

94 ;M v

<Y €Y

GCOO

L

oo

c)Yuy O,

N v -

B | .

o s d
et OJ W)
o ) )
S UNVANG))
W oM™
oo
W
TN N N
D WL
~o e e
- N
AR NI TH

o, O -1

(aV] - O (@)

<0 e 31

.-_-...i‘

Q

.0

.,; g

t Q

(1 I 49

g~ b0 p,

3 39 Q)

DM v

I~
w
($3}
ql
(o]
|
1]
()

~-

(l;

)
(S3)
N
w

(&}
|

i
-

[aN}
|

D e

(o}
m
Y
a)

(&]

1
o~
ot
o

~

¢

[§3]

~{

o=
[ad)

<!
™
Q
<

Q)

e e

(1D]
(48]
[{§)
(@]

o

N
ol
~

L1

<

28

Periodic Order and Parameters of the PARMA
Forecasting Model

15.

Figure



RESERMYUR INFLCW (MCM)

RESERVCIR INILCW (MGHD

RESERVCIR INFLOA (MCM)

Yoo
o0 —
7 -
cc —
o = !
L
i
o h
e = .I\/‘.II\
| i)
i f T A ../\ /"\ ~t
[ TN 1 oome mTwlY o o smdete f¥ e
e IO R s o A O =als = =T ~ ‘e
C 4...'.........................................(.........1—..;
JAN = VA AP AT SN Jul AVG s> ==z ~NOVv o<
1272
_— MEASURTD PFCOTTASTIC
10C
= '~
S|
|
7S -~
oo —
_N'\_,'
AL =4 \
> = ’!\
2¢ - ‘/. \
' Vi
o v
T , o o "ﬁJ"E/ e
S e ,o.-.-(.¢e1~=‘°~«$€>e"?;””" e
C\"'. .ljlln.<'lal-cl‘l."-"lll-ll‘l.llll‘-'ll.lll. lll-.lll )
SAN = AR PN i T JLN JUL AUG sSzZP oTT * NOV =
1973
—_— MZASURDD o FOMZCASTID
oo
%0 —
30 — l
T 9 [
w_ \
s - ‘
:
a5 |l
20 [ ]
’
zo A\
ol ¢[ Ao T
J o~ oo oo
1 - /\? / & _Oy’ e
ao2ec® PRAIA wealoty o
O'P"—-::-&:‘w - = ‘/‘/"\C"c. h“.)‘,,.‘-,|,,||..-Alnllltl_-lllt‘lbnncn.
= "‘,,A,,.....nu.....--.... — -
' ,'.;,;' v ;:—_‘- ML AP MAY JumN JUL AUS sZP o= NOV c=
1274 -
gam D pom=CaSTED
i . Forecast vs. Measured
Figure 16. Average 5—day Inflows:

(1972 - 1974)

29



|
0.9

i "1
0‘5 S

0.+
Q.3
0.2
0.1

11 1 11

-0.1
-0.2
-0.3
—-0.4¢
-0.5
-0.5
-0.7
-0.8
-0.9

-1

[ O O N O |

d 100 2C0 300 400 5CQ 600 700 300 200 1000 110C
NO. OF MEASUREMENTS

PARAMETER ESTIMATE FROM COMBINED STATE-PARAMETER
ESTIMATION [AR(1) MQDEL]

Q.9
0.8
0.7
9.6
0.5
0.4
0.3
0.2
Q.1

[N T N Y TR N B W |
pl P
K.
'y
—

-0.1
-0.2
=Q.2
-0.4
-0.5
-0.5
-0.7
-Q0.3
-Q.9
-1

X
|

Ja—

4co S0C $Q0 700 8C0 900 1000 1100
NO. OF MEASUREMENTS

o
)
<)
(5]
o
o
”
8
o

PARAMETER ESTIMATES FROM COMBINED
TATE- ETER
ESTIMATION [AR(2) MODEL] STATE PARAM

Figure 17. Parameter Estimates from Combined 5-day

State—-Parameter Estimation

30



PESULTS CF FOPECASTING (1972)
240 — \

200 - \

STREANFLOW (LCu)
N
o
L

‘ >, WA — 2
> ch_’,c-o-éoyé/;qa - N;o
21 31 4

1 " 2

—ODAY INTERPVALS
——— MEASURED 3-o4 ° FORECASTED

RESULTS OF FORECASTING (1972) AR(1) MODEL

PESULTS OF FORECASTING (1973)

180
170
180
130
140
130
120
1o
100
90
30
70
60
S0
40
30

[ N S S IR

L1

-~

STREANFLOW (uCu)

) L
o
o ° ° > {X
° p
\ . A
et
20 4 . 2 - .
10 222957 PR, 02 S > . —
’ y ' st :

o -
] 1 21

A N S

31 41 ar 71
S
CASURED 3-0AY INTERVAL FORETASTED
—_— M

RESULTS OF FORECASTING (1973) AR(1) MODEL

AESULTS oF FOPECASTING (1974)

300 -

230

200 - \

STREAUFLOW (MCM)

130

100 — A " o/\
/\° 0° o, © \Q./ 00l
2 foRa2se200 290 Negozonts o
e - T T T v
3‘| 1 st 2] k4l

s0 -

—_— SUREO 3-0AY INTERY FORECASTED
MEA

RESULTS OF FORECASTING (1974) AR(1) MODEL

Figure 18 Results of +5-day Flow Forecasting AR (1) Mpdel

31



SIREAMALOW (LCu)

SIREAMFLOW (MCM)

STREAMALOW (MCN)

Figure

180
t70
180
180
140
130
12¢
1o
too
20
80
70
60
30
40
30
20
1o

430

3Jso

Joo

23Q

180

S0

19.

PESULTS CF FORECASTING (1972)

| |

Py

\

AN

< Iy v\
Soqorg0u37)

}

’ l lllo A e KU\_,
: /\./ AL /\?/\/“’
el PN

-f

" 21 3 an Y e T

S ~0AY INTZT/ALS
——— MEASURED 4

RESULTS OF FORECASTING (1972) ARMAX MODEL

FORECASTED

RESULTS OF FORECASTING (1973)

[P TR S VRS N NN TN BN BN NN IO Y I A BN |

<o, 2

o
- A\o /\° ,-/'.\‘AN
90025 o Bade0? 70 VTS T

\
SO A

NN
J k\/N OYV":\

- T T v
(K} 0 n re LY LY} T
3—0AY INTEIVALS

2 FORECASTED

RESULTS OF FORECASTING (1973) ARMAX MODEL

——— MEZAsSuUmrD

PESULTS OF FOPECASTING (197a)

d
»\aso oo
T

= ° ° b4
[ N '
v ° °
L—ww&;e.n. oo’ a0, 2 °
- T
31

) " ‘ l
21 P s 81 71
3=0ar 'NTERVALS
MEASURED °  FoPecasTed

RESULTS OF FORECASTING (1874) ARMAX MODEL

32

Results of 5-day Flow Forecasting, ARMAX Mode!



	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32

