‘the Third Normal Form is usually adequate in
dealing with most of the problems which can be
éncountered in database design.”’

Normalization in Database Design

by
Prof. Edgardo G. Atanacio*

ABSTRACT

The design of database files can be improved with the use of normalization. Normalization sim-
plifies the structure of database files by grouping the components into simpler structures. Such sim-
ple structures adapt better to changes or modifications to the database which are usually necessary
to meet changing needs. This paper describes the procedure of converting unnormalized files to the
Thirc_i Normal Form.

INTRODUCTION

Databases are fast becoming incispensable in many of today’s business and scientific opera-
tions. Their design seems to have been greatly simplified with the emergence of relational and semi-
relational database management software. With the migration of this type of software to the easily
accessible microcomputer, anybody can just set up database files for use in storing operational data.
However, as applications and requirements become more complex, there is a compelling need for
the proper design of the structure of these files. This article attempts to explain one of the most
useful tools in database design.

DEFINITIONS

Normalization is a formal process which examines data and simplifies the data item groupings
to better accommodate future changes. Normalization theory is built around the concept of normal
forms. A data group or structure is in a particular normal form if it satisfies a certain set of con-
straints.

For our purposes, we will define a database simply as a collection of stored, interrelated data.
We will use the terms “‘entity”” and “attribute” to refer to the primary structural components in a
database. An entity is anything about which information is stored. It may be tangible or intangible,
and it may be a person, a concept, a place, or an object. An attribute is a characteristic or property
of an entity. It is a data element describing an entity. An entity occurrence is a certain set of attri-
butes of an entity. In a physical sense, an attribute is equivalent to a field, an entity occurrence is
a record, and an entity can be regarded as a file. We will use these terms interchangeably throughout
this paper.

*Assistant Professor, Department of Industrial Engineering and Operations Research, U.P. College of Engi-
neering, Diliman, Quezon City, Philippines.

;) \/{ nT .o ieal ~ 14 69 °

.

Each entity has to have a primary key. A primary key is an attribute which uniquely identifies
a particular occurrence of an entity. For example, in a file containing information about employees,
the unique employee number is a good choice as the primary key. Sometimes, a single attribute will
not suffice to uniquely identify the records within the file. In such situations, two or more attri-

butes are used together to identify every occurrence. We call such a set of attributes a concatenated
key or compound key.

WHY DO WE HAVE TO NORMALIZE?

Normalization is done for the following reasons:
1. To prevent data update problems, referred to as anomalies.
2. To minimize data redundancy and inconsistency.

3. To improve the understanding of the interrelationship and interdependence of data.
4. To provide a basis for the sharing of data.

However, as noted by Kent, normalization will tend to penalize retrieval, and biasedly assumes
that nonkey attributes will be updated frequently.

NORMALIZATION PROCEDURE

For e(ll practical purposes, an entity is considered to be normalized when it is in at least the
Third Normal Form. There are other higher normal forms, but the Third Normal Form is usually
adequate in dealing with most of the problems which can be encountered.

In database design, the first step is to gather data about the data to be stored. In this step,
the relevant entities and their attributes are identified. It is also critical that the relationships be-
tween the attributes are very well understood and properly documented. We will use the Purchase
Order (PO) example to illustrate the steps we will be performing in normalization.

Let us assume that we need to keep data about purchase orders. When we look at our pur-
chase order form, we find the following data in it:

PO-NUMBER: a unique four-digit sequence number which identifies the purchase order.
PO-DATE: the date the PO was written, in the format month/day/year.
BUYER-NAME: a unique three-character initial of the person who wrote the PO.
SUPPLIER-NUMBER: a unique three-digit code assigned to each supplier.
SUPPLIER-NAME: the name of a supplier.

PART-NUMBER: a unique three-digit code identifying a part. Many parts can be ordered in
one PO.

PART-NAME: the name of a part.

PO-PART-QUANTITY: the number of units of a part ordered in a given PO.

As a start, we can group all of these attributes into a single entity which we wil! name PO. We
can define this entity using the concise set form. In this notation, attributes are separated by com-
mas, parentheses denote repeating groups, and underscoring denotes keys.

PO (PO-NUMBER, PO-DATE, BUYER-NAME, SUPPLIER-NUMBER, SUPPLIER-NAME,

(PART-NUMBER, PART-NAME, PO-PART-QUANTITY))

ZEROTH AND FIRST NORMAL FORMS

We can say that this PO entity is in the Zeroth Normal Form. Figure 1 shows the structure
and contents of the sample database.

Definition 1: Zeroth Normal Form
All entities are automatically in the Zeroth Normal Form (ONF).

70

PO

PO- PO- BUYER- SUPPLIER- SUPPLIER- PART- PART- PO-PART-
NUMBER DATE NAME NUMBER NAME NUMBER NAME QUANTITY
1273 02/05/87 ECD 335 Phoenix PO2 Nut 30
PO3 Bolt 20
PO4 Screw 40
POS Cam 20
PO6 Cog 40
PO7 Jig 50
1274 02/05/87 SMB 275 Apex PO2 Nut 30
PO3 Bolt 30
1275 02/06/87 LaF 223 Pacific PO4 Screw 70
PO6 Cog 40
1276 02/09/87 ECD 230 Vulcan PO3 Bolt 20
PO5 Cam 30
PO6 Cog 40
1227 02/10/87 HIG 208 Super PO6 Cog 50
1278 02/10/87 . HIG 335 Phoenix PO8 Rivet 30

Figure 1. Purchase Order Example, Zeroth Normal Form

Some entities in the Zeroth Normal Form will suffer some problems if implemented without
any change in structure. If we disallow the use of variable repeating fields, the entity will have to
be implemented using a fixed number of fields. If implemented as a single file, design problems will
occur with respect to storage considerations. For instance, in our example, we will have to allocate
a maximum number of the PART-NUMBER, PART-NAME, PO-PART-QUANTITY repeating group.
A proper upper limit is hard to set. Too small an allocation value will result in the problem of some
parts which cannot be accommodated. Too large a value will result in wastage of storage space. The
solution to this predicament is to transform the entity from the Zeroth Normal Form to the First

Normal Form.
Definition 2: First Normal Form
An entity is in First Normal Form (1NF) if all its attributes are atomic, that is, there are no

repeating groups.

To transform our example from ONF to 1NF, the repeating groups must be removed. We need
to split the original entity into several entities, and we need to copy the primary key of the first
entity into the new entities, and then determine what the new keys should be. For our example, we
split the original PO entity into two entities PO and PO-PART. Entity PO-PART contains the items
which existed as the repeating group in the original PO. Note that we have to have a concatenated
primary key consisting of PO-NUMBER and PART-NUMBER to uniquely identify each occurrence

of PO-PART.

First Normal Form:

PO (PO-NUMBER, PO-DATE, BUYER-NAME, SUPPLIER-NUMBER, SUPPLIER-NAME)
PO-PART (PO-NUMBER, PART-NUMBER, PART-NAME, PO-PART-QUANTITY)
Figure 2 shows the purchase order database in the First Normal Form.

INF UPDATE ANOMALIES

The structure of our entity set is still undesirable in the current form. Consider the effects of .

the following operations to be performed:
o Insert: Add a new unordered part to the set of parts. Since the part is yet unordered, we
cannot keep the part information in either PO or PO-PART entity since there is no PO-

71

PO

PO- PO- BUYER- | SUPPLIER- SUPPLIER-
NUMBER DATE NAME NUMBER NAME
1273 02/05/87 ECD 335 Phoenix
1274 02/05/87 SMB 275 Apex
1275 02/06/87 LQF— 223 Pacific
1276 02/09/87 ECD 230 Vulcan
1277 02/10/87 HIG 208 Super
1278 02/10/87 HIG 335 Phoenix
PO-PART
PO- PART- PART- PO-PART-
NUMBER NUMBER NAME QUANTITY
1273 PO2 Nut 30
1273 PO3 Bolt 20
1273 PO4 Screw 40
1273 POS Cam 20
1273 PO6 . Cog 40
1273 PO7 Jig 50
1274 PO2 Nut 30
1274 PO3 Bolt 30
1275 PO4 Screw 70
1275 PO6 Cog 40
1276 PO3 Bolt 20
1276 POS5 Cam 30
1276 PO6 Cog . 40
1277 PO6 Cog 50
1278 PO8 Rivet 30

Figure 2. Purchase Order Example, First Normal Form

NUMBER which can be used because no PO has been issued for that part. For instance,

we cannot add a part with part number “PO1’' and part name ‘Washer'’ if that part has
not been ordered yet.

Delete: Remove the PO-PART record fcr a part already received. This may not always
create a problem. However, let us try to delete the record with PO-NUMBER “1273"
and PART-NUMBER "“PO7". When the delete operation has been carried out, all infor
mation about the deleted part will have been lost, since this was the only occurrence of
that part.

o Change: Change the part name. Let us consider changing the part name of part number
PO6" from ““Cog” to “‘Gear”. Since this part occurs several times within the PO-PART
entity, we have to look for and change all occurrences of the part name. If we overlook
even just a single occurrence, we lose the integrity of our data. .

The preceding problems are called update anomalies, and to be able to remove such anomalies

present in the 1NF, we have to understand first the concept of functional dependence.

72

Definition 3: Functional Dependence

For any entity R, attribute Y is functionally dependent on attribute (or collection of attri-
butes) X if the value of X determines the value of Y. In short, X identifies Y.

Attribute Y is functionally dependent on X if it is invalid to have more than one occurrence
with the same X value but different Y values. That is, a given X value must always occur with the
same Y value.

For example, EMPLOYEE-NUMBER, EMPLOYEE-NAME, EMPLOYEE-ADDRESS, and
EMPLOYEE-SALARY are attributes of the entity EMPLOYEE. If, given a particular value of
EMPLOYEE-NUMBER, there exists precisely one corresponding value for each of EMPLOYEE-
NAME, EMPLOYEE-ADDRESS, and EMPLOYEE-SALARY, then EMPLOYEE-NAME, EMPLO-
YEE-ADDRESS, and EMPLOYEE-SALARY are said to be functionally dependent on EMPLOYEE-
NUMBER. '

It is easier to understand functional dependencies if a device called a functional dependency
diagram (FDD) is used. The relationships between the attributes of each entity are examined and a
diagram is drawn for each entity structure. An attribute is shown within a rectangular box. A direc-
ted arrow is used to connect related attributes. The tail end comes from the attribute upon which
the attribute being pointed to is dependent. The functional dependency diagram of PO-PART is
shown in Figure 3. Note the use of the larger box to designate the whole concatenated key and of
the underscore to identify the primary key attributes.

Definition 4: Full Functional Dependency

An attribute (or a collection of attributes) Y of an entity R is fully functionally dependent on
another collection of attributes X of R, if Y is functionally dependent on the whole of X but not on
any subset of X.

PO-NUMBER —> PO-PART-QUANTITY
PART-NUMBER - PART-NAME

———

Figure 3. Functional Dependency Diagram. PO-PART

SECOND NORMAL FORM
Definition 5: Second Normal Form

An entity is in Second Normal Form (2NF) if:
1. ltisin First Normal Form, and
2. All the nonkey attributes are functionally dependent on the whole primary key (full
functional dependency upon the primary key).
If we analyze our purchase order entity set, we find that entity PO is automatically in the Se-
cond Normal Form since it has only a single attribute as the primary key. The PO-PART entity is
Not in the Second Normal Form because PART-NAME is functionally dependent on just PART-

73

NUMBER and not on the whole concatenated key PO-NUMBER and PART-NUMBER. To convert
this to the Second Normal Form, we have to split the PO-PART entity into two entities PO-PART
and PART, giving the following structures:

Second Normal Form:

PO (PO-NUMBER, PO-DATE, BUYER-NAME, SUPPLIER-NUMBER, SUPPLIER-NAME)

PO-PART (PO-NUMBER, PART-NUMBER, PO-PART-QUANTITY)

PART (PART-NUMBER, PART-NAME)

The purchase order database in the Second Normal Form is shown in Figure 4.

In converting an entity from 1NF to 2NF, we have to transfer to a new entity the attribute
or attributes which are dependent on just part of the concatenated key, copy into this entity the
attribute they are dependent on, and make this attribute the primary key of the new entity.

PO
PO- PO- BUYER- SUPPLIER- | SUPPLIER-
NUMBER DATE NAME NUMBER NAME

1273 02/05/87 ECD 335 Phoenix

1274 02/05/87 SMB 275 Apex

1275 02/06/87 LQF 223 Pacific

1276 02/09/87 ECD 230 Vulcan

1277 02/10/87 HIG 208 Super

1278 02/10/87 HIG 335 Phoenix

PART PO-PART
PART- PART- PO- PART- PO-PART-
NUMBER NAME NUMBER NUMBER | QUANTITY

PO1 Washer 1273 PO2 30

PO2 Nut 1273 PO3 20

PO3 Bolt 1273 PO4 40

PO4 Screw 1273 POS 20

PO5 Cam 1273 POB 40

PO6 Cog 1273 PO7 50

PO7 Jig 1274 PO2 30

PO8 Rivet 1274 PO3 30
1275 PO4 70
1275 POB 40
1276 PO3 20
1276 PO5 30
1276 PO6 40
1277 PO6 50
1278 PO8 30

Figure 4. Purchase Order Example, Second Normal Form

74

2NF UPDATE ANOMALIES

Looking over our entity set, we find that there are still some update anomalies remaining.
The following operations cannot be serviced properly vet:

° [nsert: Add a new supplier. Again, unless a supplier has been specified in a PO, details
about that supplier cannot be made part of the database. Thus, only suppliers currently
supplying parts in POs can be included in the database.

o Delete: Remove a purchase order. If we delete a purchase order containing the last
occurrence of a supplier, we will lose all information about that supplier once the delete
operation has been carried out.

0 Change: Change supplier name. If we try changing the name of a supplier who has sup-
plied a lot of parts, then we have to search for and change all occurrences of that sup-
lier name. Neglecting to change all of the occurrences will inject inconsistencies within
the database.

These update anomalies are due to a relationship known as transitive dependence.

Definition 6: Transitive Dependence

Given three attributes (or collections of attributes) X, Y, and Z, if Z is functionally dependent
on Y, and Y is functionally dependent on X, then Z is functionally dependent on X. Z is said to
be transitively dependent on X.

Transitive dependence occurs when a nonkey attribute identifies other attributes.

v

PO-DATE

—> BUYER-NAME

PO-NUMBER

—> | SUPPLIER-NUMBER

—> SUPPLIER-NAME

Figure 5. Functional Dependency diagram, PO
75

PO SUPPLIER
PO- PO- BUYER- | SUPPLIER- SUPPLIER- | SUPPLIER-
NUMBER DATE NAME NUMBER NUMBER NAME
1273 02/05/87 ECD 335 208 Super
1274 02/05/87 SMB 275 223 Pacific
1275 02/06/87 LQF 223 230 Vulcan
1276 02/09/87 ECD 230 275 Apex
1277 02/10/87 HIG 208 335 Phoenix
1278 02/10/87 HIG 335
PART PO-PART
PART- PART- PO- PART- PO-PART- -
NUMBER | NAME NUMBER NUMBER [QUANTITY
PO1 Washer 1273 PO2 30
PO2 Nut 1273 PO3 20
PO3 Bolt 1273 PO4 40
PO4 Screw 1273 POS 20
POS5 Cam 1273 PO6 40
PO6 Cog 1273 PO7 50
PO7 Jig 1274 PO2 30
PO8 Rivet 1274 PO3 30
1275 PO4 70
1275 PO6 40
1276 PO3 20
1276 POS5 30
1276 PO6 40
1277 PO6 50
1278 PO8 30
Figure 6. Purchase Order Example, Third Normal Form
THIRD NORMAL FORM

Definition 7: Third Normal Form

An entity is in Third Normal Form (3NF) if:

1. Itis in Second Normal Form, and .

2. No nonkey attribute is functionally dependent on any other nonkey attribute (no trans"”

tive dependence).

Again, looking at our purchase order example, we find that the entities PART and PO- PART
are already in the Third Normal Form. However, the PO entity has a complexity remaining dué to
the relationship between the nonkey attributes SUPPLIER-NUMBER and SUPPLIER-NAME. Thi
is clearly shown in the functional dependency diagram of the entity PO in Figure 5. Given just the
SUPPLIER-NUMBER we can determine the SUPPLIER-NAME. To remedy the situation, we "
split the entity PO into two entities PO and SUPPLIER.

76

Third Normal Form:

PO (PO-NUMBER, PO-DATE, BUYER-NAME, SUPPLIER-NUMBER)
SUPPLIER (SUPPLIER-NUMBER, SUPPLIER-NAME)

PO-PART (PO-NUMBER, PART-NUMBER, PO-PART-QUANTITY)
PART (PART-NUMBER, PART-NAME)

The sample database in its final form is shown in Figure 6.

CONSOLIDATION STEP

In more complex situations, there is a process of consolidation after every transformation.
The purpose of consolidation is to remove the redundancies which can appear when the entities
are split. Qur purchase order example is, however, too simple to illustrate this step. But in general,
to consolidate the entities after every stage of the transformation:

1. Examine all entities and determine which entities have exactly the same primary key

(for both singular or concatenated keys).

2. Delete all entities which are exactly identical to other existing entities.

3. Combine all remaining entities with the same primary keys into new entities.

4. Remove all redundant attributes within the same entity.

As we can see in the final set of entities which are in at least the Third Normal Form, we can
simplify the structure of database files by systematically grouping them into smaller and simpler
entities or files. With such simpler structures, we can adequately cope with modifications due to
changing future requirements. The cost of this flexibility will be in terms of access and retrieval
effort and time. In our example, we ended up with four entities coming from a single entity. If we
implement this physically, we may have to access all four files to get and present the information
required while if we use the original one-file design we will have to look at only one file. However,
such tradeoff will be necessary if we want to be able to service future requirements with the mini-
mum of problems. '

REFERENCES

BRADLEY, J. (1982), File and Data Base Techniques, Holt, Rinehart and Winston, New York, N.Y.
DATE, C. J. (1981), An Introduction to Database Systems, 3rd ed., Addison-Wesley Pub. Co.,

Reading, Mass.
KENT, W. (1983), ‘A Simple Guide to Five Normal Forms in Relational Database Theory.”" Com-

munications of the ACM (February 1983), pp. 120-25.

KROENKE, D. (1977), Database Processing: Fundamentals, Modelling, Applications, Science Re-
search Associates, Inc., Chicago.

MARTIN, J. (1983), Managing the Data-Base Environment, Prentice-Hall, Inc., Englewood Cliffs,
N. J.

ROBINSON, H. M. (1981), Database Analysis and Design, Chartwell-Bratt, Kent, England.

ULLMAN, J. D. (1980), Principles of Database Systems, Computer Science Press, Inc., Potomac,
Maryland.

77

	69
	70
	71
	72
	73
	74
	75
	76
	77

