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ABSTRACT

Using minimal mathematics, extensive refcrence to the technical literature, and selected figures and
tables, state-of-the-art concepts of structural dynamics are introduced as applicd to scismic and wind-induced
vibrations. Physical interpretations of mathematical concepts, and practical concerns of civil-structural
engincer are emphasized. The presentation attempts to highlight some similaritics and also sharpen certain

contrasts between earthquake and wind effects.

INTRODUCTION

Applied Structural Dynamics

Structural dynamics, the theory, is a fusion of the well established theory of
structures and theory of vibrations. In principle, the theory should apply equally well to
time-dependent load or action of any origin. Among the examples of dynamic action that a
civil-structural engineer is likely to encounter are: strong ground shaking due to earthquake or
underground explosion; fluctuating wind pressure; moving load on bridge or building; operating
machine; water waves on immersed structure; and accidental collision.

* Asst. Professor, Dept. of Civil Eng., Univ. of Tokyo, 7-3-1 Hongo, Tokyo 113

56



In practice, however, concepts of structural dynamics are usually applied with further
approximations and simplifications that are justifiable, perhaps restrictedly, for the particular
dynamic load or loads under consideration. In the first place, manageable dynamic analysis
allows less detail in the structure model than would be usual for static analysis. Moreover, the
simplest reasonable model has to be used in the description of the dynamic load, if the analysis
of the dynamic response is to remain tractable. The approach is herein termed as applied
structural dynamics.

This paper (abridged and updated from Ref. 1) reviews concepts of applied structural
dynamics as commonly used in the analysis of vibrations due to carthquake and wind. The
civil-structural engineer is most likely to compare, if not liken, these two dynamic actions
because both are widely recognized sources of so-called lateral forces, i.e. horizontal forces that
are perpendicular to the main axis of the structure. The two types of dynamic action can be
morc accurately compared and differentiated from the viewpoint of applied structural dynamics.

Outline

The first part of this paper is concerned with the modelling of structure and
identification of dynamic properties. Analytical, experimental and empirical methods are
mentioned. Natural period of vibration and subcritical viscous damping are discussed from both
Physical and mathematical viewpoints. Modes of vibration are introduced in the physical sense.
Itis subsequently pointed out that these dynamic properties of structure may in reality change
With time.

The modelling of earthquake or wind action is discussed in the second part, under the
assumption that interaction with the vibrating structure may be ignored. While certain spatial
Characteristics are mentioned, emphasis is on temporal properties as these compare to structural
Vibration period(s) and design lifetime. Time as physical parameter takes central role in three
Major ways. First, the dominant period of fluctuation of earthquake or wind force may or may
N0t coincide with a natural period of the structure, accordingly changing the type of dynamic

Tesponse from resonant to nonresonant.

Second, the duration of the load or action may be short or long compared to structural
Datural period(s), accordingly requiring the engineer’s attention to cither the peak of transient
Vibration or the amplitude and number of oscillation cycles. Third, the return period, i.e.
Statistically expected time interval between two occurrences of same-intensity earthquake or
Wind, may be short or long relative to the expected or design lifetime of the structure, thereby
dictating the extent of local structural damage that may be deemed tolerable and repairable in
between. Choice of structural system at design stage, as influenced by this third time factor,
determines whether the structure itself by design will have some properties significantly varying
With time.
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Vibration of the structure, or its mere existence in its spccific size and form, may yet
alter the effective action of earthquake or wind from estimates bascd on measurcments at, or
analyses of, the site without the structure. Interaction between structure and surrounding
medium is subsequently discussed in brief.

Lastly, as the engineer’s ultimate objective in analyzing vibration in his structure is to
prevent or suppress it, this paper closes with a discussion of modern concepts of vibration
isolation, damping, and active control.

Table 1. Main Types of Full-Scale Test

A. Free vibration
1. Initial displaccment ("pull-back")
2. Initial velocity ("impulsive")
B. Forced excitation
1. Steady-state sinusoidal
2. Variable-frequency sinusoidal ("mn-down")
C. Transient disturbance
1. Short-duration mechanical excitation
2. Ambient/Microtremor
3. Blasts
4. Wind
5. Earthquake
D. Pseudo-dynamic test
E. Shaking Table test

SYSTEM IDENTIFICATION

Full-scale testing

Table 1 is a modification and update of the classification given in Ref. 2 of dynamic tests
and observations of full-scale structures and models. Despite extensive experimental research
-and testing of structural components, techniques of synthesis of data so obtained have not in any
significant way lessened the need for testing of full structures.
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In a full-scale test, the engincer’s likely intention is not merely to observe the overall
dynamic characteristics, but also to calibrate a model, which may be mathematical or
experimental. The basic idea of system-model "identification” is outlined in Fig. 1. Path (a)-(b)
represents the test; path (c)-(d)-(g) is the completion of system-model identification; and loop
(d)-(e)-(f) is the iterative search for appropriate values of the system-model parameters. Path
(h)-(i) in the lower part of Fig. 1, is the intended usc of identified system model. Theories and
techniques for system identification in structural dynamics are presently under extensive
research [e.g. Refs. 3-4).

Natural period and viscous damping

Following is a discussion of possibly the simplest examples of system identification.
They are the simplest because: 1) the models to be suggested are the simplest know; and 2)
the test principles are straightforward. Figure 2(a) schematically shows a pull-back
free-vibration test (Item A-1 in Table 1) of a steel stack. The history of displacement in this case
(Fig. 2(b), may acceptably be modelled by a smoothed-out "record" as in Fig. 2(c), as overall
discrepancy becomes "negligible”.

The record in Fig. 2(c) may be obtained by adopting and calibrating the following
model: linear, subcritical viscously damped, single-degree-of-freedom (SDOF) oscillator (Fig.
3). This model as représented by mechanical elements, assumes that the equivalent spring
Constant k, dashpot constant ¢, and mass m are positive time-invariant quantities.

In the absence of external excitation force, i.e. in free vibration, dynamic equilibrium is
altained among the spring force (-kx), dashpot force (-cx), and inertia force (-mX). (See Fig. 4.)
Equations (1)-(3) below are simply alternate ways of statmg this dynamic equilibrium. It is
known mathematically that if x (t=0) = xo # 0 and x (t =0} =0 as in pull-back test, then Eq. 4

is a solution of Eq. 3:

(a) (b)
ACTUAL DISTURBANCE ——3[ ACTUAL STRUCTURE ——>AC'{U/)\L RESPONSE
g
(c) Yes
> [ PRESENT MODEL ————>

(f) (e)
‘ CRECALIBRATE OR CHANGE MODEQ

(h) (1)
FUTURE DISTURBANCE — | PRESENT MODEL| — = FUTURE RESPONSE

Figure 1. Basic idea of system-model identification
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mx + cx + kx=0 (1)
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Figure 2. Example of pull-back test. (a) "Snapshots” of one "cycle” of free vibration of
110-ft-high stack (showing only its center line; scale of displacement is greatly enlarged
for clarity). (b) Time record of dispiacement of a point about 12 ft from the base. (c) A
smoothed-out version of (b).
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Figure 3. "Snapshots’ of SDOF oscillator model during free vibration, and plot of
oscillator displacement, X, versus time, t ’ .
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Figure 4. Definition of positive direction for displacement x, velocity x, and acceleration X,
Also showing forces in dynamic (instantaneous) equilibrium.

Using Eq. 4 with calibrated paramcters T = 0.645.sec and £ =0.004, and initial
displacement xo as indicated in Fig. 2(b), the time history in Fig. 2(c) may be reproduced. In
the terminology of system-model identification, if this is acceptable as reproduction of actual
fecord (Fig. 2(b), then a linear SDOF model with parameiers T = 0.645 sec and £ = 0.004, .
has been identified for the stack. Figure 5 illustrates why T is referred to as natural period of the
Structure, i.e., TD = T is the period of frec or natural oscillation about the static equilibrium

(x=0) position.

The oscillation is not periodic in the mathematical sense, however, since the peak
Amplitude at each "cycle" is not equal but slightly smaller than that at the precceding "cycle".
Such oscillation is "damped", and & is the damping ratio. (The term "ratio" is suggested by Eq.
33, where & is the ratio of dashpot coefficient ¢ and the quantity 2ﬁ<m_. The displacement due
'0 initial disturbance shall be oscillatory provided the ratio £ is less than unity.) The smooth
Curve enveloping all the positive peaks, is neither straight nor horizontal but decreascs with

Progressing time at an exponential rate proportional to £ .

The parameters T and § may also be identified by steady-state sinusoidal force
Vibration (Item B-1 in Table 1), which is another conceptually simple test. In terms of the
Mechanical model (Fig. 6(a), this means applying a sinusoidal periodic force with amplitude
Po and frequency f, from rest condition. The time history of displacement may look like Fig. 6(b).
If such test is repeated with the same force amplitude po but different frequency f, and the
Steady-state displacement amplitude xs is plotted against f, a graph like Fig. 7 may be obtained,
from which T and & may be calculated as indicated.
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NOTE: T =TD/l-g2 =TD

Vo] a a
£ TR In() = gin ()
n+1 T n+1

Figure 5. Enlarged copy of Fig. 2(c) in elongated time scale, showing: period TD
between two successive "positive zero crossings” (A ) or "Negative zero crossings" (®);
and envelope curve (----) enveloping all positive peaks.

c k Xs
fp = posln(wat)
m %s

(a) (b)

Figure 6. (a) SDOF system with sinusoidal excitation force. (b) Forced displacement

response of hypothetical case ?vith rather high damping £, and excitation force period
much longer than natural period (TE = 1/f > >T),
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Figure 7. Form of data from steady-state sinusoidal forced excitation test to identify
parameters of linear SDOF model (Note: Hz = cycle per second)

The significance of natural period T and damping ratio £ as dynamic properties of the
sl.ructure, may be summarized by referring to Fig. 8. First note that xst = (po/k) would be the
.d'Splacement if a static force po was applied. When a sinusoidal force is applied very gradually,
1€, with frequency much lower than resonant frequency fR or period much longer than T, the
Amplitude of oscillatory displacement would not be drastically different from xst. This range (of
l?W excitation frequency or long period) may be called pseudo-static. In the other extreme, the
displacement amplitude would be nearly zero if the frequency of force was extremely high or the
FxCitation period was very short compared to T. In this range, which may be called inertial, the
Inertia force effectively cancels the excitation force.
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Figure 8. Displacement-frequency response plots for fixed natural period T and three
different values of damping ratio §, showing pseudo-static, resonant, and inertial
ranges of steady-state sinusoidal excitation.

Between the two extremes just mentioned is the resonant range, where the displacement
response may be very large when the damping ratio is very low. In this range the damping plays a
very crucial role in reducing the amplitude of oscillatory displacement.
mathematically that for given T, £ , and po in Eq. 5,

It is known

2
4nE . 4 _ .
¥+ T X + _Tz x = (po/ m) sin (2rft) 5)

the maximum possible displacement amplitude is related to& as:

1
Xmax.pos. = Xst 3E g = xst73 15 (©)
and this is attained when the excitation period (TE=1/f) is TE = T

T’ZEZ = T the condition

of so-called resonance. For example, the magnification factor 1/2£ is as large as 50 when £ is
1%, values not a typical of modern conventionally constructed structures.
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Multiple modes

It has been implied in the discussion so far that onc displacement, i.c. x(t) is enough to
fully describe the time-varying configuration of the structure. The snapshots in Fig. 2(a), for
example, show the stack vibrating in essentially constant shape, with time-varying amplitude.
When stcady-state sinusoidal forced excitation is performed on this stack (e.g. by a sinusoidal
horizontal force applied at 12-ft clevation), and experimental data points are plotted as in Fig. 7,
it may be verified that the data points clustering around the sharp pcak are corresponding to
essentially the same shape of vibration.

The usual procedure in this type of forced cxcitation test is to start with a low frequency
and repeatedly obtain data points (i.c. pairs of fand xs) by slightly increasing this frequency
cach time, until the peak around resonant frequency, fR shall have been located. In actual
Structurcs, however, if sufficiently high frequencics can be covered as well in the "frequency
sweep”, it is possible to locate higher resonant frequencics.  An illustrative example is given
below.

In Fig. 9(a), a building frame whosc floor and roof systems are relatively heavy and rigid,
and the columns are rather light, is excited by a sinusoidal force at the roof level. The
Sleady-state displacement amplitude at each level (1, 2 or 3) is recorded, non-dimensionalized by
division with static displacement due to a static force po at the roof level, and plotted against
Cxcitation frequency in Fig. 9(b). As a wide spectrum of frequency is covered, not only one but
three resonance peaks are located that are quite distinct from each other, at frequencies fR1,
fR2 and fR3.

pOSiﬂ(wat)

b e
- X

3

—>X2

—DX'

(x,) = steady-state
1’s displacement
amplitude at

i-th degree

of freedom. £ (Hz)
(xi)stE static displ. Increasing excitation

due to p, frequency
Di e (xi)s/(xi)st

(a) (b)

Figure 9. (a) Building frame subjected to sinusoidal force at roof level. (b)
Non-dimensionalized displacement-vs-frequency response plots for three degrees of
freedom, covering a wide spectrum of excitation frequency and locating three resonant
frequencies. [Adapted from Ref. 5]
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An inspection of the simultaneous time histories of displacements x1, x2 and x3, ma
reveal that they are related as in Fig. 9(c) for f=fR1. The column vector < x1(t) x2(t) >
defines a vibration shape labeled as @1, the so-called fundamental mode. The associated
resonant frequency fR1 is regarded as fundamental natural frequency; T1, as fundamental
period. Figures 9(d) and 9(e) demonstrate the other modes ®2 and @3, corresponding to
higher resonant frequencies or shorter natural periods.

(e) T3

=l/fR3

Figure 9 (Continued). Mode shapes and segments of displacement histories of three

degrees of freedom, at steady state. (c) Mode 1. (d) Mode 2. (e) Mode 3. (Note that the
displacements are shown in extremely exaggerated scale.)
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Each resonant region in Fig. 9(b), when separatcly drawn to appropriate scale,
resembles the resonant range in Fig. 7, indicating that the natural period and damping ratio of
gach mode may be calculated similarly.

The three-story frame discussed above, or any structure that displays more than one
resonant region within the frequency range of interest, has to be modelled as a
multi-degree-of-freedom (MDOF) system. The necessary mathematical model involves
simultaneous differcntial equations in n unknowns or degrees of freedom, e.g. displacements
x1(t), x2(t), ..., xj(t), ...xn(t), wherc some x‘s may be rotational instead of translational
displacements. The coupled differcntial equations may be written in matrix form, analogous to
Eq.5, as:

MX¥ +Cx + Kx =psin (2rft) 7

Where x = < x1(t) x2(t) ... j(1) ... xn(t) > T; M is matrix of mass or inertia coefficients; C is
matrix of dashpot or damping coefficients; K is matrix of spring or stiffness coefficients; and p is
load distribution vector. For the frame in Fig. 9, these matrices and vectors are of the following
forms:

< x,(t) x,(¢t) x,(t) ST

X =
p—— ——
T 1 0 8
= > H = 0 -2
P < 0 0 po 0 0 n,
c,* C, -c, 0 K - k_x;; k, . :‘1:2 -:)(
C=1] -c, cztga -gs 02 2—k: k:
3 3 | |

Coefficients of mathematical model X
Calibration of parameters m, ¢ and k, or M, C and K in MDOF system is, in principle,

Possible from resonance characteristics as determined from vibration test. However, whereas
the parameters T and & are enough to define the resonance characteristics of SDOF system, an
additional information is necessary before all three unknowns, m, ¢ and k, can be calibrated
Using Egs. 3(a) and (b). It is common in practice to deduce k separately from static loading
(i.e. k = static force divided by static displacement in the direction along the force), or estimate
the equivalent mass separately. Similarly, information in addition to mode shapes, modal
Periods and modal damping ratios, are required before M, C and K can all be calculated [e.g.

Ref. 6, Appendix 1].
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In fact, for analytically estimating k or clements of K, many analytical techniques are
available that are direct extensions of static structural analysis. Mcanwhile, m or M may be
approximated by assuming the structural mass to be divided into lumps at specified locations, or
by use of "mass-consistent finite elements" [e.g. Ref. 7).

Coefficient ¢ or C is by far the most difficult to estimate theoretically [c.g. Ref. 8]. At
least two reasons may be cited why such difficulty has been too often deemed unnecessary.
Firstly, there is a lingering doubt that viscous damping (as represented by the term Cx in Eq. 7)
is as realistic as it is simple, given the acknowledged complexity of encrgy dissipation mechanism
in real structures. Secondly, as suggested by Fig. 8, damping is thought to be crucial only in
resonant steady-state excitation. Nevertheless, viscous damping remains practical as model, and
it has been suggested that damping coefficients be identified from full-scale test data [e.g- Ref.

9]. At design stage, however, all parameters anyway must be estimatced theoretically or
empirically.

Empirical formulas

Theoretical and empirical methods of éstimaling dynamic structural parameters are
indeed also necessary. Full-scale tests, while most desirable, are frequently difficult to
implement even when the structure is already existing. In general, to observe each onc of several
modes of a complex structure in free vibration, a complicated combination of initial
displacements and velocities have to be applied. On the other hand, in steady-state forced
vibration, one or more large exciters and huge amount of mechanical energy input may be
necessary. In both tests, a prior knowledge of the vibration shape may be crucial in situating the
test instruments, making the procedure essentially iterative. On top of such problems in
instrumentation, it is possible that two or more structural modes may have nearly equal periods.
Or, the structure may not have modes in the sense of different points in the structure oscillating
in synchronization, as can happen when the damping distribution in the structure is of the
so-called non-proportional type. The data processing may become complicated, or completely
erroneous, should the implicit mathematical model be very different from measured behaviour
[e.g. Ref. 9]. Other types of test (e.g. Transient disturbance or Items C in Table 1) may take
advantage of naturally or easily generated disturbances, but nevertheless face difficulties in data
processing or reduction.

Due to these and other practical difficulties, very few statistical analyses of natural
period and damping ratio of existing structures can be found in the litcrature. Some available
empirical formulas and "typical" values are summarized below.

Figure 10 shows "representative” values of fundamental natural period. For buildings,
seismic design codes suggest approximate empirical formulas, as listed.in Table 2. The subject
of damping has been more complicated. Early on, investigators have concluded that there are
various physical mechanisms of energy dissipation, i.e. damping, in actual structures, and viscous
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15 st;J'r’y"‘;’O'story
T\=0.1 0.4 1 2.5 4 6 (sec)
fRIB 10 2.5 1 0.4 0.25 0.167 (Hz2)

Figure 10. "Typical” fundamental period of selected types of structures [After N.M. Newmark]

damping is but an "cquivalent” form Test data on equivalent damping ratio have indced
shown large scatter, and some investigators have tried to correlate the data with such paramcter
as representative dimensions of structure, natural period, and amplitude of oscillation. A recent
Study [Ref. 12] of nine tall buildings (base dimension ranges 12 - 50 m) yielded the following
mpirical formula for damping ratio in j-th mode:

Ej= (40 + 100 5‘,—— /H (percent) 8)

Where H =height; D is overall dimension at the base, mcasured along the direction of motion;
and xHj is either the steady-state displacement amplitude or 1/3 of maximum transicnt
displacement at height H in mode j. (All lengths are in meters.) Data on bridges which were
analyzed in an early study [Ref. 13] are summarized in Table 3 and Fig. 11.

Table 2. Empirical formulas for fundamental period of building

Reference Building type Approx. period (sec.)®
Ref. 10 (UBC-82) Ductile frames 0.10 N
p.51; lengths in ft Others 0.05 H / yD
kef. 10 (ATC 3-06) Steel moment-frames 0.035 If ©.75
p.73; lengths in ft Condérete m-frames 0.025 K 0-75
Others 0.05H/ D
Ref. 11 (Japan) General (0.02+0.01p)H
lengths in m
*N=number of stories; H=height; D=overall dimension of floor plan at ground|
level, measured along the direction of vibration; p=ratio of the total
height of stories of steel structure portion to the height of the bullding
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Table 3. "Standard"” values of damping ratio £ for bridges [Ref. 13]

Average Minimum

Superstructure in vertical vibratlion
Suspension and cable-stayed bridges

(same for torsional vibration) 0.009 0.005
Other types with span > 40 m 0.013 0.005
Other types with span < 40 m 0.016 0.005

Whole brldge system 1n horizontal vibration
Bridges on short piers (T=fund. period, sec) 0.02/T 0.01/T
Bridges on piers taller than 25 m 0.018 0.01

Nonlinearities

Actual buildings and bridges, as designed and built, arc acceptably lincar during
small-amplitude ambicnt vibrations or microtremors, and cven during mild wind or carthquake.
In the corresponding mathematical models, m, c, k, or M, C, and K would be constants
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Figure 11. Test data on damping of bridges [Ref. 13
cable-stayed bridges vs. span length. (b) Damping vs. fundamental period i i
vibration for foundgtion and ordinary pjers (»); bridges and ordina:l-);rp;i(ﬁsl n(:‘;)'rtlgflnl:?:rs
with height greater than 25l(A);. and bridges on tall piers (0). (c) Comparison (’)f
damping ratios and natural periods of lowest two modes.

1. (a) Damping of suspension and
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At larger amplitudes of vibration, however, several factors can change the "effective”
linear paramcters (or, more accurately, the parameters of lincarized modecl). These may
include: cracking of concrete; yielding of steel; constitutive nonlincarity in the soil, in
vibration modes where structure-soil interaction is significant; constitutive nonlincarity in
specially designed vibration isolator, damper, or controller; relative movement among parts
meeting at structural joint; or geometric nonlincaritics, i.c. nonlincar force-deflection relations
especially in structures or structural members that carry significant axial as well as bending and
shear forces. On account of some of all of these, with incrcasing amplitude the effective periods
often (but not always) tend to clongate, and the damping ratios to increase [e.g. Ref. 12-13].
Recall that the empirical equation for damping ratios of tall buildings given by Eq. 8, includes
the displacement amplitude as a paramecter. References 14 and 15 give detailed accounts of
full-scale tests and identification of amplitude-dependent cquivalent natural periods and
damping ratios of two buildings: a 910-ft skyscraper in New York subjccted to severe wind
conditions [Ref. 14]; and a 43-story stecl-framc building in Los Angcles subjected to a moderate
carthquake [Ref. 15.].

TEMPORAL AND SPATIAL PROPERTIES OF EARTHQUAKE AND WIND

Spectra of ground acceleration and wind turbulence

In the preceeding discussion, the dynamic properties of structure were characterized by
Parameters that were initially assumed to be independent of earthquake or wind action. It is
likewise assumed in the following that earthquake and wind properties are independent of the
Structure.

At any given site, time records of ground acceleration and wind velocity, which are the
Main physical quantities related to seismic and wind loadings, are usually very complicated (e.g.
Figs, 12-13). Perhaps the only obvious contrast between two such records, is the nonzero
average value of wind speed against the zero mean value of ground acceleration.

Timewise or temporal variations of such "random" data may be better appreciated when
described by power spectral density functions, a type of statistical function in the frequency
domain [e.g. Ref. 18]. Essentially, the randomly fluctuating time record is imagined to be a
Superposition of many sinusoids of different frequencies (or periods), each sinusoid with its
Corresponding average amplitude. Those frequencies whose corresponding sinusoids have
relatively large respective mean amplitudes are said to be dominant.

In Fig. 14(a), a detcrministic (i.e. not random) periodic function is described as a
Superposition of two sinusoids with frequencies f1 and f2 = 2f1, where the deterministic
amplitude of the highest-frequency sinusoid is half that of the other sinusoid. In Figs. 14(b) and
14(c), sample time records of random data are shown together with corresponding power
Spectral density functions. The area under the curve of power spectral density versus
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frequency, is equal to the mean of squared value of the random variable. Aside from this
interpretation, the power spectra also shows the dominant frequencies, if any -- at such
frequency, the power spectrum curve exhibits a peak. When one such frequency is highly
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dominant, the spectrum looks like a narrow-band spike; and the sample time record looks nearly
sinusoidal.  Converscly, very random time records (c.g. Figs. 12-13) arc associated with
wide-band spectra as in Fig. 14(c).
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Figure 14. Hypothetical examples of zero-mean time records and corresponding
frequency spectra. (a) Superposition of two sinusoids with difTerent frequencies f] and
f2 and unequal amplitudes. (b) Superposition of several sinusoids with respective
frequencies clustered within a narrow band around a dominant frequency. (c)
Superposition of sinusoids with respective frequencies spread on a rather wide band
that includes a "dominant” frequency.
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Figure 15. Coincidence of structural resonant frequencies and dominant frequencies of
ground accelerations. (a) Power spectra of the NS component of 1940 El Centro
earthquake (Fig. 12) as evaluated using three different segments of the time record [Ref.
19], showing a "dominant” frequency of about 2 cycles per second. (b) Dominant
frequencies of some US earthquakes compared with fundamental frequencies of
multi-story buildings [Ref. 20]. (Note difference in frequency scales between (a) and (b).
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Thc power spectral density corresponding to the ground acceleration record in Fig. 12,
is shown in Fig. 15(a). In fact three spectra curves are given, each one based on the processing
(i.c. transformation from time domain to frequency domain) of a different scgment of the
accelerogram (Fig. 12) and normalizcd such that the area under each curve is equal to the same
constant. The differcnces in the spectra reflect the nonstationarity of the ground acceleration as
a random process; the statistics describing the variable acceleration are changing with time.
Nevertheless, it can be seen that the dominant frequency of this ground acceleration is about 2
Hz. Equivalently, the sinusoid with most power has a period of about 0.5 second per cycle.

In Fig. 15(b), the average dominant frequency of scveral strong ground accclerations
recorded in the US is shown to be about 2.5 cycles per sccond, higher than the usual
fundamental frequencies of multi-story buildings;. Coincidence of dominant ground acceleration
frequency and fundamental structural frequency would be more likely in low-rise or short-period
structures. For high-risc buildings and othcr structurcs with comparably long natural periods,
the dominant ground acceleration frcquency may be comparable with the frequencies of the
higher modes instead of with the fundamental modcs.
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Figure 16. Idealization of the wind speed spectrum over an extended frequency range
[After van der Hoven] and corresponding spectrum of structural response [After
Davenport], showing range where structural response is dynamic [Ref. 17] (Note that
the frequency scale is different from Fig. 15(a), and that the vertical ordinate is spectral

density multiplied by frequency.)
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In contrast with ground acceleration, it is often sufficient to consider wind spced
fluctuation as a stationary random variable, i.e. with time-invariant statistics including power
spectral density. An idealized wind speed spectrum over an extended frequency range is shown
in the upper portion of Fig. 16, where it is indicated that fluctuations represcnted by sinusoids
with frequencies equal or greater than about 1 cycle per half hour are relevant to the dynamic
response of structures. Such fluctuations are called gusts. Slower fluctuations represented by
sinusoids with periods of an hour or longer, are considered fluctuations of the mean wind speed.
Referring back to Fig. 13 would show that at each height, a nonzero mean wind speed is
observable in the bricf interval recorded (8 minutes), and gust-type fluctuations take place about
this mean.

The gust-type fluctuation about the mean wind speed is referred to as turbulence. The
power spcctral density function of turbulence (multiplied by frequency) has the general shape of
the right side of the upper curve in Fig. 16. Peculiarities of typhoons and other strong winds are
described in Refs. 21-22.
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Figure 17. Comparison of wind-induced column strains in 60-story John Hancock
Center skyscraper in Chicago, USA (A) and 18-story apartment building in Delft,
Netherlands (B). (a) Time records. (b) Spectra, showing predominance of a resonant
frequency in the case of the skyscraper. [Ref. 17.]
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Figure 17 illustrates the cifect of coincidence of some "power-rich” frequencics of the
turbulence spectrum with natural frequencies of structure. Structural responsc in the form of
column strain is plotted against time in Fig. 17(a), for two structures with very different natural
frequencies. In Fig. 17{b), so-called reduced power spectra of the two time records are plotted
using a frequency scale similar to that of Fig. 16 and vertical scale normalized by the mean
squarcd valuc of the variable (i.e. strain). The response of the tall slender building displays a
strong resonant character, i.e. strong dominance of the sinusoid with frequency equal to the
fundamental natural frequency (between 0.1 and 0.2 Hz), as this frequency is within a relatively
power-rich range in the turbulence spectrum. -The response of the medium-rise building, whose
fundamental natural frequency is just under 1 Hz, docs not have as prominent a peak in the
spectrum, since 1 Hz is relatively power-deficient in the turbulence spectrum.

From the above discussion of power spectra of wind turbulence and ground
acceleration, it is noted that wind turbulence is power-rich in frequencies that are low compared
to the natural frequencies of medium-rise buildings, while ground acceleration is power-rich in
frequencies higher than those natural frequencies. Or, equivalently, wind turbulence is more
likely to have resonant effects on high-rise or long-period structures; while ground acceleration
is more: likely to have resonant effects on low-rise or short-period structures. Coincidence of
relevant periods is summarized in Fig. 18.

Duration and stationarity

Both from analysis and design viewpoints, the duration of strong ground acceleration or
Strong gusty wind at any given site, is another significant temporal characteristic in addition to
Power spectrum. As mentioned above, wind turbulence is often modelled as stationary process,

0.1 1 10 100 1000 10000 sec
1 ' " ! ' '

STRUCTURE

High mode of Fund. mode ,of
stiff struc. flex. struc.

WIND TURBULENCE

Low High
elev. elev.

Figure 18. Common or dominant periods of oscillation or fluctuation
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Figure19. "Typical” durations [*Ref. 16]

i.e. with statistical properties that stay constant within the time duration of interest (e.g. duration
of structural vibration). Strong ground acceleration, on the other hand, comes more as a brief
shock rather than a steady excitation. A usual ground accclerogram has a short duration in the
sense of Fig. 19, and has clearly defined beginning and end; hence it underlying random process
is more realistically modelled as nonstationary.

Figure 19 gives a simplified graph of relevant durations which should be compared for
length (rather than coincidence as in Fig. 18). From the point of view of design, long-duration
actions due to strong wind are associated more with problems of serviceability and structural
fatigue. Transient extreme actions due to strong ground ac¢eleration are more associated with
problems of local failure and total collapse.

-5

|05 T T T T T T ™/ 10
s / 1 o 5
- -
E e - 2r
E q, .- ui -4
» 104F 4 107 3 10 4107 o
L . L . bt ¢ st e
Q o ] x n ]
> C / E 3 W 2 2 3
c jo3f / 3107° % A , 8
?: ! 1 > = 103 q10 "W
T 3 , E -2 E E 5t K
& 10%f 310" 2 5 >
£ 1 3 = 7 =
:Ot ] = £ 102 107" %
2 10— 107! 3 5 s 4
3 [- 4 |
J = o
{ ] = 2r
'- N N s A N N -] 10 + 1 ! 1 ) 'o-l
0 0.4 0.8 1.2 40 60 100 150 250
Maximum Acceleration, g Wind Speed (mph)
(a) (b)

Figure 20. Return periods. (a) Ground acceleration. (b) Wind speed [Ref. 23]
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Recurrence interval

A third important temporal property of ground motion or wind is its expected
recurrence interval at the site. Depending on whether this mean recurrence interval is long or
short compared to the intended lifetime of the structurc, the structure may be or have been
designed to behave either lineary or nonlinearly during each occurence of disturbances.

Figure 20 gives some idca of the return period or mean recurrence interval as function
of peak ground acceleration or mean wind speed, although such functions may be highly
site-dependent. An obvious trend is that higher intensity winds or ground motions have longer
return periods. Although it is difficult to identify what ground acceleration and what wind speed
would be "equally strong", the figure gives an impression that "major” earthquakes would have
longer return periods than "severe” winds, It is in fact near-universal philosophy in aseismic
design to allow significant local damage (hence structural nonlinearity) during a major
earthquake, provide the probability of total collapse is acceptably small. It is deemed
unreasonably expensive to design a structure to stay undamaged (hence linear) during an
extreme disturbance that is only remotely possible.

Spatial properties

The site occupied by an actual structure is not a single point in space but a finite
Volume, and this fact may become significant as both earthquake and wind actions have
characteristics that are non-uniform in vertical and horizontal directions. Explicit modelling of
such two- or three-dimensional effects may be essential in the case of very tall, long or otherwise
large structure. Neglect of spatial non-uniformity of earthquake or wind action may result to
Cither conservative or unsafe design. (For further discussion, see Ref. 1 and references thereof).

STRUCTURE-MEDIUM INTERACTION
Kinematic and kinetic interactions ‘
The discussion so far has also tacitly assumed that the dynamic response of the structure

May be determined uniquely after a prior complete description of the relevant earthquake or
wind environment. Such was the assumption, for example, in the discussion of buffeting
Tesponse, i.e. response to wind turbulence in the direction of the mean wind, in Figs. 16-17.

In reality there is some amount of intcraction between the structure and the medium in
Which it is founded or immersed. This interaction determines the accelerations (from
earthquake) or pressures (from wind) that are effectively imposed as loads on the structure. The
Particular type of interaction may become so strong that the dynamic loads and the structural
motions become inherently inseparable, making it impossible to first describe the load
completely and next evaluate the response uniqﬁcly.
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Conceptually” it is convenieni to classify interaction effccts into kinematic or
geometrical, and kinetic or inertial. Kinematic interaction of structure and soil in an carthquake
environment is exemplified by the transformation of free-field accelerations (c.g. ug in Fig. 21)
into the effective accelerations (e.g. u in Fig. 21) that arc effcctively imposed on different parts
of the flexible founded structure. In kinetic structure-soil interaction, the structural motion in
turn affects the effective accelerations at the base or foundation, as the soil itself has flexibility
and capacity to either dissipate or transmit vibratory energy away from the structure.
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Kinematic interaction between structureand wind, which is traditionally the area of
aerodynamics, is exemplified by the transformation of free-field wind speed and turbulence into
effective pressures or suctions on the surfaces of the immersed structure. Kinetic interaction, or
aeroelasticity, is when the structural motion itself significantly affects the effective aerodynamic
pressures.

Structure-soil interaction

When the foundation, i.e. interface between structure and soll, is idealized to be rigid,
the two-stage analysis suggested by Fig. 21 may be decomposed further into the three parts
indicated by Fig. 22. The approximate kinemalic interaction is the transformation of "bedrock"
accelerations (e.g. yG in Fig. 23) into translational (e.g. y1) and rotational (e.g. ¢ 1) accelerations
of the foundation as a unit. In kinetic interaction, these modified inputs are considered to be
applied to the structure as supported by equivalent springs and dashpots (part (c) of Fig. 22).
The spring and dashpot coefficients are evaluated separately as "subgrade impedance”
coefficients from the following steady state relation:

\ — 27 ft
F} ¢ 271t i Ky Kyop(y) e ®

Ky K6 ||6

Where y is translational displacement along the axis of force F, ¢ is rocking angle about the axis
of moment M, and f is frequency of steady vibration. Ky, for example, is a complex-valued
quantity, the real part being associated with a spring and the imaginary part with a dashpot.

When viewed in the above manner, it is easier to appreciate the effects of structure-soil
kinetic interaction not only on seismic response but also on wind-related response [e.g. Ref. 25].
Kinetic interaction generally decreases the resonant frequencies of the structure- on-flexible-soil
System (part (¢) of Fig. 22), compared with structure- -on-rigid-ground system. Effective damping
is generally increased, especially for structures that would be very lightly damped when on rigid
soil,

If the foundation (interface) cannot be idealized as rigid, or when nonlinearities due to
soil constitutive properties have to be explicitly considered in the seismic analysis, a direct total
approach (left side of Fig. 22) may be used, where the structure and a portion of the ground are
modelled as megastructure, and the ground acceleration is defined at a sufficient depth,
Preferably at the level of a bedrock whose acceleration could be correlated with a nearby

Outcrop.

All full-scale tests of actual structures inherently include structure-soil interaction. This
fact must be kept in mind when using data from such tests in structure-system identification.
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Structure-wind interaction

Table 4 summarizes various types of wind effects on structures. The so-called static
effects are attributed to the pressures due to the mecan wind which varics only very slowly
compared to the natural periods of structure. Morc than in carthquake problem, there is a
variety of wind action types.

The dynamic effects may be attributed to: 1) turbulence in the incoming wind flow, and
2) pressurc fluctuations in the wake caused by the presence and oscillation of bluff body. Figure
23 shows an instantaneous picturc of wind flow past bluff (i.c. not stcamlined) body, illustrating
the formation of fluctuating wake pressures. Forces originating at the wake are available to
excite cross-wind oscillations. Thus, for given direction of mean wind, not along-wind vibrations
but also cross-wind and torsional responses are generally possible.

If oscillation amplitude, either in translation or rotation, is plotted against mean wind
speed , as in Fig. 24, a classification of dynamic responses becomes practical. Classification of
response according to direction of oscillation would not, however, be in one-to-one
correspondence with the classification of Table 4 or Fig. 24. Along-wind response, for example,
may be static or turbulence-induced. Both cross-wind response and torsional response may be
turbulence-induced, vortex induced, or a form of galloping or flutter.

Table 4. Classification of wind effects on structures (Ref. 26)

Effects of time-averaged wind pressure or force

Static Divergence
Instability

Lateral buckling

Turbulence response Limited-amplitude

response
Vortex excitation
Dynamic | Dynamic Galloping SDOF Divergent-an 11-
instability flutter | tude responsg

Torsional flutter

Coupled flutter
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Figure 23. Three pressure areas around bluff body in turbulent wind [After Melbourne
as quoted in Ref. 17]
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Figure 24. Main types of wind-induced oscillations of bluff structures. (a) .Dpe to
turbulence. (b) Due to vortex shedding in the wake. (c) Due to aerodynamic instability,

e.g. "galloping”, "flutter”. [Ref. 17].
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Figure 25. Vortex "street” behind an oscillating cylinder [After Griffin and Ramberg]
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Among the wind-induced dynamic responses discussed above, the divergent-amplitude
responses are strongly interactive. The interaction is inertial, i.e. the structural motions affect
the effective wind pressures or forces. Mathematically, such oscillations are classificd as
self-excited, and only aeroelastic nonlinear models of analysis may predict their amplitudes.

Approximate decoupling is possible, however, not only for turbulence-induced response
(as discussed above), but also for vortex excitation. The mechanism of vortex excitation is
associated with a certain critical wind speed, say Ucr, (Fig. 24(b)) corresponding to a particular
frequency of periodic shedding of vortices at alternating sides of the wake (Fig. 25). Structural
oscillation becomes significant when this period of vortex shedding coincides with a natural
period of structure, the phenomenon is one of resonance. The critical wind speed may be
calculated as

Uor =% (10)
where T is structural period, D is representative dimension of the structural section, and S is the
so-called Strouhal number, which depends on section shape and orientation relative to mean
wind flow, and on Reynolds number which is a measure of ratio of inertia force to viscous force
in the wind. At relatively low Reynolds numbers, the value of S for different sectional shapes and
orientations falls mostly in the range 0.1-0.3 [e.g. Ref. 26].

In the above approach to vortex excitation, the amplitude of oscillation is to be deduced
as resonant response, i.e. response to steady harmonic force with amplitude corresponding to
wind speed Ucr and frequency equal to structural natural frequency. It may be said that the
interaction is treated as kinematic. The structure section geometry, among other factors, affects
the aerodynamic transformation of free-stream wind speed into a fluctuating net force in the
wake, in the cross-wind direction. Essentially the section geometry screens out this force when
the wind speed is not appropriate, i.e. not the critical speed.

VIBRATION CONTROL
Isolation

The remaining discussion addresses the engineer’s ultimate objective:  prevent
unwanted vibration in his structure. First analyzed is the idea of isolation. The idea of isolating
the structure from the source of vibratory energy is far from new. For example, Ref. 10 (p. 21)
relates that a scientific study of earthquake-resistant building practice was undertaken in Italy
shortly after the great Messina-Reggio earthquake of 1908 that killed 160,000 persons. A
commission of nine prominent practicing engineers and five distinguished university professors
was charged with finding methods of designing buildings that would resist earthquakes, that
could be erected easily, and that would be inexpensive enough to be within the reach of the
devasted population. Two contradictory proposals emerged from the commission’s
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deliberations. Onc favored isolating the building from the ground by a sand layer underneath
the foundations or by supporting the building columns in the bottom story on spherical roller
bearing that would permit horizontal movement. The other favored connecting the building
firmly to a rigid foundation. The commission, however, adopted the latter proposal.

As for wind effects, it is fairly conventional wisdom in aircraft engineering that a body
immersed in flowing wind may be considerably isolated from drag forces by proper steamlining
of the cross section. Other considerations, however, have also stood in the way of straight
forward application of this idea to civil enginecring structures.

Of late, the general idea of isolation has been getting renewed attention from engineers
who appreciate the potential advantages of "killing" the vibrations right at the source." Concepts
underlying this approach are discusscd below.

Seismic isolation for buildings (e.g. Fig. 26) may be interpreted approximately within a
theory of linear system as follows. The introduction of base isolators serves to: 1) increase the
degrees of freedom of the structure, hence increase the number of modes; 2) lower the
fundamental structural frequency, presumably to push this frequency below the dominant
frequency of ground acceleration anticipated at the site; and 3) increase the damping ratio of
every mode in which the isolators have large deformation.
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Figure 26. First base-isolated building in the US [Ref. 27, p. 251]
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The actual isolators are frequently made of rubber, steel, or lead, all of which in fact
have complicated and highly nonlinear force-displacement, or constitutive, properties. Many
experimental studies of these isolators, both as isolated units and as installed, have recently been
reported in Japan and the US. References 27-28 also give bricf accounts of newly constructed
base-isolated buildings and their observed performance in mild carthquakes.

Aerodynamic isolation, meanwhile, has apparcntly not extended from bridges to
buildings. Possibly the nearest that civil engincering structures have come to aerodynamic
isolation is the selection of streamlined section of bridge girder or attachment of non-structural
appendages (e.g. Fig. 27). These schemes are intended to streamline the flow of horizontal
wind and hence reduce the possibility of wake-induced forces. Streamlining has limited
effectiveness, however, when there is significant deviation of mean wind direction from the
horizontal, or when cross-wind or torsional vibration enters the picture. Considerations of
aesthetics may also rule out this isolation approach. Indeced building plans are almost never
laid-out with aerodynamic streamlining in mind.

Another idea of aerodynamic isolation is to expose to the wind not closed areas but
perforated surfaces (e.g. Fig. 28)

Designing the structure conventionally but with a view to avoiding resonance with
anticipated dynamic loads, is surely a form also of vibration isolation; but this has limited
effectiveness since earthquakes and winds (and other dynamic actions) tend to have different
dominant frequencies.
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Figure 27. Aerodynamic isolators. (a) Streamlined section of bri
Appendages [Ref. 24] dge deck. (b)
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Figure 28, Aerodynamic spoilers. (a) Latticed-truss bridge girder [Ref. 24]. (b)
Perforated shroud on a chimney or stack.

Table 5. Dependence of wind loads on mass, stiffness, and damping [Ref. 29]

Type of load Design criteria Influence of mass,
stiffness and damping
Along-wind load due to Load Weakly dependent on
turbulence
( T(!E )o.s
Accelerations Dependent on
Lo
Across-wind loads on Load Dependent on
slender buildings a 1 .-
with H/B < 6 Iy ( ;{)0-‘
Accelerations Weakly dependent on
m and k

Dependfnt on
(

-E )0 .5
Instablility due to Critical speed V, V. proportional to
negative aerodynamic should be beyond
damping design range £ (m k)o.5
Vortex shedding 1) Crit. speed V. proportional to
beyond design range; K
large amplitude (= )o.5
motion n
11) Avoidance of Em > CK_ (where
large amplitude CK_ 1s a c8nstant for
motion a given geometry)
111) Loads due to Dependent upon
small ‘amplitude : Kk
motion CK

a
n (€ - —.—)0.5
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Damping

When isolation is unable to prevent vibration encrgy from flowing into the structure, the
next logical approach in suppressing vibration is to increase the energy dissipation either in the
structural components themselves or in specially attached encrgy absorber-dissipators.

Table 5 summarizes the roles of (modal) mass m, stiffncss k, and damping ratio & in
various wind-induced phenomena. It is indicated that an increasc in damping capacity is always
beneficial, whereas an increase in stiffness is not always advantageous and the correct or best
choice of mass is not clear either. Reference 29 concludes that the approach of increasing the
damping is "supreme if only because the inherent damping in most structures is so small that
minor absolute increases in damping constitute large-proportion increases. If stresses or
accelerations must be reduced significantly (e.g. by a factor of 2) then changes in mass and/or
stiffness are rarely practical unless, in the case of stiffness, it is feasible to change the structural
system.”

cable
cable cable cable
sliding damper damper ~~=
block
sutﬂlgzaed weight spring —

Figure 29. Examples of untuned-type passive mechanical dampers used for
free-standing towers [Ref. 24]
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Figure 30. Examples of tuned-type passive mechanical dampers.
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damper. (b) Tuned liquid damper (TLD), not to scale. mas
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Some mechanical means of increasing the effective damping of structures, especially
those already designed or constructed, are illustrated in Fig. 29-30. The so-called Tuned Mass
Damper is actually an auxiliary solid mass attached to the main structure with spring-like and
dashpot-like components. Rcference 14 presents a detailed description of the design and
performance of a 410-ton concrete mass block that was installed as TMD at the 63rd floor of a
tall office building. This TMD is about 2% of thc modal mass of the building in fundamental
sway mode, a "typical” mass ratio. The corresponding modal damping ratio has been increased
from about 0.9% to a total level higher than 4%, which is a tremendous benefit if one considers
resonance excitation (Fig. 8 and Eq. 6).

Newly developed Tuned Liquid Dampers (TLD), if properly designed, are expected to
better cope with some of the practical problem areas in TMD application, e.g. space
requirement and installation details [Ref. 30]. However, tune-typed dampers generally tend to
be less effective with random transicnt vibration (e.g. brief earthquake) than with harmonic
steady-state vibration (e.g. prolonged wind).
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PASSIVE CONTROL
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Figure 31. Measures to suppress earthquake - and wind-induced vibrations

Structural materials and components with high built-in damping capacity have also been
developed. Reference 31 reviews the characteristics of various systems for vibration reduction in

tall buildings, including such untuned-type viscoelastic dampers.

Active control

Figure 31 is a summary of currently recognized means of suppressing structural
Vibrations. "Active control," in present definition (e.g. Ref. 32), differs from the other
WPproaches in that it involves on-sitc monitoring of the actual vibration and applying
time-varying forces at selected points in the structure in order to counteract the other dynamic
forces. This approach is perhaps the most sophisticated conceptually, and, at the same time,
technologically most demanding.
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CONCLUSION

The practicing engineer might dismiss all these complexitics of dynamic analysis, and
stick to his design codes, which can make it appcar that the panacea for the headaches due to
dynamic forces has been discovered. The codes, for most cases, artfully prescribe to replace
these vibratory forces with casier-to-visualize and casier-to-handle "equivalent” static forces or
pressures, and to design the structurc statically. Yet, for structural schemes that are more
creative than standard, the engineer’s best design tools include the principles of applied

structural dynamics.
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