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ABSTRACT

An analysis of a single-sitc auto-regressive multiple correlation is presented for the purposc of
justifying a streamflow gencrator model. The multi-lag analysis as presented by Ficring and Jackson (1971) is
Studied through its application to two streamflow records and through the use of diffcrent corrclation

cocfficients. The simple hydrologic model by Ficring (1967) is also studicd to determinc its ability to mimic

the actual flow instabilitics. Various model paramecters arc tested and their cffect on the general

characteristics of the resulting generator are determined.

This analysis yiclded the following conclusions: The Ficring model for estimatc correlation between

flows does not mimic actual corrclograms in the gencral sensc. Computcr modcling presents instabilitics in
8¢nceration especially for AR models with flows lagged greater than seven.  Care must be taken in the choice

of a random number gencrator so that the proper statistics will be preserved. Data generatio
ions arc greatly

n should only

be made after a carcful analysis of the stochastic part of the model because short term generat

affected by this part of the model.

INTRODUCTION

It is usual for planning engincers to require a historical study of the flows of a

Prospective project domain. Historical data, however, arc oftentimes too short and inadequate
0 produce the necessary statistical and hydrological paramcters required for a confident
decision, 1y is necessary therefore to produce replicate synthetic data records that are
stalislically equivalent to the historical sequences. Of the most typical modeling methods used in

the generation of synthetic flow series, the basic auto-regressive model is a common initial tool in

a0 analysis, Although more complex models are now basically used for data generation, an

nalysis of the basic structure of the AR model would be bencficial for the planning engineer
. ifications are necessary to fit a specific project.
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This study is bascd on the initial cfforts of Thomas in 1965 rcgarding rainfall and was
later modified by Ficring in 1967 as a model capable of mimicking the historical strcamflow
correlation coefficients. Although typical modcls arc alrcady studiced during those times, it was
not until Matalas (1967) worked out the basic transformation cquations for non-normal
distributions that developments took to a start. In 1971 Ficring and Jackson produced a general
AR modcl monograph that compiled their reccommendations for typical modeling procedures.
Box and Jenkins, however expanded these for a general synthetic hydrology theory wherein basic
modcls were later known after them. Current rescarch are centered on long memory models
that arc capablc of reproducing the critical returning conditions such as the Hurst effect.
General application programs arc currently available to suit various purposes of modeling.

*
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Iigure 1: Multiple correlograms of the historical data at Kiso River at Inuyama
(left) and data at South Platte River, Colorado (right)

MODEL CONCEPT

Contrary to the Markovian assumption of exponential decay between the correlation
coefficients and lags, actual plots of relations between the two display wide fluctuations in
magnitude and abrupt changes in sign (Figure 1). It is quite logical therefore to include this
property through a multi-lag analysis of a stochastic streamflow model to enabie the resulting
synthetic data to assume a more realistic stance. The question however of including this
property in a stochastic model brings about the suggestion of Fiering to utilize the generalized
Thomas (1965) model instead of using the historical coefficients. The implications of this i
studied to determine the effectivity of the Thomas model in generating a more realistiC
generated data set For the determination of the number of lags to include in the AR()
streamﬂow-modcl the step outlined by Feiring and Jackson is also analyzed through generation
of synthetic data from AR(1) to AR(10) streamflow models.

Auto-Regressive model that includes flows up to lag i
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The general model used is an claboration of the Markovian lag-onc model. Changes
anse primarily to accommodate run-off conditions in which the groundwater aquifer stores
water from season to scason and then contributcs a fraction of it cach scason for part of the total

run-off. The behavior of the groundwater storage is represented by a multi-lag model; a model
with a long memory. It is assumed that morc than onc past flow matters, thus the following

deterministic part of the model is obtaincd:
di = Prgi-1+ Pagi—2+ "+ PmQizm, (1)

Withm > 1. The justification of the above model comes from the fact that it is capable of
reproducing important statistical characteristics of the historical flow patterns, specifically the

Jagged correlograms of the historical data.

Figure 2: Hydrologic model by Fiering(1967)

e included in the model, a reasonable procedure would be

For the number of lags to b .
ession model.

the one presented by Fiering (1967)". Starting with a deterministic linear regr

Gi = Bo + Brdi-1s (2)

goodness of

SStimates of By and B1 are found using linear regression of the historical data. The
on between

fit of our model is checked through the calculation of the coefficient of determinati
\2

later extended by Fiering and Jackson 1971)
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~. . e . ‘he same
the actual values, qi , and the computed values, Gi , using the lincar model. The sa
procedurec is followed for lags greater than onc.

Because changes in R2 reflect changes in the cxplzma},ory power of the modcl: FicntTE1
and Jackson (1971) suggested to stop including lags when R™ valuces reaches a rclalx\“cl_\' flat
platcau. When the cocfficient’s value exceeds unity, then we should also stop incluc'imtI I“lj“f
because flows cannot be correlated by more than a value of one; also, because of the immense
computational load involved, Ficring suggested an upper limit of 8 to 10 previous flows,
rcasoning that it is dangcrous to include lags that approach the length of the historical record
becausc estimates of the correlation coefficients becomes highly unstable and imprecise.

Since historical flows may not produce realistic cstimate multiple correlatio

cocfficients, Ficring (1967) suggested using the generalized Thomas model to mimic actual

corrclograms. Starting with a simple basin model in figurc 2; lct the precipitation record be

denoted by a set of annual values(xi ),i = 1,2,..,n. Assumec that ax is thc amount of rain that

percolates through the soil to the groundwatcr during any ycar i and that bx is the amount of
rain lost directly to the atmosphere by evaporation and transpiration. Assume further that

during any year ;, the amount of groundwater that leaves the aquifer stora
stream is cSj-1 where Sj.1 is the amount of
1. It is assumed that x;

ge and drains into the
groundwatcr held in storage at the start of the )ic‘"

derive from a normal distribution and that their pattern of u.n"»‘
dependence is characterized by a Markovian process in which the lag-j scrial corrclation
coefficient is written =

j = m) where 7 isthe lag-one serial correlation coefficicnt. Valucs of

. . setorical
b, and ¢ are known (or estimated) and the valucs of the mean and the variance of the historicd
flows are given.

Fiering showed that for serially uncorrelated rainfall

, the coefficient of correlatio?
between lagged flows may be expressed as,

T(qiv qi+k) =

-oqw lhqto

\ k-1 !
2 k-1 ol
™ (1-a-b) +(1-¢) (l—a—b)acg;(l_c)

tac(l-c)*(1 —a - b) (U—WZTC)])

k-1
+a?c?(1 - )2 Z(l —c) [_'; - Z = (1 - C)m]

1=m(1-¢) =
—(k+1 1 - m
tac(l —a - b)(1 - ¢)~¢ )[l—w(l—c)—mzzo(w(l_c)) ]
(1 - o)t a’ 1+7(1-¢)
e e || @
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In the stochastic part of the model, Markovian analysis requires the use of the lag-one
product moment correlation coefficient for the standard error of estimatc. This can be obtained
through regression of the historical data. Fiering and Jackson however, suggests using the
derived coefficient of dctermination for this estimate. For the purposc of analysis, this study
uses the Markovian approach applied to higher lags for the unexplained variance.

To produce the required white noisc for the stochastic part of the model, the
application of the Central limit theorem utilizing uniformly distributed rectangular random
numbers is advocated. Starting with a multiplicative lincar congruential formula,

(R.N.)i41 = Fractional part of I x (R.N.), (4)

rectangular deviates from zero to one are gencrated. Initial estimates of the constant K and the
itial sced (R.N.) are made to start the gencration. The result of the above generation can now
be applied using a simple formula bascd on the statistics of the Central limit theorem,

= Gy oo~ ] ®

Where o, and , are the required standard deviation and mean of the generated normal deviates.

MODEL PARAMETERS

Case Study Data Sets

Two cases are studied for the purpose of determining the effects of record length to the

Wode] gencrating accuracy. It is also intended to produce results which are not biased nor are
location dependent thus the variety of the sites chosen.
. 3 e
The first data set is from the main artery of the Kiso sansen”, which is Kiso rlve.r itself at
Inuyamg (see figure 3). This is 32 years long, from 1956 to 1987, and is expressed in cubic meters

Per second. The catchment area above the Inuyama station is about 5,275 squ.arc kilometers.
The average annual precipitation in the basin is from 2000mm to 3400mm, which is rather large

\

ly now but in the old days these three rivers

iso ri i iri eparate (
The Kiso river, the Nagara iyt and the 1l m:g:i-sgrsagd the river course changed everytime there was a

i Plain as o t z
gg:é:dsgn {ttl): l];::cglylct:htrlf::‘;%htt:r:kri??l?lcg ?;u'ee rivers as one river, and called them Kiso Sansen which means
the three rivers of Kiso.

in Japan the average precipitation is 1800mm
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and the flood discharge is also large compared with the catchment arca. Of lh<.: thrce main nvcr?
comprising Kiso sanscn, Kiso river is the largest, and it flows down concentrating the water fron‘
mountains of 3000 mcter class, such as Mount Ontake in Nagano Prcfecture. There ar b
diversions above the Inuyama station but mainly for power development and gcncralion.. Tﬂl’;‘(*
1(a) gives a maximum discharge for the period shown of 397.92 cubic meters per second in 1970
and a minimum discharge of 175.66 cubic meters per sccond in 1984. The mean of the flows for
the record is 300.7 cubic meters per second and the standard deviation is 57.666 cubic mct.cl'S
per second. The skewncss is only -0.0986, a very low value, and the lag-one scrial corrclation 15 3

. . . .. . r
high negative coefficicnt -0.179 which means that there is a ncgative influence in the watc
carry-over from year to ycar.

The second data set is from the South Platte river near Kersey in Colorado (see figur¢
4). The drainage area at this point is approximately 60,000 square kilometers. The record shown
is from 1906 through 1974 for which a complete and homogeneous record is available. Table
1(b), expressed in cubic meters per second as the mean annual discharge, shows a maximum
value during the period of 62.5 cubic meters per second in 1973 and a minimum value of 6-2
cubic meters per second in 1955, There are diversions above the stations for irrigations of about

The Kiso River System

My HeeNael

M1 Dotmien

Figure 3: Kiso river catchment area above Inuyama station
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HEAN ANNUAL FLOVS IN CMS
Seetsseatensssnnte VRt aNR et RaveaRasRaTY
14.200 31.700 10. 600 3¢, 800
16.700 7.100 20.700 16.600
61.600 32.300 15.900 39.900
21.800 15.600 20.700 £7.300
11.5C0 30. 300 52.600 9.600
32.500 15.200 22.800 15.200
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1906-17902
1910-17213
191¢-1917
1918-1921
1922-1925
1926-1927

1930-1933 16.200 -500 8.400 15.300

1
L]
L
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2
]
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MEAN AtnuA 1938-19¢1 = 21,300 8.300 . 100 12.900
lnlntonn?-&nf&??f-s?nf?frnnu-n..n»-cn-nut---a- 19L2-19¢5 = $6.900 18.500 17.L00 14.500
1956-1952 » 361.0.0 3¢7.720 332.210 337.680 17¢6-17¢9 =« 11.200 3¢.800 26.100 33.900
1960-1963 » 29¢.000 394.000 240.000 304¢.200 1950-1953 « 9.909 13.800 21.800 10.3C0
1966-1967 « 284.800 300.100 282.500 258.6E0 195¢-1957 =  7.100 6.200 7.300  33.100
1968-1971 » 238.210 312.6%0 256.L50 323.070 1958-1741 s 36.100 15.700 19.100 30.000
1972-1975 » 357.2¢0 220.589 311.910 322.750 1962-1745 = 32.900 11.502 9.600 31.800
1976-1979 397.920 230.110 2¢6.210 292.870 1966-1267 = 13.700 17.900 12.700 35.000
1980-1983 » 357.700 312.6t0 261.130 366.3t0 }g;?-wu . ;2.188 36.900 18.100 62.500
. .8

lvsh_l?s, ehl3,080 370,030 266,130 211,540 RASARSNEssesENAsaNssaRRRteseasREERsRRRRRRREY

Table 1
Mean annual flows, Kiso river at Inuyama (left) and South Platte river,
Colorado (right)

South Plalle river basin

Figure 4: South Platte river catchment area near Kersey, Colorado

360,000 hectares and by transmountain and transbasin diversions, storage reservoirs, power
cvelopment, groundwater withdrawals, and return flows from nmgafcd. are:as. The nfcan flow
for the period is 22.2 cubic meters per second, and the standard deviation is 13.7 cubic meters

per second,

39



.- . SKEHNESS= -0.0986

Figure 5: Cumulative probability plot for the untransformed and
log-transformed data set from Kiso river

. ion
The skewness coefficient is 1.19 a high positive value. The lag-one serial correlat!
coefficient is very low, only 0.06. This means th

: . in the
at there is relatively small water carry-over 1n
river basin from year to year.

Fitting Estimate Correlograms

Not knowing the actual valu

i re t0
es of the basin parameters for both data sets, we ventt
determine the capabili

ty of the model by Fiering in mimicking the historical multiple’corrclan,o:
casc lags. Since the main objective of this study is to extend the Mar'kowi"s
Is which can reproduce jagged correlograms, we wish to generate 10 thlu;
of the same characteristics. Looking back at figure 1, it is intended
lcast gives the same fluctuations for each data set.

estimate coefficients
produce a plot that at

SKEHNESS= 1.1966

Figure 6: Cumulative probability plot for the untransformed and
log-transformed data set from South Platte river
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Applying cquation 3 to generate plots of corrclations against lags, figurc 7 is arrived at.
This figurc shows the limitations of the cstimate-corrclation cocfficicnt generating model by
Ficring. Not only that its jaggedness is limited to fluctuations about the datum of zcro, but its
requircment of a large ncgative scrial corrclation cocfficient for the precipitation scems
unreasonable. Nevertheless, fitting this cstimate to the historical correlogram for the data sct
from Kiso river, the last plot of figure 7 is arrived at. This produces estimate correlations of
-0.176, 0.104, and -0.297 for the first three lags. This can be compared to the historical values of
-0.179, 0.178, and 0.056 also for the first threc lags.

The values of the estimated basin parameters are givenasa = 0.1,b = 0.1c = 02,7 =
-0.5. Although highly unlikely to be the actual valuces of these variables, this fit is uscd in the
analysis of this model. Also because of the difficulty of modcling a scparate plot that will fit the
corrclogram for the data from South Platte river, the estimate plot for Kiso river is also uscd for
the data set from South Platte river. This assumption is a precondition by which became one of
the basis for the unlikeliness of the generality of the modcl presented by Ficring.

GENERATED DATA ANALYSIS

Cummulated Assumptions of Model Parameters

Initial assumptions arc made based on the previous analysis of the historical data sets.
Starting with the type of general population of the historical flows, on the basis of the
Chi-squared test and the Kolmogorov-Smirnov one-sample test, the data set from Kiso river and
South Platte are both assumed to be derived from a normally distributed population. For the
number of lags to be included in the generator model, we follow the results as found by the
lag-inclusion analysis and generate synthetic flows using an AR(4) modcl for Kiso river and an
AR(6) model for South Platte river. With regards to the estimate multiple correlation
coefficients, we model using the estimate fit for Kiso river for both the data set regardless of the
unnaturality of the estimate values of the basin parameters. On the case of the standard error of

higher lags and use the lagged product-moment

estimate, we apply the Markovian assumption to
For the random number

correlation coefficient in the uncxplained variance of the model.
generator, the constant is assumed to have a value of 997 and the initial seed is taken to be
0.5284163. On the strength of two out of three tests made for the determination of the existence
of trend, we neglect its initial effects and try to determine its overall effect on the generator
model. Since this study is not aimed at generating actual synthetic strecamflow sequences for the
but rather it is just aimed to analyze the multiplc-lag model and the effects of

use in planning,
credibility of the resulting model, the preceding

variations of various parameters to the general
assumptions are decmed acceptable-and workable.
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Figure 7: Estimate correlograms generated by the Fiering model for the Kiso
river data set fit
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Product Moment Analysis

Before highcr moment analysis on the gencrated data, the first two moment must first
be checked. The first two moments, namely, the mcan and the variance (or in this study the
standard deviation), are the statistics that we arc intending to kecp in our gencrated data; the
third moment’s ratio, the skewness coefficient is only kept if there is a gencral willingness to use
the Gamma distribution.

To determine the effectivity of the choice as forced by the lag-inclusion analysis and the
effect of the estimate correlation coefficient, 200 years of synthetic data from typical modcls of
AR(1) to AR(10) arc gencrated using two different sets of corrclation cocfficients. From these
10 two hundred year data scts, the first 100 ycars of data are disregarded to climinate starting
condition biasS. The rcmaining one hundred ycars of data are then used to compare the mean
and standard deviation with that of the historical data. The resulting plots can be seen in figures
8and 9,

Analysis of these plots suggests that there is not much of a differcnce as far the mean
and the standard deviation are concerned concerning the number of lags to be included in the
model except for some instability probably duc to computer inhcrent crrors for lags l?ordcrin.g 8
lo 10. Although these arc not the only aspects desirable in a general model, an cmpinca.l chonf:c,
tspecially when materially constrained, is not unredecmable in a typical initial analysis. With
regards to the estimate correlation cocfficients, the stability is greatly dependent on the best few
fits of the correlograms and becomes highly unstable when the cocfficients depart from the
historical values. This points to the fact that these estimate correlation coefficients are greatly
dependent on the goodness-of-fit of the corrclograms. This brings us back to convenicnce of use

and efficiency of the historical correlation cocfficients.

Unexplained Variance Comparison

Because of the assumption of the application of the Markovian approach applied to
higher lags instead of the recommendation of Fiering and Jackson of using the computed
correlation coefficients used in the lag inclusion analysis, plots of generated data sets similar to
that of figures 8 and 9 arc drawn but this time using the correlation coefficients suggested by
Ficring and Jackson. This is shown on figure 10. These plots use the historical correlation
coefficient for bricfness of the comparison. It will be noticed that the statistics do not vary
greatly for both models of different assumptions. This justifies the use of the historical
coefficients especially in computer encoding because of its convenience.

Lag Stability and Trend

Checking the plots of figures 8 and 9, this gives the impression that therc is an incrcasing
trend in cffect because of the computed mean of the generated flows persistently lic above the

datFaicring and Jackson (1971) suggested eliminating from 50 to 100 years of the first generated synthetic
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Figure 8: Statistical comparison of the mean and standard deviation of the his-
torical and generated data for the Kiso river data set for an AR(i,i = 1,. o 10)
model whose correlation coefficients are historical (left), and estimated (right)-
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Figure 9: Statistical comparison of the mean and standard deviation of the
historical and generated d

ata for the South Platte river data set for an AI'Z("". j
1,...,10) model whose correlation coeflicients are historical (left), and estimate
(right).

.o the
historical mean; this is also reflected in figure 16 thus eliminating the possibility of hav! :ul"’d
unexplained variance as the source.of such. For the standard deviation part, the co™

be?
values from the synthetic flows fluctuate gently about the historical value so there scems tO
problem in this regard.

we
ts,
Checking the possibility of a long term increasing trend in effect for both data S:w (he
plot figure 11 which uses only the first 100 years of synthetic data generated to Com:e el
statistics. Inspection of these plots shows that indeed in the first 100 years of data, ¢

44



. e & --MEAN
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-Figure 10: Comparison of statistics for models using coefficients from the lag
inclusion analysis for R? for the data set from Kiso river (left), and the data set
from South Platte river (right). Multiple correlation coefficients are computed

from the historical data.

KIS0 RIVER AT INUYRHA SOUTH PLATTE RIYER. COLORRDO
a --HERN a --nERN
+ --570 DEV. 4+ --STD DEV.

STATISTICAL COMPARISON

STATISTICAL COMPRRISON

for the first 100 years of generated data using
flicients for both the serial coefficients
he left is from Kiso river, to the

Figure 11: Statistical comparisons
models utilizing historical correlation coe
and the unexplained variance. Data set on t
right is from South Platte river.

fluctuates cvenly about the historical mean. This clearly shows that the model gencrates data

Scts which preserve generally the standard deviation, but gently increases the mean in

Proportion to the generated length of time.

trends for both data sets; but this is contrary to the statistics
his purpose, especially in the case of Kiso river
ting the model, instead of an

This suggest increasing
found in previous tests made specifically for t
f"here it was found to exhibit a decreasing trend, if there is one affec
Increasing one. With regards to the possibility of a skewed population fit instead of the assumed
normal distribution for the data sets involved, it also violates the statistical tests made again
€specially for Kiso river which to add, has also a very low skewness coefficient. On the other
hand, this possibility should not be completely disregarded for the case of South Platte river
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SERINL COEFFICIENTS SERIAL COEFFICIENTS

stttk Tttt % Tkt XL ELERYE
BETA 1 = -0.0506 BEITA 1 = -0.0492
BETA 2 = 0.0718 BETA 2 = 0.1547
BETA 3 = 0.0391 BETA 3 = 0.0826
BETA 4 = 0.0555 BETA 4 = 0.0011
1222323 S R P ST LY BETA S = -0.1808
BETA 6 = -0.0183

LSS ST ESESFRSS S

Table 2: Serial coeflicients of the generating models for Kiso river (left) data
set, and South Platte river (right) data set

o H st
because not only does it yicld a high positive skewness, it also fails on the probability fitting t€
made previously.

Correlogram of the Generated Data

Following the initial assumptions for the general model, we generatc 200 years of
synthetic data using the historical corrclation coefficicnts for the serial coefficicnts and [hC‘
unexplained variance. With these 200 years of data, the multiple correlation cocfficicnts are
computed and these are plotted against lags to produce the desired correlograms. These C‘m
now be compared to the historical correlograms to see if the model produces data that cxhl.b l[,
the same characteristics as the historical flows. These plots can be scen in figure 12. A quick
check shows that the lag-one serial correlation coefficients of the generated data arc very low
which means that the generated data are almost independent of each other or there is not much

. of
persistence between flows from year to year. Further check of this conclusion are the valucs
the serial coefficients of the data which can be seen on the listings of table 2.

MODEL MODIFICATIONS

Effect of the Initial Seed

Because of the persistent increasing mean of the generated data, an analysis (.)f .(h:
effect of the initial sced on the generating accuracy of the model is made. Statist
comparisons between generated models of different initial seeds were made by the author aﬂa
were found to be influencing the model’s generating accuracy. To make the analysis clcarcr,c
plot of the deviations of the historical mean and standard deviation from those of the gcncrathis
values against initial seeds of zero to one were made and the results are seen on figure 13- T‘c
shows that the effect of the initial seed on the model to be a complex non-lincar functiorf, Wh'C
should not be the case. Logic dictates that the choice of the initial seed should not be this mtlllcf
of an influence on the generator model, and at the worst should display a much sma

. . Iuc [\
fluctuation about the datum. This conclusion dictates that another factor other than the va
the initial seed is influencing the model’s accuracy.
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KIS0 RIVER AT INUYAHA

HULTJPLE CORRELOGRAM
OF THE GEMERRTED DATA

60UTH PLRTTE RIYER, COLORADO

HULTIPLE CORRELOGRAH
OF THE OEMERARTEO DRTA

Figure 12: Correlograms of the generated data
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KISO RIVER AT INUYAMA
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Figure 13: Plots of the deviations of the historical values from the gcncratcd
mean and standard deviation from models using initial seeds of zero to on¢.
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Figure 14: Statistical comparisons of the mean and standard deviations f)f.t'he
last 800 years of a 900-year generated data set using models utilizing initial

seeds of 2)0.2274167, b)0.5574167 and ¢)0.9974167

Effect of the Length of the Generated Data

The possibility of the length of the generated synthetic data affecting the model’s
generating accuracy is dependent on the distinct possibility that although normally distributed,
the random numbers generated are not evenly scattered in its time scale. This would point out
an increasing, or decreasing, generated data set if the first half of the modeled data are
disregarded and not used. This can be checked by producing longer string of synthetic data and
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computing the statistics from such. For this study, a rcplicate plot of statistical comparisons are
made using differcnt valucs of initial sceds but this time utiiizing the last 800 ycars of a 900-year
scrics of generated data. The results can be scen in figure 14, This shows that for a considerably
long synthctic data sct, the cffect of the initial sced can be considered negligible in the model’s

gencrating accuracy.

CONCLUSIONS

After this bricf analysis, the following conclusions are arrived at.

The cstimate correlation cocfficient generating model by Ficring is highly restricted by
the data sct being studied. Also, its fitting is limited to fluctuations about the zcro value and
fitting other than about zero is much likely improbable if not impossible. The assumptions made
to make a respectable fitting are not realistic (i.c., assumptions of precipitation correlations) and
are highly questionable. Finally, the reasons justifying the use of such assumptions are not good

enough compared with the merits of using a simpler assumption (using historical correlation
coefficients).

For this multiple lag analysis, an upper limit of an AR(7) modcl seems to be morc
practical compared to Ficring and Jacksons AR(8 to 10) maximum. This can be attributed to

corrclation instabilities coupled with computer inherent errors in the computations for models
using lags greater than 7.

The choice of an initial sced should be carefully made so as not to influence the model’s
generating accuracy. Although its choice should be impartial, the possibility of a shorter return
period for a certain initial seed is not at all distinct and should be considered. This is especially
so when using a random number gencrator which has an uncqual scatter of its gencrated
quantities.

The length of the gencrated synthetic sequence should be chosen in such a way that
enough generated data can be disregarded to climinate starting condition bias and still
encompass possibilities of weakness in the stochastic part of the model. Although the final
choice will be left to the planning engineer, an initially long estimate will be a good position in
the analysis.

For very short generation of data, care must be taken in the amount of initial quantities
eliminated because an unchecked stochastic part of the modcl can greatly influence the first few
years of generated data.

Trends are negligible for short term data generation, but its effect cannot be
disregarded for a longer analysis and gencration. Statistical testing may be of help in detccting
trends and cycles but the final choice is entirely upon the planning engineer.
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The type of population should be chosen using regular statistical tests for the purposc,
and for primary analysis, a simpler population estimatec docs not greatly affect the model’s
performance and can be taken as an initial assumption. However for the final data generation
process, population types should be chosen depending on factors that are inherent on the project
itself and should include decision and game theory in this regard. Although this is not taken in
this study, its inception in the final analysis should be taken as a standard measure.
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