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“Every physical factor of transient
travelling-wave is affected by frequency-
dependent parameters . . . easily considered
in the solution.”
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ABSTRACT

For the first time, this paper gives analytic solutions in the time-domain and natural frequencies
of nonsymmetrical exciting system after solving the matrix partial differential equations which des-
cribe electromagnetic behavior on polyphase lossy-transmission lines, the frequency-dependent para-
meters of which are considered, by using classical method strictly. It is beneficial to the analysis of
principle of protections based on travelling-wave and to the proposition of new criteria for protec-
tion.

To verify the result, an example is taken which is offered by G. W, Swiftn [1] and solved by
Bergeron’s method [2]. In the paper, several concepts are given. At the appendix, the correctness
of solutions are proved mathematically.

INTRODUCTION

People pay more attention to the research of analytic solution of electromagnetic transient in
electric power system while its numerical procedure [2, 3] is tending to be perfected. It is signifi-
cant for us to understand deeply the electromagnetic transient principle, particularly in the case
of very-high-speed protection for UHV system.

For a distributed single-phase transmission-line, it is easy to get the analytic solution of elec-
tromagnetic transient in lossless case. The study of lossy-line is not ideal [4, 5]. In the Laplace-
Transform method, it is also necessary for us to solve the complex transcendental equation.

For a nonsymmetrical exciting system, many documents [6, 7] make use of the decoupling
method to solve coupled problems in the polyphase system, but do not get solution in time-domain
because of the difficulty in the determination of analytic boundary conditions.

By using classical method strictly, first we obtain the analytic boundary condition of unsym-
metrical exciting system in s-domain; then the solutions in s-domain. Finally, we obtain the solu-
tions in time-domain after using the computer to obtain the natural frequencies of the system. In
the expressions of transient travelling-wave group, all physical factors of travelling-wave with dif-
ferent frequencies are determined by transmission-line parameters and faulted distance. Therefore,
it is beneficial to the understanding of physical concepts.

*Hua-Qiao University, Quanzhou, Fujian, China
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LIST OF MAIN SYMBOLS

x,t variable of space & time
A,B,C  phase A,B&C
Ll distance from exciting source to
receiving & sending end of line
[uel, [i]. [Uel. (1] exciting voltage & current vector in
time-domain & s-domain
[u], [i], [uU], [1] voltage & current vector in the time-domain &
s-domain when distance is x
[ugl. [ig]. [Up]. [Ip] voltage & current vector in the time-domain &
s-domain when x =0
[ud. i, ], (U, ].[L] voltage & current vector in the time-domain &
! s-domain when x =1,
: [ug], [ig]. [U,]. (K] voltage & current vector in the time-domain &
! s-domain when x = —|,
| s, m subscripts of self & mutual parameters
| k,n subscripts of kth. & nth. travelling-wave
! l/ae,,  time constant of nth. travelling wave
!
{
|
|

B,  eigenfrequency of nth.
w frequency of exciting source
[L] inductance matrix per unit length
[C] capacitance matrix per unit length
i [R] resistance matrix per unit length
| [G] conductance matrix per unit length

: [T] eigenvector matrix

; [r] lumped resistance matrix

| [Le] lumped inductance matrix

E [z] =I[R] +s[L]

; [y] =I[G] +s[C]

: (Z.] =[] +s[Le]

; [Z4] =[T] [2] [T]~'=diag[Z a0 Zq1 Z42]

[Zea]  =[T] (2] [T] T

: =diag [Zeqg Zeg1 Zeg2]
| =[T) [2] [Y] [T]?

=[] (Y] [2] [T]-' 4
y Alr)? = diag [12 12 12 ]
' [z,] =124 (117!

MATHEMATICAL DESCRIPTION

According to the superposition theorem, an equivalent superposition system of power trans-
“ mission-lines is shown in Figure 1.
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Figure 1. Equivalent Superposition System

[u.] and [ig] are the exciting voltage and current vectors respectively. For example, the €X:
citing source of ‘B, C' — earth solid fault is

_ T
luel = [ugy uge]
and ‘A’ — break exciting source is
[ie] = ika
It is well known that the electromagnetic behavior of polyphase transmission-lines can be des

cribed by

—-9[ul = [L] B[] + [R) [i) (1a)

ox ot
—30i] = [l 3l + 6] [u] (1o}
ox ot
The boundary and initial conditions are
lupl = [uzg upg ul T (2a)
lio) = liao ipo icolT (2b)
[u] =-[1] dlig] — [*] [i] (2¢
t
[l = (L] dfi] + [ [ (2d)
dt
=0 = 0|0 = [0} (2e)
Q| =30}  =10] 2
ot |t=0 gyt |t=0
MATHEMATICAL SOLUTIONS
Solutions in S-Domain

e ns-

For convenience, we assume perfect conductor transposition in the three-phase power tf?der
mission line for which frequency dependent parameters will be considered. Initially we will cons!
the case of “A’" — earth solid fault.
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From Eq. (1) and (2e), (2f), we obtain the equivalent form in S-domain

d2[U] = [2] [Y] [u]
dx

d2[1] = [v] (2] (1]
dx?2

Combining Eq. (3) with
are

[U] = [T}~ diag [W,
(] = [T]-" diag |,
Where
11
m=1 (1 1 =2
3 (1 =2 1

(3a)
(3b)
Eq. (2a), (2d), a deterministic problem is formed and its solutions

W, W] [T] [Ug] (4a)

W, W) [T] (Yl (4b)
0<x <1,
11 1
m~ =1 o0 -1
1 -1 0

W, = (Qy exp (T, x) )+ Ky exp (—Tkx) )/ (Q + Ky)

W, = Zuk (O exp (x) + K exp (=Tyx) ) /(Q +Ky)

Qk = (Zedk Zv;k1 + 1) exp (_7k 1r)

Ki = (Zegk Zoi + 1) exp (7, 1,)
k=0, 1,2
Another deterministic problem, obtained by combining Eq. (3) with Eq. (2a), (2c), has the
answers as
[UT] = [T]~"diag [WoW; W5 ] [T] [Up] (5a)

(1] = [T]=" diag [Wy W; Wy [T] [U,]

Where

(5b)
-1, <x<0

Wi = (Qj exp (1 ) +Kj exp (-7} x)) / (Q} + K)

ny
Qi

KI( = (—-Z'edk (Z\’Nk)_1 + 1)

Because of the assumption

k= (Zpi) ~M-Qpexp(r x) +Kj exp (=T', x ) ) / (Q + Kjp)

(=Z4g (Zi )™ = 1) exp (1) 1)

exp (=7} 1)
k=0,1, 2
of perfect conductor transposition, we have

o o v ’ Al A,
W1 =W2l W1 =W2' W1 =w2' W" :w2

In Eq. (4) and (5),

(Uol = [Uga Upg UgglT

Upbo. Ucg are unknown.

’

After considering the connected condition
(o leol T = [lg I30]T
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we obtain
[UO] = [Dg1] lue]
Where
[Ue] = [Ufa
[Dg1] = [1 (Po _P1)/(2P1 +P0) (Po —P1)/(2P1 +P0) IT
Po = Zwo Ziwo (Ky Q1—K3Qq) (Ko +Qq) (Kg+Qq) (Zyy +2Z4q)
P, = Zuq Zw1 (Ko Qp —Kp Qq) (Ky +Qp) (Ky +Q)) (Z,0+ 2Zl0)

Final solutions are:

[U] = [T]~"diag [WoWq Wq] [T] [Dgy] [Uel (6a)
1] = [T]-'diag [Ny W; W] (T] [Dg,] (U] (6b)
0<x <1,

Transfer Matrix Functions

In terms of electrical network theory, we can define the transfer matrix functions of Eq. (6)

[Hga] = [T]7" diag [Wg Wy W,] [T] [Dg;] (7a)
[Agy] = [T1-7 diag [Wo W, @] [T] [Dgs] (7b)
0<x<1,

Similarly, when the exciting source is a current source, and

(el = [y Lol
the solutions are

(1] = [T}~ diag [Vq X1 /\(1] (T] [Dpa) (L] (8a)
~
(U] = [T]—Vdiag [V V; Vi1 [T] [Dyo] (1] (8b)
0<x<1,
We define the transfer matrix functions as
[Hpz] = [T]=" diag [Vg V4 V4] [T] [Dy,] (92)
[(fp2] = (T1-" disg [Ty ¥, T,1 [T] (D] (9b)
0<x<1,
Where

[Dbzl = 1 0
0 1

= (K, @) = Kj Q) (Kg +Qq) (Kg +Qp) (Z,yq +24)
= (Ko Qp — KpQp) (Ky +Qq) Ky + Q1) (2,0 +Ziy0)

= (Q, exp (,x) + K exp (=T, x) ) / (Q + K\ )

[ S 2
- O
| |

<
x
\

Vi = 2y (—Q exp (ex) + Kyexp (=T, x) ) /(Qy + Ky)
Qk = (Z;Jk Zwk — 1) exp (—Tk1r)
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(Ze_t:l1k zwk +1) exp (Tk],)
= (= (Zggu) ™" Zik — Dexp (1)

(= (Zogi) ~T 2o + 1) exp (=73 1)
k=0, 1

In the same way, we can also define other transfer matrix functions when other [Ue] and

[I.] are connected.

Solutions In Time-Domain

From Eq. (6), the voltage and current of exciting phase are expressed as
U, = U, (PgWo + 2P, W) / (2P, +PQ)
A
I, = Uy, (Py Wy +2P, W,) / (2P +Py)

(10a)
(10b)

Ug, = (weosp+ssing) / (52 + w?)

w__  working frequency
¢ phase angle

For short,

P(S) =2P1 + Po
Es) = d  ((s2+w?) P(s))

ds
Als) = (wcosg + ssing) Qg Py (k+1)/(Qy +Ky)
Bk(S) = Ak (s) Kk /Qk k=0, 1

On the basis of residue theorem, the inverse-transform forms of Eq. (10) are (see Appendix):

u, (x, 1) =>’3(u+k (x,t) +ug (x, 1)) +
k=0
1 oo
T T (uh, (x1) tug, (x, 1))
k=0 n=0
= g (x, 1) + Uy (x,1) (11a)

1
i, (x,1) = B (% (=i (xt)+

k=0
1 oo
T I g, Xty (x0)
k=0 .n=0
= iy (X, 1) iy (X, 1) (11b)
0 <x<l

Where
' U: (X, t)

1}

vi exp (~agx) cos (wt—by x+py)

n

ug (x, 1) v exp (+ayx) cos (wttb, x+qy)
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it (x, 1) = (v /z)) exp (—a,x) cos (wt—by x+p, —d, )

i (x,1) = (vi/z) exp (+a, x) cos (wt+bkx+qk-dk)

Uin (1) = Vi, exp (=, x) exp (0, 1) cos (B, t-by,x +pyy)

Ug, (x,t) = Vin exp (ta, x) exp (- t) cos (B, t + bynX +ay )

ign (x,1) = (Vkn/2kn) exp (—ay,x) exp (—or t) cos (Byt=by X +py  —dy )
Ikn (x,1) = (Vikn/2kn) exp (+ay,x) exp (- e, t) cos (B, t+by  x+qy ,—dy )

Uyslx, t) i g (x, 1) ——— steady state voltage and current of phase A.
U (x, t), ig¢(x, t) ———— transient voltage and current of phase A.
All the above physical factors are satisfied with the following complex-number equations.
Pl-a tj ﬁn) 0
Vi exp (jpy)
Vi exp (ja,)

v;n exp (jpkn)

Ay (iw) / E (jw)
By (jw) / E (jw)
An (=0, +iB,) / E(—a, +iB,)

Vkn €xP (jay ) = By, (—a, +jB,)/ El—a, +iB,)
a, tjb, = ((Ryg +jwL,) (G + iwC,) )%
aknt iby, = Ry * (=0 +iB,) L) (G +(—ay, *+iB) C ) )%

zeexp (jd,)
Zynexp (jdkn)

((Ret+iwly) / (G, +jwC,) )%
CRH (=0 +iB,) L) /(G + (—~a, +iB,) C, ) )%

EXAMPLE

The results obtained with the use of the solution in this paper compare favorably with thosé
obtained by G. W. Swiftn [1] for a case in which H. W. Dommel’s EMTP program [2] was used.

Using our system of units and coordinates (see Figure 1) the original parameters given by
Swiftn are rewritten as follows:

U = 500 2”/3% sin (377t +90°) Kv,

| = 386225Km, 1; = 32.185Km, L, = 8.7+ 10~7 H/m,

Ry = 25%107°Q/m,C; = 1.206*10~ "' F/m, G, = 05/m,

Ly = 3.33*1076 H/m,Ry= 279104 Q/m, Co =7.0%10~12 F/m,
Gy = 0U/m,ry=ry =0Q, L, =0.5L,, =0.531 H.

and the distance from observation point to exciting source is 0.8 I.
The first twelve terms of Eq. (11a) are taken and the result is shown in Figure 2.

For this example of ‘A’ — earth solid fault, the two curves do not vary significantly.
PHYSICAL CONCEPTS
Natural Frequency

- ) . on-
In order to arrive at the form of Eq. (10), it is necessary to solve the equation for the eige
‘values s,

)
P(s) =0 (12
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1
I ™ fault start

Curve 1, Swiftn’s solution
Curve 2, our solution

o
&
00—~

Timein s ms

Figure 2. Comparison of Curves

By using an appropriate numerical procedure, we easily obtain the roots of Eq. (12):

sn =0 tif,

n=0,1,2,3. oo

According to network theory, s, is known as the natural frequency of the system. From Eq.
(11), we know that the physical dimensions of &, and ﬁn are all the inverse of time, that is, a fre-
quency. The inverse of ¢, is known as time-constant and [3n as eigenfrequency.

In the example above, the eigenfrequencies in rad./s. of the system are:

3;=2957.1,
Bs=7977.1,

B=0 p,=14515, PB,=1921.3,
B4=4617.3, $3;=6539.6,

The Transient Relationship Among Phases

1) /n the case of a symmetrical fault
The exciting source is
[U.] = [Uss Upp UgclT
The solutions are

diag [Wy Wy Wyl [Uga Upp Ure

diag [W, W, w1] [Usa Yt Ufc]-r

]T

(V]
(1]

The decoupled forms make the expression of

B,=8852.7,

(13a)
(13b)

every phase very simple. From this, we have

mathematically proven that the transient research of symmetrical fault could be done by solving a

single-phase system.
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2) In the case of a ‘B, C’ — solid fault

The exciting source is

(U] = [Ugp UgdT

The solutions are

(u,] [o o | [ up
u | =| w2 -W, /2 40
(U] [war2 w,2| | Uy
1, ] K o | Ufb~

W b
I = w1/2 -W,/2 (14b)
le W, 72 W, /2 | Ute

0<x<1,
Obviously

u, (x, 1) = i, (x,t) =0,
Ub (x, t) = _uC (x, t) ib (x: t) = _ic (xl t)
. i d

Comparing Eq. (13) to Eq. (14), we can see the simple relationship between symmetr|ca| an
two-phase solid fault.
3) In the case of ‘B, C’ — earth solid fault

The exciting source is

[Ue] = [Ufb Ufc]T

The solutions are

U, PoWo — P, W, Powo — W, [y, |
Up| = (2Pg + Pq)~ PoWo +PyWy + PgW,  PoWo — PoW, y (152
| U | PoWg — PoW;  PoWq + PyW, + PoW, fe
1, | [P, - P, W, PoWo — P, W, |[ ]
I | = (2Pg +Py)~" PoWo + P W, +PR, P, — PoW, o 16b)
1 | Pofly = PoW, Py + P, @, +po, Ve (

0Sx<,
After considering the constraints due to the characteristic equations:
we obtain

That is, transient components of the two faulted phases are equal.
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4) In the case of ‘A’ —earth solid fault

From Eq. (6), we have

(U, [PoWg +2P, W]
Up| = (Po +2P)=1 | PoWy — P,W, | Uy, (16a)
A | PoWo — Py W, |
N "PoWg +2p, 0]
I, | = (Pg +2P)—1 | PN, — P, @, U
1. | | Polg — P, @, ] fa (16b)
0<x<1,
Obviously

up(x, 1) =u (x, 1) iy (x, 1) =ic(x, 1)

Transients Effected By Lossy, Lossless and Frequency-Dependent Parameters

1) Eigenfrequencies

The eigenfrequencies of a lossy-line is lower than that of a lossless-line, and a lossy-line in
which the frequency-dependent parameters are considered has the lowest eigenfrequencies.
2) Attenuation

In a lossless-line, every transient travelling-wave does not attenuate with time, but does so in
a lossy-line. After considering frequency-dependent parameters, it attenuates faster.
3) Speed

The speed of every transient travelling-wave is defined as

Vkn =ﬁn /bkn

The speed of every transient travelling-wave in a lossless-line is the same; in a lossy-line, the speed is
frequency dependent. It is the slowest when the frequency-dependent parameters are considered in

a lossy-line.

4) Amplitude
The amplitude of every transient travelling-wave in a lossy-line is higher than that of a lossless-
line. It is the highest when we consider the frequency-dependent parameters.

CONCLUSIONS

The assumed conditions and the method of solution in this paper are strict. The mathematical
answers describing transient travelling-wave group are satisfied with partial differential equations.
The forms of answer for both current-source exciting system and voltage-source exciting system are
similar, in which both voltage and current exhibit duality. We can accurately give the natural fre-
quencies of a nonsymmetrical exciting system by using computer methods. Every physical factor
of transient travelling-wave is affected by frequency-dependent parameters, which are easily con-
sidered in the solution.
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APPENDIX

Verification of the Correctness of the General Solutions
1. S-Domain

From Eq. (16), we have

|Po PPy W,
—d[U] = - U, PoO—Py| d |W,| =
dx PO + 2P1 PO —P1 o dx W1
I-""’0 Py Py T9 Qg exp (Tgx) —7oKg exp (—Tgx)
= -Uy, |PoO—Py| |11 Qqexpl(Tyx) —1yKjexp(-Tyx)| =
Po +2P, LPO -P; O T4 Qq exp (1x) —T,K; exp (—7,;x)

~ A A

A
= Uy, |zaopgWy — zg4y P W, =
Py ¥ 2P, ~
0 71|20 oWy — 24y Py W,
Ry + skg Ry + sk Ry +sby POWO + 2P1W1
= |R, +sLy, Ry +sLg Ry +sLg Put - Poly — PN, | =
+
Ry + sby Ry *+ sk By + sk Y 1 PoWo _ P1W1
= [2] U]

Similarly, we can also prove

—d[] =[] [u]
dx

Combining the two results enables us to obtain Eq. (3).
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2) Time-Domain
When the exciting sources are Symmetrical, the answers are decoupled, see Eq. {13). There-
fore, the partial differential equation of each phase can be written as

_ du ai '
ax L ar TR (17a)
-— _g_:(— = C1 aal: +G1 u (17b)

From Eq. (13), we can obtain their answers, u (x, t) and i (x, t).
Substitute du / 9x, 0i/ 0 x and i (x, t) into Eq. (17), comparing with the coefficients, we
can show that

(=(Ry —, Ly )sind, +f,L,cosd,, )/2z,=b, (18a)

(+ (Ry —a;, Ly ) cosd,, +fB,Lqsind, )/2z,=a, (18b)

and

(~Rysind +wlL,cosd) /z=b (19a)
(+ Rycosd + wLysind) /z=a (19b)
Since

an +jbn = ( (R1 + (“‘% + lﬁn ) L1 ) (G1 + (—'an +iﬁn) C1) )'/z
Z.exp (jdn) =({ (R1 -0, L1) + anL‘l) /{ (G1 -0, C1) +i6nc1) )‘/:
we have

zo = (((Ry —o L)2 + (B, L)2) / ((Gy —a, C)2 + (B,Cq)2) V%

sind,, = (0.5g” —0.5 (h+y) )% /g%

a, =(0.5¢% +0.5 (h—y) )*

cosd, = (0.5g”% + 0.5 (h+y) )*%/g*

b, = (05g% +— 0.5 (h—y) )%

Where

9 = ((Ry —a, L1)2 + (B, L1)?) ((Gy —o, C1)2 + (B, C4)?)
h = (R, —a, L) (G4 —@, Cq)

B3 LqiCy

Yy

Substitute them into Eq. (18), they are tenable.
By using the same way, Eq. (19) is also proven to be tenable.

Verification of the Correctness of the Particular Solutions
Correct particular solutions must satisfy the boundary conditions and initial conditions.

1) Boundary Conditions
Prove:
From Eq. (13a), we have

U, = U, (Qq exp (7y x) + Ky expt—7; x) )/ (Q, +K,)
Let x = 0, obtain U, = U,
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That is, when x = 0, the answer is certainly the exciting source itself.

Similarly,

(U] =z] []and (U] =-(2,] [1]

are also tenable.

2) Initial Condition
For all situations, the answers in the time-domain satisfy the initial conditions.
An example is shown in Figure 3. The u and i are zero before 1.4 ms because the distance

from an observer to exciting source is about 400 kilometers. This means the initial values are zero

before travelling-waves arriving.

(pu)

-1 T T T
2 3 4

Time in ms

Figure 3. Zero-Initial Value

Derivation of Inverse S-Transform:
The Residue Theorem is defined as:
If U(s) = N(s)/D(s)

and the eigenvalues of its characteristics equation are

s: —an+jﬁn
s = =0 —ib, n=0,1,2,3,....00

then,
* N (s} %

u(t)=2 exp(Stt) + X exp (S; t) .
n=0 D'(S} ) n=0D’' (S7)

where, D'(*) — The derivative of D(*).

For convenience, the simplest case, symmetrical fault on 3-phase, will be considered heré
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In this case, voltage of phase A in S-domain is
U, (x,s) = U, (0, 5) [Z, (s) 7 (s) — cosh (1—x) T (s) +Z (s)
sinh ( (1—x) 7 (s) )] / [Z, (s) 7 (s) cosh (17 (s) ) +Z (s)

sinh(17(s))] =
= U, (0,s) [Ny (s) exp (x 7(s) ) + Ny (s) exp (—x 7(s) ) ] /D (s).

Where,
Nils) = [Zg(s) 7(s) — Z (s) ] exp (=17(s)),
Nals) = [Z(s)7(s) + Z(s) ] exp(17(s)),

D{s) = [Z4(s) 7(s) + Z (s) | exp (17(5) ) + [2Z, (6) 7 (s) = Z (5) ]
exp (—1r (s) ).
We obtain the eigenvalues from D (s) = 0, they are:
o= -+ g,
S T - -, n=0,1,2,3...%
Based on the Residue Theorem, one can directly write the transient voltage as follows:

Yar (X, 1) = T [U, (0,5t ) [N, (s} ) exp (x 7(s} ) ) +Ng (s})
n=0

exp (—x 7 (s} ) ) ]/D" (s} )] exp (sh t) +

oo

Z [U, (0,57 ) [Ny (s7) exp (x7(s5)) + Ny (s3)
n=0

exp (—x 7(s7 ) ) ]1/D" (s7) ] exp (s t).

We define that,

WVa12) exp (jp,) = [u, (0,53 ) Ny (53 )1/D" (5% ).

WV 12) exp (~ip,)) = [U, (0, 57) Ny (57) 1/D" (57 ).

Vo 72) exp (ja, ) = [U, (0,58 ) N, (s3] /D" (% ).

V3 72) exp (~ja, ) = [U (0,57 ) Ny (53 ] /D (7).

by, =T(-a +B,).

This results in that,

Uae (x, 1) = ozo[ (V} /2) exp (jp,,) exp (x (a5 * jo, ) ) vy exp (ian)
n=0

exp (—x (a, +jb,) ) ] exp (—0, +if, ) t*

+°E° [ (v} /2) exp (—jp,) exp (x (@, — jby) )+ Vi eXP (~iar)
n=0

exp (—x (a, — jb,) ) ] exp (— 0 - i)t

=°2° (v} /2) exp (a,, x) [exp (ip, * jb, xt iByv+
n=0 )
+exp (—jp,, — iby X —if, 1) ] exp (—0 t)
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o0
T (v5/2) exp (—a,x) [exp (ja, —ibx + B, t) +
n=0

exp (—ja, +ib, x =B, t) ] exp (¢ t)

[ <]
= T v} expla,x)cos (Bt +b x+ P )exp (—at)+

n=0

o]
2 vy exp (—a,x) cos (B,t —b,x +q,) exp (—¢, t)
n=0

kS +
=Z [uf (x,t)+uy(x,t)].
n=0
Where,
u* (x,t) = v} exp (a,x) cos (B, t+b,x +p, Jexp (—q, t).
uT, (x,t) =vy exp (—a,x) cos (B, t — b x +q, ) exp (—q t) .
They are so called forward and backward direction travelling-wave respectively.

.
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