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ABSTRACT

This paper derives a simple approximation to a binomial sum occurring in the Hamming Bound.
The approximation is easy to compute and quite accurate, even for modest values of the parameters

involved. The approximation permits easy calculation of the minimum number of parity bits re-
quired for t error correction.

INTRODUCTION

In coding theory, a lower bound on the number of parity bits r necessary to correct up tot

errors in a binary block code of length n (where n is greater than t) is given by the so-called Ham"
ming Bound [1]
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k=¢
w'hich involves the combinations C (n, k) of n objects taken k at a time. The sum above is quit®
difficult to calculate even for modest values of n and t.

. The purpose of this short paper is to show that the sum on the right hand side of the inequal-
ity can be approximated quite well by an expression that is much simpler to compute. SF’e‘?iﬁ"'any

t
Z Cin, k)= nt/tl
k=¢ (2)

In this approximation, the ratio of the two values approaches unity as n becomes large. MoreoVver:
the minimum number of parity bits r which is necessary for t error correction is approximated by
r = t[logy(n)] - log, (tl) (3)

within % 1 of the true value.

These approximations are valid for any positive value of t so long as n is sufficiently large-
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Shannon’s Second Coding Theorem (as applied to a binary channel) states that it is possible
to transmit at a rate arbitrarily close to (but strictly less than) the channel capacity with an arbitra-
rily low (but positive) probability of error. This is made possible by very long error correcting block
codes. It is difficult to appreciate the largeness of the numbers involved without calculating a few
of them. It is, however, a tremendous computational effort to calculate (1) for values of t which
Mmay range in the hundreds, and values of n in the hundreds of thousands. The approximation in
(3) gives a relatively simple way to estimate these numbers.

Even for modest values of n (say, a few hundred to a few thousand) and small values of t
which are encountered in practice, equation (3) gives a quick and easily accessible estimate of the
number of parity bits required. The equation also permits a quick assessment of the overhead
involved in correcting t errors through the ratio

r |
I~ t(ngn
n n

Which exhibits the well-known increasing efficiency of long block codes.

DEVELOPMENT

We first derive an upper bound to the sum in (1) by dominating it with a geometric sum.
Since

Cln, k) = nl < nk
(n—k) I kI kl
it follows that

t
z Cln,k) < X nk/i @
k=9 k=¢ .

< ot T o(tnk
tl k=9

Taking the sum of the geometric series in (4) gives a tight upper bound. For our purposes, however,
a further simplification is useful. Since t is less than or equal to n, we have

t t
Z (t/k <1+Z (t/n)
k=g k=1

= 1+t2/n

This yields the following upper bound valid so long as t is less than or equal to n:

t
2 Cln,k) < nt(1 + 12) (5)
k=¢ tl n
Next, we develop a lower bound to the sum in (1). Note that

t
Z Cin,k) -t
k=¢

©an be taken as a polynomial of degree t. The coefficients starting from the highest degree term of

the first ten polynomials are listed in Table 1. .
In the Appendix, it is shown that the first three terms of the polynomial are as follows:
t

Z Cln,k).t] = nt — (t=3) nt=1 + (8 — 1113 +232 =2t nt=2+ ...
k=@ T2 g 12 8 12
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Table 1. Coefficients of ~ C(n,k) - t!

k=¢
t Coefficients"
1 1 1
2 1 1 2
3 1 0 5 6
4 1 =2 1 14 24
5 1 -5 25 5 - 94 120
6 1 -9 55 —-75 304 444 720
7 1 =14 112 —350 1,099 364 3,828 5,040
8 1 =20 210 —1064 3,969 —4,340 15,980 25,584 40,320
9 1

—-27 366 —2646 12,873 31,563 79,064 34,236 270576 362,880

*The leftmost column corresponds to the highest degree term nt.

The coefficient of the third term is non-negative for any positive value of t. Therefore, so long as
n is large enough

E Cln, k) > n*(1 —t(t=3))

k=g o T 2n
Finally,
nt(1 —_1 6)
kE ¢C(n k) > v » (
APPROXIMATIONS

From the upper bound (5) and lower bound (6), we have

nt (t2> (7)

Therefore, if n is sufficiently larger than t, the right hand side below is a simple approximation t0
the sum in the Hamming bound:

E C(nk)-nt
k=¢

z: C(n, k) =~ nt/tl (8
k=¢

From (7) the relative error of the approximation is o (t2/n) which is small if n is sufficiently large-
The minimum number r of parity bits is given by the logarithm (base 2) of the sum in 1.
We can derive a useful expression that gives r directly by manipulating (5) and (6) to give

t
log,(1—12 ) <log, £ Cln,k) — log, nt < log, (1 + 2 (9)
032(1 -1 ) < logy b (n 920 < log, 2)

This suggests that if n is greater than t2 then approximately

I = t-logyn — logst! : (10)
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with a difference of not more than one bit.
If t is large, Stirling’s Approximation can be used for the last term. Therefore, these approxi-

Mations are easy to calculate.
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APPENDIX

Two properties of permutations and a sum involving combinations are proven below.

The permutation P (n, k) of n objects taken k at a time is equal to n! /(n—k)! . For a fixed k,
this expression can be viewed as a polynomial of degree k in the variable n. For example,

P(n,1) =n

P(n, 2) n2 —n

P(n,3) = n3—-3n2+2n

P(n,4) = n%—6n3 +11n2 — 6n
P(n,5) = n5 — 10n% +35n3 +24n
Lemma 1

The first three terms of P(n, k) are given by

Pn,k) = nk —k(k=1) nk=T + (k4 — 5k3 + 3k2 — 1k) nk=2 — ..
2 8 12 8 12

Proof. The proof proceeds by induction. The property can easily be verified for k =1, 2 and
3. Now assume that the property is true for k—1. From the recursive property of permutations

P(n, k) = (n—k+1) - P(n, k—1)
@ straightforward calculation yields the first three terms given above. This completes the proof.

Lemma 2

For t less than or equal to n,

5 -2
T Clnk)-tl =nt — t{t=3)nt—1 + (1% — 1113 +23t2 —25¢) n'=%+....
=g 2 g g 12

Proof. The proof proceeds by induction. The given equation can be easily checked for t = 1
and 2. Now assume that the property is true for t—1. Observe that

LS t—1
2 Clnk)-t! = tZ Cn, k). (t=1)1 +P(n,1)
k=¢ k=¢

|n\{oking Lemma 1 and calculating the right hand side vields the first three terms claimed above.
his Completes the proof.
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