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ABSTRACT

Recently the demand to build bigger and taller cylindrical shell structures has increased. This is

accompanicd with susceptibility to carthquake and wind vibrations. Hence, the design of such structures

must ensure safcty against these dynamic loads. Dynamic performance of structures is reflected in the

dynamic characteristics. A finite clement program suitable for the evaluation of the dynamic characteristics
of cylindrical shell was developed for a 640K personal computer. The influence of geometrical parameters on

the dynamic characteristics of the cylindrical shell was investigated using the said computer program.

INTRODUCTION

As of today, thin vertical cylindrical shells have been constructed for various purposes
and functions. They have been used for storage containers, towers, chimneys, and others.

In devcloping computer programs using the finite element method (FEM) for the
Analysis of cylindrical shell, the actual structure was replaced by an assemblage of ring elements
“hose displacements are defined by an approximate function. The element used is similar to the
ax‘SyTnmctnc shell element described by Zienkiewicz (Ref. 13). Two-noded elements were used
o discretize the longitudinal section and Fourier series to define the circumferential behavior of
he Cylinder. The finite elements were formulated with the basic assumption that the behavior of
€ shell conforms to Kirchoff's theory. It is assumed that the shell is isotropic, homogeneous,
and elastic, The base of the cylindrical shell is assumed to be totally fixed to the foundation and
e at the top arising to the name clamped-free cylindrical shell.

y The study involves the behavior of natural frequencies and mode shapes as affected by
4rious geometrical parameters such as the height-to-radius ratio (H/R), the thickness-to-radius
o (/R), and the slope of the side of the cylinder with respect to the vertical axis.
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THEORETICAL CONSIDERATION

The dynamic characteristics of a structure is reflected in the natural frequencics and
mode shapes. These can be determined by evaluating the equation of free vibration without
damping of the structure. The non-trivial solution is given as:

2
[K]{X} =0 "[M] {X} (Eqn.1)
where [M] = mass matrix of the structure
[K] = stiffness matrix of the structure
{ X} = modalshapc
o = natural frequency

To solve this eigenvalue problem, the determination of K and M matrices is necessary
and is accomplished by FEM. This is done by subdividing the cylinder into ring elements (Figurc
1). Actually, the problem is 3-dimensional but due to the rotational symmetry considerable
simplification can be attained. This is done by expressing the behavior of circumferential

deformation in terms of Fourier series. If the shell thickness is constant the approach can bc
eventually reduced to 1-dimension.

z—axis

Fig.1 - Ring element. Fig.2 - Nodal displacement.
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The displacement vector, {f}, is approximated using Fourier series as:

{f} =

{fn} = Z  [Tn] {f} (Eqn.2)
n =

0 n=0

ne~™m 8

where n = integer number denoting Fourier series harmonic number

{f} =[u,v,w ]T axial, circumferential and radial
displacement, respectively

{fn} = [un,vn, Wn]T displacement components
correspoading to n
o — —— T . .
{f} =[n,v,w,] displacement amplitudes
Cos n © 0 0
[Tn]l = 0 Sin n © 0
0 0 Cos n ©

circumferential anglc, as depicted in Figure 1

c

®
I

The displacement amplitudes can be expressed solely in terms of the mid-surface
®ordinate "s". The following are the assumed functions of the displacement amplitudes

Corr esponding to the expected deformation of a 2-noded linear element.

U=a;+ays (linear axial deformation)

(linear circumferential deformation) (Eqn. 3)

v a3+a4s

W =ag +ags +ay 52 + ag $ (cubic radial deformation)

The rotation about the s-axis is introduced to satisfy the continuity of elements.
B =dw/ds =a, +2a,s +3a 52
6 7 8
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The coefficient a’s are determined by applying the boundary conditions of the element.
After the coefficients are determined, they are substituted back to Eqn.3. This results to the
following equation:

{f} =[N]{x}

where {x} = nodal displacement depicted in Figure 2
[N] = shape function

(Eqn. 4)

Note that in Eqn4, only the amplitude of the displacements are defined. The

displacement corresponding to the harmonic "n" is:

{fa} = [Tn] [N] {x} (Eqn.5)

The strain-dsiplacement for axisymmetric thin shell is:

( ] r _ dun
€ sn s
€gn % (un Sind + 3% + wn Cosct)
1 (9 v
Ygsn - (#ﬂ — vn Sind + -a_s—n) L
(e} = J - = J 52
Kon - _—B-i% (Eqn.6)
sing (Bun), 1 (2va _ 2w
en B r (35}+ r2(89 Coso 392)
¢ 1 (8wn o _ ,3%n)_ 2sin¢ dwn
n . as Ccos YIY 2 vn Cos¢ - 26
| - ~ 7
Substituting Eqn. 5 into Eqn. 6 yields:
{en} =[Tn] [B] {x} (Eqn.7)

where [B] is known as the strain-displacement transformation matrix.
From basic finite element formulation for elastic problems, the element stiffness
matrix of the present problem is computed as follows:

[Kale =/[B]" [Ta] '[D] [Tn] [B] dVol (Eqn.8)
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where dVol = trd 6 ds,¢ is the thickness of the shell
[D]

elasticity matrix taken from the stress-strain relation

Eqn.8 is further simplificd by evaluating the integral involving the 6 . The result is:

for n >0, [Knle = f% [B]T [D] [B] trds (Eqn.9)

for 0=0, [KOfe =2T ff (B] [D] [B] trds

For n=0, the problem is reduced to an axisymmetric loading case such that the
displacement component v can be omitted since it is equal to zero.

The element mass matrix corresponding to harmonic "n" is evaluated as follows:

[MaJe = [ p[Nn]" [Nno]dVol (Eqn.10)

where p = mass density, [Nn] = [Tn] [N]

Similar to the stiffness matrix, the mass matrix is simplified.

[MaoJe =7p [ f [N]T[N] trds  (forn >0 ) (Eqn. 11)

[MoOJe =21Tpf§ NT[Ntrds  (forn=0)

Investigation of the integrals reveals that a 4-point Gauss-Legendre numerical

intfigration is adequate to evaluate the integrals. The next step is to assemble the element

Matrices to form the structure matrices. Matrices assembly requires the matrices to be
eXpressed in terms of the global coordinate system. This is achieved as follows:

[Ka*le = [A1T [Knle[A]; [Mn*]e = [A)" Male[A] (Eqn.12)

where [ A ]isthe coordinate transformation matrix. The asterisk (*) denotes globa

oric_ntation.
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The next step is to assemble all element matrices to form the mass matrix and stiffnes
matrix of the structure.

nel nel
[Kn]= p [Kn*le; [Mn]= p [Mn*e (Eqn.13)
e=1 e=1]

The symbol \ denotes assembly.

The natural frequency and mode shapes can be obtained for each harmonic number by
substituting the result of Eqn.13 into Eqn.1. In solving the eigenproblem, the subspace iteration
method described by Bathe (Ref.2) was used.

VARIATION SHAPE OF CYLINDRICAL SHELL

A vibrating clamped-free cylindrical shell may be deformed in a variety of ways.
However, the deformation can be distinctly identified in terms of the circumferential and axial
mode shapes. :When viewed from one end, the vibration of the shell may consist of any number
of waves distributed around the circumference (Figure 3(a)). These circumferential waves are
designated by numbers which correspond to the harmonic terms (n) of Fourier series. The
circumferential wave corresponding to n=0 is the axisymmetric mode, n=1 is the swaying or
flexural mode, n=2 is the ovalling mode, and n >2 are the breathing modes. Viewed from its
side, the deformation of the cylinder consists of a number of waves distributed along the
longitudinal axis (Figure 3(b). These longitudinal waves are denoted by m. The appearance of
the axial wave resembles vibration deformation of a beam which have the same end condition as
the shell. The combination of the circumferential waves and the axial waves (i.e. (m,n))
produces the vibration form of the cylinder for a given mode.

CONVERGENCE ANALYSIS

The convergence of the solution procedure was tested by solving the natural frequencies
of a clamped-free cylindrical shell using different number of elements. The computed
frequencies for the first 5 axial modes of circumferential wave number 1 are tabulated in Table 1.
The results show good agreement to those obtained by Sen and Gould (Ref.10). It is observed
that the natural frequencies converge monotonically to lower values as the number of elements is
increased. Hence, the lowest value of each mode is deduced to be the closest to the true natural
frequency. However, 10 elements is satisfactory for the dynamic analysis of clamped-free
cylindrical shell, time-wise and memory-wise, and hence, was used in the subsequent analyses of

the clamped-free cylindrical shell. It may be noticed also that higher axial modes are more
affected by the number of elements used.
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Figure 3-Vibration deformation shapes of cylindrical shell.

Table 1 - Computed natural frequencies (in Hz) form=1.
Data of the clamped-free cylindrical shell analyzed:
H=22.68 cm, R=10.16 cm, t=0.10 cm,
E=2,100,100 kg/cm®, p=8.019E-6 kg-sec Jem”

P —

No. of Time Axial Mode
Elemenls (sec.) m=1 m=2 m=3 m=4 m=5
S ~————

5 398 9045.58 | 5520.15 | 7044.17 | 7687.82 [7930.09
10 970 5034.89 | 5439.57 [6968.67 | 7571.19 | 7766.48
15 1584 5032.93 | 5424.10 | 6953.98 | 7547.86 | 7547.86
20 1891 5032.32 | 5418.64 [6949.06 | 7539.57 | 7719.86
25 2051 5032.07 | 5416.11 |6946.83 | 7635.73 [7714.08
30 2809 2031.94 | 5414.73 | 6945.62 | 7633.64 [7710.92
35 3578 2031.87 | 5413.90 [6944.90 | 75632.38 [7709.00
10 3541 5031.83 | 5413.36 [6944.43 | 7531.56 [ 7707.75
15 3675 5031.80 | 5412.99 | 6944.11 [7531.00 [ 7706.90
50 5795 2031.77 | 5412.73 | 6913.88 | 7530.59 [ 7706.28

~ |
Sen & Gould 2033 5431 6986 #okokok ok ok
\
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NATURAL FREQUENCY AND MODE SHAPES

Determination of the natural frequencies and mode shapes of the clamped-free
cylindrical shell described in Table 1 was performed. The results are tabulated in Table 2 and
graphed in Figure 4. The calculated frequencies are given for the first 5 axial modes (m) for
various circumferential wave numbers (n) in the range from 0 to 16. For a particular value of n
the natural frequency increases as the axial modes becomes higher. But for a particular mode m
the natural frequency is distributed over n as a curve concave upwards as shown in Figure 4.

Table 3-Computed natural frequencies (in Hz) for various n.

n m=1 m=2 m=3 m=4 m=5

0 5489.65 7966.39 8033.79 8078.48 8146.70
1 2034.89 5439.57 6968.67 7571.19 7766.49
2 985.13 3428.50 5797.73 6899.23 7456.60
3 567.79 2262.51 4410. 47 5865.72 6767.17
4 4189.60 1622.80 2387.78 4909.76 6031.28
5 622.62 1320.05 2716.14 4147.26 5362.51
6 863. 49 1279.68 2335.61 3608.03 1821.39
7 1169.70 1434.24 2203.20 3289.90 41447.34
8 1529.57 1719.49 2279.17 3179.76 4242.28
9 1939.85 2092.64 2517.45 3255.49 4207.11
10 2399.51 2532.73 2875.70 3487.40 4329.61
11 2908.16 3030. 41 3324.09 38441.87 4590.92
12 31465.65 3581.45 3844.80 4302.53 4970.40
13 4071.89 4183.78 4427.84 4842.26 5449. 44
14 4726.85 4836.32 5067.72 5452.16 6013.30
15 5430.50 5538. 18 5761.29 6124.68 6651.16

Nat. Freq. (Hz)

0 1 2 3 4 5 6 K 8 9 10 1 12 13 14 15
Circumferential Wave Number (n)

Fig. 4 - Natural frequency distribution with respect to n.
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For the cylinder investigated, the lowest natural frequency or fundamental frequency occurs at
the combination of m=1 and n=4. The fundamental frequency occured at a wavier
circumferential deformation. Another phenomenon observed is that as'm increases, the value of
n corresponding to the minimum frequency also increases. In Figure 4 the minimum frequency
for each axial mode are: (m,n)=(1,4), (m,n)=(2,6), (m,n)=(3,7), and so on. Note that
frequencies for non-integer values of n have no physical significance. Based on the results, it
may be deduced that it is possible for two modes to have identical natural frequency.

Presented in Figure 5 are some of the 3-dimensional graphical representation of the
mode shapes of the cylinder. The 3-dimensional plot of the mode shapes was done by
Combining the shape of the circumferential wave and the axial mode shape. The shapes becomes
complex as the natural frequency becomes higher. "Dimples” appear at combination of higher n
and higher m. In general, the radial displacement, w, dominates the mode shapes. This is a

typical characteristic of shells.

' [t fmand =
9.57 Hz Fhat, Freg. =

pele fmont =

Mat. Freg.

vlowle it

= 4.0 AN T
Hat. Freq. = 5 T

.. & Hz Fat., Freqg.

Fig. 5 Three-dimensional mode shapes.
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INFLUENCE OF THICKNESS-TO-RADIUS RATIO

The effect of t/R was analyzed by calculating the first 5 natural frequencies of a
clamped-free cylindrical shells having different t/R ranging from 0.01 to 0.05. The other
parameters were fixed; R =10, H/R =1, and Poisson’s ratio=0.15. The results are graphed per
circumferential wave number as shown in Figure 6.

A general characteristic observed is that the natural frequencies become higher as the
thickness of the shell increases. This is attributed to a stiffer structure as the shell becomes
thicker. The rate of increase at lower axial modes (m = 1 & 2) shows linear behavior. At higher
circumferential wave numbers (n = 4 & 5), the rate of increase is greater. This means that as
the shell becomes thicker, it becomes more unlikely that the lowest natural frequency will occur
at a more wavy circumferential deformation. Hence, it can be said that the thinner the shell the
higher the value of the circumferential wave number where the fundamental frequency will
occur. It is also observed that the distribution of natural frequencies becomes closely spaced as
the shell becomes thinner. This means that the thinner the cylindrical shell, the more it is
susceptible to higher mode of vibrations.

INFLUENCE OF THICKNESS-TO-RADIUS RATIO

Clamped-free cylindrical shells of H/R in the range from 1 to 10 were investigated. The
radius and Poisson’s ratio were fixed to 10 and 0.15, respectively. The computed
non-dimensional natural frequencies Yor t/R =0.01 and varying H/R are presented in Figure 7.
The results indicate the strong influence of H/R on the magnitude of the natural frequencies.
The natural frequencies are found to decrease as H/R increases. They are significantly large at
lower values of H/R. It is observed that the higher axial modes tend to approach the lower axial
mode as H/R increases, thus, the natural frequencies become closely spaced at higher H/R. This
means cylindrical shells with significantly large H/R are more susceptible to higher axial mode of
vibration. It is also observed that the rate the natural frequencies become closely spaced is
higher at higher values of n. Another observation is that the magnitude of the natural frequency
corresponding to m =1 is less affected by H/R at higher values of n. The graph for n =0 exhibit
a different behavior, however, the decrease in natural frequencies as H/R increases still holds
true. The peculiar difference is that at H/R =3 the higher axial modes became very closely
spaced but separated one at a time and approached the lower modes as H/R was increased.

The occurrence of the fundamental frequency in the circumferential wave number
domain as affected by H/R was investigated. Presented in Figure 8 is the graph of fundamental
frequencies against H/R. The decrease in the fundamental frequency as H/R increases is very
much pronounced here. The taller the cylinder, the lower its fundamental frequency. Also, it is
observed that as H/R increases the fundamental frequency occurs at a lower value of n (as
reflected in the number in parenthesis). This means that shell characteristics (n > 1) is lost for
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very tall cylinder, much more if the thickness of the shell is increased. The swaying mode will be
dominant for very tall cylinder with thicker shell and the behavior would be like that of a

Cantilever beam.

INFLUENCE OF SLOPE

The slope of the side of the cylindrical shell with respect to the vertical axis was varied.
The following paramecters Werc fixed, H/R=4, t/R=001, base radius=10, and Poisson’s
ratio=0.15. Shown in Figurc 9 is the result of this investigation. The slope is defined as ratio of
the difference between the top and base radii against the height of the cylinder. The negative

sign indicate that the cylinder is tapering upwards.

The dynamic behavior of the cylinder as affected by the slope is reflected in Figure 9.
The natural frequencics decrease as the slopc was changed from negative to positive. Lower
circumferential wave numbers are seen to be more affected by the value of slope. Abrupt change

in natural frequencies is observed at negative slopes, whereas it is smoothly decreasing at

Increasing positive slopes. The abrupt change seems to occur at higher circumferential wave

Number with smaller negative slopes.
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CONCLUSION

A finite clement program suitable for the evaluation of the dynamic characteristics of
cylindrical shell was written in BASIC language and ran in a 640K personal computer. The
clement formulation was basced from the works of Zienkiewicz (Ref. 13) for static analysis of
axisymmetric shell.  Reduction in computation cffort was attaincd by cxpanding the
circumferential displacements into Fourier scrics components. Subspace iteration method was

used to solve the cigenvalue problem. The convergence was found to be monotonic and is

approached from highcer valuc.

The dynamic characteristics of a typical clamped-free cylindrical shell was investigated
using the finitc clement program. The cffects of slope, H/R, and /R on the dynamic
characteristics of the cylindrical shell were evaluated using the FEM program. The following
conclusion may be madc from the numerical investigation conducted: 1.) For cach axial mode,
the value of n at which the minimum natural frequency occurs is proportional to the value of m.
2) In general the radial dcformation, w, dominates the mode shapes. 3.) The natural
frequencics decrcase and become closcly spaced as the cylindrical shell becomes thinner. 4.)
The natural frequencics decrcasc and become closcly spaced (especially at higher valuc of n) as
H/R increascs. Also, as the cylinder becomes shorter the lowest natural frequency occurs at
higher value of n (i.e. at a wavicr circumferential deformation). 5.) The natural frequencics can

be incrcased by tapering the cylinder upwards.
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