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ABSTRACT

Synthesis and analysis equations are formulated for the planar crank-slider and the slider-slider
mechanisms using motion parameters based on displacements from the initial position of the mech-
anisms. The synthesis equations are derived explicitly in terms of these parameters and also the para-
meters describing the mechanisms at their initial positions. These synthesis equations are generalized
for Multiply-Separated Position synthesis. The solutions to the resulting systems of non:linear equa-
tions are shown for different cases of number of positions and unknowns and specified parameters
describing the mechanisms at their initial positions.

INTRODUCTION

The approach developed by Hernandez [1] for the synthesis of planar four-bars as applied to
the crank-follower mechanism is extended for the crank-slider and the slider-slider mechanisms.
With these two additional mechanisms considered, the synthesis and analysis of\EIanar four bar_ |
function generators are completed. The coordination of a rotational motion with another rotatlonal
motion is covered by the crank-follower (CF), that of a rotational motion with a linear motion is
covered by the crank-slider (CS) while the coordination of a linear motion with another linear
motion is covered by the slider-slider (SS).

Although the number of positions that these planar four-bars can be synthesized is limited
(5 for the CF and CS and 4 for the SS) as compared to mechanisms with greater number of links
(e.g., six-bar mechanisms), a very high percentage of synthesis requirements can be satisfied by these
four-bars mentioned.

As a review, one can look at references [2] and [1], in that order, for a study of some of the
concepts related to the development and derivation of the equations.

Note that there has been previous work, as in references [3] and [4], in the subject of planar

- four-bar synthesis. This new approach, however, has reduced some of the difficulties encountered
previously and has also eliminated some of the seeming inconsistencies in these earlier methods.

The result of this new approach gives very explicit relations with respect to the chosen para-
meters required to describe the mechanisms. In addition, the solutions that are presented are
straightforward, analytical and in closed forrn.

*Department of Mechanical Engineering, University of the Philippines.
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THE CRANK-SLIDER MECHANISM

One of the first requirements in the synthesis of an already predetermined mechanism is to
be able to represent the mechanism in its “basic’’ configuration. This “’basic’’ configuration means
that a unique mechanism is located and oriented in the plane and is described by the minimum
number of parameters (MNP). This means that no matter how one will eventually locate and orient
the mechanism in the plane and describe it by more than this MNP, only a subset of this total
number of parameters is independent as indicated by this minimum number of parameters. There
is no exact method of configuring a mechanism to its basic form. A check at the outset is that one
cannot reduce the number further and still describe a unique mechanism. There are also mathema-
tical ramifications that lead to inconsistencies and/or dependencies in some of the synthesis
equations. This happens when considering synthesis at a certain number of positions that is already
exceeding the true maximum number of positions. In another context, one is trying to solve for
unknowns in a system of equations in which some of these unknowns are not independent.

As an illustration, Figure 1 shows the crank-slider as described by seven parameters, which are,
the two coordinates each of the fixed pivot, the moving pivot and the slider pivot and also the angle
describing the direction of the slider axis.
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Figure 1. The Planar Crank-Slider

Figure 2. The “Basic” Crank-Slider and its Vector Representation
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One might be misled into believing that the crank-slider can be synthesized for these seven
parameters. Figure 2, however, shows the “’basic’’ crank-slider which is described by only four para-
meters — two coordinates each for the moving pivot and the slider pivot. Also, these four para-
meters are the components of the vectors A and D as shown in the same figure. In most literature
and textbooks, the crank-slider shown is also called an off-set slider-crank.

EQUATION OF MOTION FOR THE CRANK-SLIDER

The loop closure equation for the crank-slider at its initial position is
A+B=DorB=D-A (1)

Figure 3 shows the crank-slider at its displaced position due to the motion parameters 0j
and Sj. This time, the loop closure equation becomes

Aj+B;=D+S,C (2)

where Si describes the linear displacement of the slider
from its initial position
and C is a unit vector in the direction of the x-axis.

Equation (2) is now rearranged as

B;=D+S,C-A (3
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Figure 3. The Crank-Slider at its Displaced Position

The concept of the linkage constraint is now applied to the coupler which is simply that itS
length remains the same throughout. In an equation, this constraint is written as

B;-B;=constant=B-B (4)
The expression for the vector rotation of A is (see reference 2)

5; = écosﬂj +(k x A) sinOj (5)

where Bi is the angle of rotation of vector A
and, k is the unit vector in the z axis.
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Taking the dot product of B in equation (1) gives us

B-B=A-A+D-D-2A-D (6)
Substituting equations (3) and (6) into equation (4) will result in

(D+ Sig - _A_cosBi -(k x A) sian) (D+ Si(_.‘. - Acosﬂj- (&xA)sinﬂj)

=A*A+D'D-2A-D (7)

Carrying out the dot product operation and simplifying will give us the equation of motion for
the crank-slider as

§;2/2+C (D - Aj)Si + DA —A) = 0 (8)

Note the difference of the above equation of motion with that of equation (28) in reference [2].
The reason for this slight change is to make the equation of motion more convenient for synthesis.
As an analysis equation for Sj given a 6,-, the solution is obtained from the following

Sj=-bt \/b? - 2c (9)

where b=C- (Q-Ai)
and c =D+(A-A))

(10)

) To complete the analysis for velocity and acceleration, we refer to equation (4) and take its
first time derivative to get

B.+B. = (11)
B3.=8.C-A".0. (12)

whereE] Sj(_l AJOJ

and A'; = — Acosfj + (kxA) cost); (13)

Substituting equations (12) and (13) into equation (11), noting that A’i is perpendicular to
Aj and after simplifying will result in

$i= [Aj+(D + sjg)/(si +C(D —Aj) ] éi ™

For the acceleration of the slider, the constraint equation (4) is differentiated twice with res-
Pect to time to give us

B.-B.+ B.:B.= (15)
where B. = §.C + A.%2 - A’4. (16)
ere B, S'Q + ’01 191

4 bSUbstituting equations (12) and (16) into equation (15) will give us the acceleration of the sli-
erblock as

§=[2 (A":C) 6,8, A; (D +S,C) é2j _{52j +A-(D+85,0) 6]/ (S;+C-(DA) (17)

==

where éi and (9} arethe angular velocities and angular accelerations of the input crank at the
particular position Bi.
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CRANK-SLIDER SYNTHESIS EQUATIONS

Writing the design vectors A and B as
A=aqi+ay) (18)
and D=d1?+ dzlj\ (19)

and substituting these equations into (8) will give us the synthesis equation as,
2 . .
S j/2 - Sicosoial + Sjsm0]a2 + del + (1 —cosOjla;d; — sm0ia‘d2
+sinfjapd; + (1 — coslj)a,d, = 0 (20)
Equation (20) is the motion equation of the crank-slider mechanism in terms of the design parame:
ters aq, ap, dq and d,. This time, for synthesis, the motion parameters Oi and Sj are specified. Since
we are able to write one equation for each displaced position (from the initial position), we can

therefore synthesize the CS for a maximum of five positions. The synthesis equation (20) is now
written for the generalized MSP synthesis as,

n n n n n n
L1 jartLlajagtLla jdi+ Ly ?a1d1 + Lg jagdp + Lg jagdy + Ly jazd2

+1g"=0 (21)
i=2,3uptob
n=0or1or2

. n’
For reference, the expressions for the L; js,n= 0, 1 or 2 are listed in the appendix.

SYNTHESIS CASES FOR THE CRANK-SLIDER

The solutions for the four- and five-position synthesis problems will now be shown. The two- and
three-position problems do not pose any difficulty and will not be presented here. There are fouf
possible cases of the four-position problem. These are when any one of a1, ap, dq and dg is the
unknown. The case where the parameter dq is specified differs from the cases when the specified
parameters are either aq, ap or dy. When dq is specified, the synthesis equations are written 8%

(Aj + Bidz)a1 + (C] + Didz)az 4 Ej =0 (22)
1=2,3,4
where: the Aj, Bj ... .. Ei are determined from the L;j’s and dq.

.The solutions for do are obtained from the roots of the quadratic equation expressed below as the
eliminant of equation (22).

(A;+Bjdq) (C;+Djdy)  Ej|=0 (23)

i=2,3,4

These two roots are then substituted back into any two equations of (22) and this will result in 2

linear system of equations with unknowns aq and a9. There are therefore, two sets of solutions for
this particular case of the four-position problem, -

The cases when any of aq, ay or dj are the specified parameters give a cubic as the eliminant.

As an illustration, the case where dy is specified will be shown. The synthesis equations are writte"
as,

(A}+ Bid1)a1 +(Ci+Did1)32+(Ej+Fid1)=0 (24)
i=2,3,4
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The cubic eliminant is the following determinant set to O.

(Aj +Bjdq) (Cj+Djd‘|) (Ej + Fjdq)|=0 (25)
i=23,4
The one or three real roots of the eliminant are then substituted into any two equations of (24)

to get aq and ap. This gives a possible maximum of three sets of solutions to this four-position

problem.
For the five-position problem, all of the design parameters aq, ap, dq and dg are unknowns.

To solve this case, the synthesis equations are first rearranged in the following form:
(Ai + Bjd1) + (Cj + Djd1) aq+ (Ei + Fjd1) ag+0dyp + Gja1d2 + Hjazdz =0 (26)
i=2,3,4,5
where: the Aj, Bj, e Hj are the corresponding Liin’s of the synthesis equations.

By multiplying all of the four equations of (26) by do, we can assemble a homogenous'‘linear’’

system of eight equations in the 8 unknowns 1, aq, ag, dp, aqds, agda, a,dg and azdg. The solu-
tions for dq are obtained from the roots of the following eliminant expressed as the determinant

helow set to 0.

(Ai+Bid1) (Cj+D"d1) (E‘-+Fjd1) 0 Gi
0 0 0 (Aj"' Bjd1) (Cj+Djd1)
Hi o oy =0 (27)
. . . i =2,3,4,5
(Ej + F] d1) G] H1 j

The eliminant from the 8 x 8 determinant is a 5th degree polynomial. The solutions to dq are the
roots of this polynomial and there can be 1, 3 or 5 real roots of meaning to the synthesis problem.
To get the solutions for the other parameters aq, ag and dp, we consider any seven of equations
(26) and equation (26) multiplied by dy. Then, solve this linear sgstem for the unknowns a1, ap,
dp and for verification purposes, also ajdg. apdp, a1 d% and apds .

THE SLIDER-SLIDER MECHANISM

Any slider-slider mechanism can be oriented and located in the x-y coordinate system as shown
in Figure 4 with the vectors A, B.and D. For this “basic’’ slider-slider, the parameters describing a
unique SS are the vectors locating the two moving pivots, that is, A and D. After a series of at-
tempts, a convenient representation of the parameters for synthesis and also analysis is the case of
a polar notation for vector A. Thus, we let r (the length of A), 6 and d (the length of D) be the para-
Meters for synthesis. Using the said representation, the followi'ng are obtained and used in the deri-
vation of the equation of motion of the slider-slider:

A . A
A = rcosdi + rsinf]

A = cosdi + sinfj (28)
D =d?%
c=1%

EQUATION OF MOTION OF THE SLIDER-SLIDER MECHANISM
At the initial position of the mechanism, we can get the expression for the vector B as,

B=D-A

(29)
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At the jth position when the sliders have moved from their initial positions by corresponding Sj’s,

we can get the following relations as seen in Figure 5.

[[>-]

—_— X
D

Figure 4. The Slider-Slider and its Vector Representation

A
A

Figure 5. The Displaced Slider-Slider

A +Sj,A +Bj= D +Sj,C (30
or,Bj=D +SjpC-A-S;,A (31)

Using the constraint of the coupler having the same length, that is

Bj- Bj is the same as B B we
get, = b

2 2
1/sza +%Sjb+3ib(g'9)‘sl'a (ﬂ’Q) -Sjb(A'Q)-

)
Siasjb (An C)+ Sia (ﬁ *A)=0 (32
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Substituting the equations of (28) into (32) and rearranging will result in the slider-slider equation
of motion in terms of the parameters r, d and cosf.

’/2313 + stlg + Sibd - Sl-adcosﬁ - Sibrcos(J - SjaSjbCOSH + Sjal‘ =0 (33)
For use as an analysis equation, we can get Sja when Sjb is given from the equations below.

Sja=-bp  VbE -2cp (34)

where: by, = r - dcosf - Sjbcosﬂ
3
and cp = Sjb (%2 Sjb +d - rcosf) (35)

Or, when Sja is specified or known and we would like to get Sjb: we have,

/.2
Sib =-b, t by -2c, (36)

where: by =d - rcos'B - Sjacosd (37)
and cy= Sia (% Sia +r-dcosf)
For the velocity and acceleration equations, we take the derivatives of equation (33) and rear-

range into two forms, that is, corresponding to the cases when either of Sja or Sjb is the unknown
and the other is specified.

For the case when the slider A is the output, we have,

éja =—(n/m) é]b (38)
and S]a = (1/m) (ZSjaSibCOSO— é,a2"' Slg - "Sjb) (39)
where: m= Sja + r - dcosf - SjbCOSO (40)
n= Sjb +d - rcosf - Sjacosﬂ
For the case when slider B is this time the output, we have,
éjb=-—(m/n) éja @1
.. ) 2
and Sib = (1/n) (2S;5Sjpcosd — S5 — sib -mSj,) (42)
SYNTHESIS OF THE SLIDER-SLIDER MECHANISM
The equation of motion (33) is rearranged and written as,
(43)

(M]ni + MznjCOSB) r+ (M3nj + M4nj0050) d+ (Msnj + Menjcoso) =0

The Minj,’s were derived and are listed in the appendix for n=0, 1 and 2.

For the four position problem, the maximum number of positions for the slider-slider, the

solution for the design parameters are obtained by first getting the roots for cosf from the following
determinant set to zero.

4
(M{'j + Mznicosﬂ) (M3nj + M4nj cosf) (MS"‘- +Mg "j cosf)|= 0 (44)

=234
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The roots of the cubic eliminant are the solutions for cosl. Note here that roots for cosf obtaine.d
which are less than -1 or greater than +1 would correspond to the case of getting complex roots In
the previous mechanisms considered. To get the solutions for the other design parameters r and d,
we first substitute the roots for cos0 in any two equations of (43). This will result in a linear system
of two equations in r and d.

CONCLUSIONS

The synthesis and analysis of the crank-slider and the slider-slider have been presented. with

these and the results of a previous work [1], the synthesis and analysis of the possible cases of pla
nar four-bar function generators are covered.

A worthwhile and useful effort will now be to develop a software package for the synthesis
and analysis of these function generators. This package can then be used by teachers, students and
practicing engineers. Professor Manuel G. |banez of the Mechanical Engineering department of up
and the author are presently undertaking this effort. Although requiring more refinements, a par
tially completed package has already been used in a Machine Design class as a test case. More exten-
sive use and consideration of this and maybe more packages in the future will be carried out when
the new curriculum for ME in UP which considers these topics is implemented.

After these efforts for function generators, attention can then be focused on the planar foul
bar motion and path generation synthesis. Although many methods have already been developed.
one can look at either refinements of these methods by reformulations or modifications, or, one ca"

devote attention or efforts in the implementation of these methods, specially with the availability
and the utility of micro computers.

APPENDIX

. n
A. Expressions for K; jfori=1,2,...8andn=0, 1and 2
Kqj=— SjCOSOj

K1 1i = SisianBj—Sjcosﬂj,

K1% = ; (cos 0% + sind0;) + 25ind 0;8;~costS
Kzi-_-SisinGj

I<2li = Sjcos0j6; + S;sind;

K22i -5, (sinejezj +cosi6;) + 2cos0j6;s; + sind;S;
K3j=5; K3'j=$; k3% =i

Kgj =1~ cosbj

K4Ij = sin00;

K4zi - 00591912 +5ind,0

Kgj =—sinb;

Kg'j=- cosd 6,

K52i = sin@iejz— COSBjOj



Ke'j= —Kg"|
K7j=K4J

=152 l.-gs. 2 .2
K8] '/zS] K8J~S]S] K8j=sj +Sjsj

B. Expressions for Minj fori=1,2,...6andn=0, 1 and 2

Mi = Spp Mi'j = Sjp Mi%i = Spp
. ~ 1 . 2 .
Mayj = Sja M2 = Sia M2'j = Sia

n._ n
M3y = My

n n
Mg'j = -My j
Msj = %(Sj2 +Sjp2)

1' _ . -
Ms'i = SiaSja* SibSib

2. _ e 3 .o .
M5 = SjaSja+ 52 + SipSip + $jp?
Msj = —Sjasjb

1. _ . 3
Me'i = —SiaSib=SiaSib

2' _ - . .o ..
Mg = —(25;5Sjp * SjaSib * SjaSib)

REFERENCES

l.HERNANDEZ, M. V. JR. “A Unified Method for MSP Synthesis of Planar Four-Bar Function
Generators", Philippine Engineering Joumal, December 1985.

2.HERNANDEZ, M.V. JR. and SI, WILLIE, “A New Method for the Kinematic Analysis of Pla-
nar Four-Bar Mechanisms'’, Philippine Engineering Journal, June 1985.

3‘FREUDENSTEIN, F. “Design of Four-Link Mechanisms'’, Ph.D. Dissertation, Columbia Uni-

versity, New York City, 1954,

4.SUH, C. H. and RADCLIF FE, C. W. Kinematics and Mechanisms Design, John Wiley and Sons,
1978,

5. SANDOR, G. N., HERNANDEZ, M.V. Jr. and XIRONG, X. “Solutions to Systems of Non-
Linear Equations that Arise from the Kinematic Synthesis of Spatial Mechanisms", Paper
Presented at the ORSA/TIMS Joint Conference, Chicago, lllinois, April 1983.

8.HALL, H.S. and KNIGHT, S. R. Higher Algebra, Macmillan, 1955.

83



	74
	75
	76
	77
	78
	79
	80
	81
	82
	83

