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ABSTRACT

Based on the natural characteristic of transient signals, the new definitions, time-variance spectrum
and dynamic frequency response, are presented. As their applications, the spectrum analyses, the design
method of a Finite Impulse Response (FIR) digital filter and frequency responses are used as the ex-

amplgs. Both definitions are beneficial to practical uses in which a short time duration for processing
transient signals is required.

INTRODUCTION

The objective of the research is to develop a general method for analysing a time-discreté
system which is used in certain cases. In many applications of digital signal processing, there aré
particular processing objects and special requirements. The digital filter used for the digital rela¥
of a power system and the feed-back unit in a discrete-time control system are the examples of this
case. They have the following peculiarities:

1. The processing objects are transient or dynamic signals.

2. Short processing time is required.

3. Sometimes, a fairly low sampling rate has to be used.

One might feel that it is difficult to use common methods for the purposes of design and
analysis in the cases mentioned above,

To establish new concepts and develop new definitions, the following work has been doné:
First, the natural characteristic of lumped and distributed systems is summarized. Second, throug!
the expansions of some classical definitions, the new definitions of time-variance spectrum and
dynamic frequency response are derived. And last, the new concepts and definitions are aPP”ed
to spectrum analysis, FIR digital filter design and the analysis of dynamic frequency response.

DEVELOPED MATHEMATICAL MODEL

The Natural Characteristic of Transient Signals
Before analyzing the natural characteristic of transient signals produced by distributed system™
we recall the concept of transients on lumped linear system. For any stable system, the transient
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components must be of the following form:

y(t) = 2 Ajexp (—t/ 7))+ Z A, texp (—t/1;) +
i ;

+ T Ay exp (-t/1,)Sin (wy +By). (2.1)
) .

The three terms at the right-hand side of the equation are the time response with respect to
real-single roots of the eigenequation of the system, real-repeated roots and complex-conjugate

roots of the eigenequation, respectively.
When an input signal is suddenly applied to the system, the outputs include both the compo-

nents described in Equation (2.1) and the forms of the original components of the input.
The concept of transients on the lumped linear system was mentioned because in most cases
the electromagnetic or non-electromagnetic transient signals have to pass through some lumped

circuits before entering a processing unit.
Now, we turn to the analysls of the natural characteristics of electromagnetic transient signal..

A typical form of the transient signal produced by a distributed system is:

oo
u(x,t) = 2 (v;fexp(~a,x)cos(B, t—b,x+p,) +
n=0

+ v, exp (a x) cos(f, t+b x +q,)) exp (—oqt). (2.2)

In fact, Equation (2.2) is the expression of transient voltages of a symmetrical fault of a

distributed power transmission system [6]. It appears in the form of a travelling-wave.
When x is given, as the distance from the observed point to the reference point, then Equation

(2.2) becomes,

u (t) = X v cos(f,t—6,)exp (—o,t). (2.3)
n=0
Where,

(v} cos®, , exp (—a,x) + v~ cosB,,exp (a,x))2
v, =
+ (v} sin@, , exp (—a,x) + vy sin©;y, exp (a,x))?

8, =arctan [ — (v} sinB,,, exp (—apx) + vy sinB;,, exp (a,x))] /

0,,= —an+Pn ' ©,, = bnx+qn

in the form of a travelling-wave. Instead,
). This means Equation (2.3) de-
d by a distributed transmission

The transient voltage in Equation (2.3) is no longer
it is dependent on the natural frequencies of a system, (&, + i,
scribes the natural characteristic of a transient voltage produce
system,
In a more complex case, for example, an unsymmetrical fault, the fund
transient signal is the same as in Equation (2.3), with a different natural frequency group.
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Time-Variance Spectrum
The definition of the time-variance spectrum of the signal described by Equation (2.3) is
given as follows:

C(B, 1) = v,exp (—a, t—jO,). (2.4)
n=0,1,0 2,................0@
That is,

lc (8, 0] =|va|exp (= a0)

and
arg [C (B, , 1] = -8, .
These are called time-variance spectra because the coefficient changes with time. For example,
Ic@,.0] = |v,]
and
lciB, ., = o.

In fact, a new definition, the dynamic exponential Fourier coefficient, can be obtained by
expanding the definition of exponential Fourier coefficient [2]. That is,

T
B (—a, +jB,) =ljon u, () exp (&, — Bt dt .
Tn —°°<Bn < oo
If  u () = Aexp(—q,) cos cosf}t, then
T
B (—¢, +jﬁn) = 1_3()“ A cosf3, texp (—jB,t ) dt

n
_.°°<Bn <°°

The result of the integration is shown in Figure 2.1.

IB(_an"'iﬁn)l

05A

v 0 i g

Figure 2.1. The Spectrum of u, (t)

Comparing the dynamic exponential Fourier coefficient to the coefficient of time-variancé
spectrum, we can get

C(B,,0) = 2B (—a, + iB,).

The definition of time-variance spectrum will be the theoretical basis of the important fact
that there is no aliasing problem for a fairly low sampling rate when the analytical method of the
time-variance spectrum is applied.
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Dynamic Frequency Response
In this section, the dynamic frequency response will be given by the following derivation.
Considering a convolution,
(o o)

Y(n) = £ hik) x(n—k) = h(n) * x(n).

k=—oo0

Let x(n) = exp((—ay + jBy)n) .

Where,
(~ay + ify) = (—a, + jB,)T=5,T.

We call (—oy + jﬁd) dynamic digital complex frequency. T is sampling interval and s_ is called
natural frequency.

So, we have
y(n) = 2 h(k)exp ((—0y +jBy) (n—k) ) =
= exp ((—ay +jByIn) S hik) exp ( (& — iBy)k).
k=—o00
If we define

8

Hexp (—oy + jBy)) = 2 hiklexp ((oy— iBy) k).

=—00

then,
y(n) = Hlexp (—ay +iBy) ) exp ((—ay +iBy) n),

If h(k) is the unit-sample response of a discrete system, then H(exp (—a, + jﬁa)) is defined as
the dynamic digital frequency response of the discrete system. This definition epables us to do
dynamic analysis because H(exp (—ozd + jﬁd)) describes the response to the input signals which are
of time-variance spectrum.

APPLICATIONS

Spectrum Analysis
Consider a transient voltage signal as follows:

u(t) =— 0.0197U,, exp (—41.2t) + 0.720U, exp (—20.5)
cos (1451.5t — 0.012) + 0.206U,, exp (—14.8t)
cos (1921.3t +3.137) + 0.0382U, exp (—20.5t)
cos (2957.1t +3.138) + ..

Its time-variable spectrum is shown in Figure 3.1,

On the other hand, if we assume the same signal desc
edin T | say, three times the fundamental frequency, T, ;
if'\ timeowithyperiod T, s° that the Fourier series can be obtained, the exponential Four
cient jg

(3.1)

ribed by Equation (3.1) to be time limit-
= 271/ (3w_) = 1/180 sec., then, repeat it
h ier coeffi-

TO
- —j t) dt. .
Clnw,) } jo u, u(t) exp (—jnwg foo<n < —oo (3.2)
o
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The Fourier line spectrum is shown in Figure 3.2,

Comparing Figure 3.1 with Figure 32., the conclusion can be made that the series described
by Figure 3.1 converges much faster than that described by Figure 3.2. This means that the former
is more accurate than the latter when the same first few terms are taken for expressing the same
signal. The most important significance is that the Nyquist Sampling Theory is much easier to be
satisfied in the former case than in the latter case. In other words, there is still no aliasing problem
when a fairly low sampling rate is used for the former case.

|c(6,.0)|
1.0U,,
0.5U,,
I I | | n
0 5wo 10wo f
Figure 3.1. Time-Variance Spectrum When t = 0
2|Clnwo)|
10U,
05U,
nwo
0 3wo 6wo 9wo 12wo 15wo 18wo

Figure 3.2, Spectrum of Fourier Series
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“FIR” Digital Filter Designed by Curve Fitting Method

In many cases, a digital filter has to be used for picking up the component of a fundamental
frequency from a transient signal during a very short processing time, The digital filter used for the
digital relay of a power system is the example of these cases. At present, the transient input signal
of a digital filter (algorithm) is usually considered as a random signal [3] or expressed as a Fourier
Series [4]. As shown in the preceding section, the Fourier line spectrum has a wide distribution.
In the curve fitting method, if the transient signal is considered as a Fourier Series, the number of
order of a FIR (Finite Impulse Response) digital filter must be very high because so many Fourier's
components have to be involved. In this section, the natural characteristic of a transient signal
which is of time-variance spectrum will be used for designing a digital filter by curve fitting method.
Based on the analysis discussed the section on the National Characteristic of Transient Signals,
it is reasonable to assume that the transient signal which enters the digital filter is in the following
form:

v(t) = Kvsin (WO t+ Qv) + KVO exp (_(xo 1)+
2
t Z K, exp (—a, t)sin (B, t+8,,) , (3.3)
n=1

By using trigonometric substitutions and Taylor Series Expansion with respect to ﬁ, instead
of t, we obtain the following expressions.

1
V) = agxqtaxot. ... +a X+ ... 4%y = 2 agX,, (3.4)
n=1
Where,
8 = sin wot, a, = cos wot , a3 = exp (—og t) ,

3 = exp(—oq t)sin wyt, ag = exp (—oyt) t cos wyt,

exp (—ayt)cosw,t , a; = —exp (—oyt) t sin wyt,
38 = exp (—oyt)sinw,t , ag = exp (—0yt) t cos Wyt ,

30 = exp (—012t) coswyt , a,4= —exp (—opt) t sin wot ,

Xy = K, cos@, , Xy, = K, sin@, , X3 = Kyg ,
Xy = Kyjcos®, , , Xg = (B; — wq) Kyqc0s6,q ,
Xg = K\”sinev1 , X;= B — wq) K,15in6,, ,
Xg = K,,cos8,, |, Xg= (B — Wy) K,pcos8,, ,
X10= K,psin@,, |, X;1= By — wy) K,psin8,;5 .

W1.,W, — expansion points..

; At sampling times .ty (m2> 11), the sampling values can be expressed in matrix
orm:

V] = [A] [x] , @5)
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It is evident that matrix [A] is a constant matrix because the sampling interval T and wn
(n =0, 1, 2) are given and the natural frequencies, (¢, + jﬁn), are known by the transient analysis

of the system.
By the Least-Squares procedure,

[AIT[A] [X] = [AIT [v],

Thus,
(X] = [B] [V],
Where,
8] = {[AIT [Al}-1 [AIT = [y, by, by
byy by oo Pom
bjyr  biz - Piim

solving for the variables in which we are interested in

m

x, = K, cosg, = 2 by,v, .
n=1
m

x, = K,so sin®, = X by, ,
n=1

Finally, we obtain the magnitude and phase angle of the fundamental component.

K, =J (K, cos@)2 + (K, sin@)2 =J 242
8, = arctan (sin®, / cos®,) = arctan (x, /x4) .

Frequency Responses

For the convenience of expression, a practical example is discussed below.

The following parameters are given:

Wo = 377 (rad./sec.) , wq = 1508 {rad./sec.),
Wy, = 3016 (rad./sec.) , % = 63.43(rad./sec.)
o = 0 = o= 32.69 (rad./sec.) m = 2

f, = 1800.0 Hz,

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

By the design method mentioned in the preceding section, the magnitude of a fundamental
frequency component can be obtained from the mth output of the FIR digital filter. During the

period 0< k <m, however, the outputs of the digital filter should be that

K k
x; (k) = Z by, vy, xa (k) = Z by v, .
n:‘] n=‘|
0<k<m
Where, _
by, = —0.04768, by = 0.11040,
by, = 0.00081, b2 = 0.03648,
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bjy = 0.01370, by = 0.07404,

by, = 0.02268, b,y = 0.06591,
b, = 002682, b,, = 005914,
bg = 0.01981, b,g = 0.08817,
b,, = 0.03389, by; = 0.07316,
bg = 0.07613, byg = -0.01591,
b19 = 0.09339, b,y = —0.07934,
bjo = 0.06638, by1o = —0.07202,
b,,, = 0.04568, by = —0.06550,
bj;2 = 0.05040, by, = —0.08779,
bj;3 = 0.04273, byy3 = —0.09336,
bj;4 = 0.02247, b,,4 = —0.08579,
by;s = 0.02184, by,g = —0.10119,
b6 = 0.01391, b6 = —0.10963,
b, = —0.04285, b,;7 = —0.06975,
by1g = —0.10401, b,;g = —0.01779,
b119 = —0.10915, b219 = -0.00272,
b,,o = -0.08886, by, = —0.00932,
b5, = —0.09035, by, = —0.00795,
by, = —0.09144, b,,, = 0.00223,
b;,; = —0.08305, by,; = 0.02959,
bygg = —0.11362, byps = 0.08855.

According to the definition of the convolution of two sequences, the unit-sample response

of the FIR digital filter are as follows:
h1 (n) = Bln = b1(m—n)'

h2 () = B2n = b2(m—n)
0<n<m-1
For h, (n), the digital frequency response is

H (exp (jwy) ) = OEO hy (k) exp (—jwgk) .

=._.00

And the dynamic digital frequency response is
o0

Hexp (—ay +jBy)) = Z hy (k)exp oy —iBy) k).

k=—00

Both frequency responses are shown in Figure 3.3 and Figure 34.
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H (exp (jwy) )
20 | Wy l
1.0
wy (rad.)
0 w 27
f= 1800 Hz, m = 24,
Figure 3.3. Digital Frequency Responses
,H (exp (-0 +ify) )l
2.0
1.0
f
By (rad.)

0 T 2T

o = 32.69 rad./sec,, f, = 1800 Hz, m = 24.

Figure 3.4. Dynamic Digital Frequency Response

It is important to point out that:

1. The digital frequency response H (exp (iwg) ) describes the response to the input signals
which are considered as in the form of Fourier Series; while the dynamic digital frequen-
cy response H (exp (— o+ jﬁd)) describes the response to the input signals which are of
the time-variance spectra.

2. The larger the value of « is, the bigger the difference between both frequency responses.
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3. It is exactly our desire that the dynamic digital frequency responses {in Figure 3.4) are
zero at the expansion points.

4. In this example, the length of data window is 13.3 (ms). This means that the outputs
of the digital filter are supposed to be the same values (constants) from this time point
up (t > 13.3 ms). We just shift the data window if the repeat calculations are required.

5. Comparing to other design method [2], this method produces a low order (24th order)
FIR filter with a good band-pass characteristic. So it is beneficial to those uses in which
ashort time duration for processing transient signals is required.

CONCLUSIONS AND RECOMMENDATIONS

The important contribution of this research is the applications of both concepts, time-variance
spectrum and dynamic frequency response, to the design and analysis of a FIR digital filter and to
the spectrum analysis of transient signals. By using the analysis method of time-variance spectrum,
we have seen that the property of concentrated spectra makes the Nyquist Sampling Theory easily
satisfied so that there is no aliasing problem even under a fairly low sampling rate. When the natural
characteristic of transient signals which are described by time-variance spectrum is applied to the
design of a FIR digital filter, what we get is a low order digital filter with a very narrow band-pass
characteristic,

As far as the dynamic digital frequency response is concerned, it provides a direct method
for measuring the properties of a discrete-time system in dynamic frequency-domain. One sugges-
tion here is that the dynamic frequency response could be used as a criterion for improving or
optimizing the parameters of a time-discrete system by a proper method, such as computer iterative
method.
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