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INTRODUCTION

Early appiications in engineering analysis of what were then in the mid ‘50s relatively costly
computer resources were essentially “‘high-end’’ in nature and limited to work which required much
computation. In contrast, the microcomputer now offers, at far lower costs, the convenience of a
personal computing device along with power which rivals that of the early mainframes. The impact
on society of this “ultimate computing tool for the democratic world’’ (Hall-Sheehy, 1987) is wide-
ly acclaimed to be comparable to that of the automobile.

In engineering, the availability of microcomputers means that no serious computations need
to bemanually done any longer. The implications in engineering education and practice are bound to
be far reaching because the essential requirements of effective computer-aided problem solving are
not necessarily met by extant elementary methods which had been developed for manual calcula-
tions.

This paper attempts to illustrate how traditional problem solving techniques in engineering
statics might have to be modified or even supplanted by approaches which, though less than opti-
mal for manual calculations, are actually ‘the most suitable for microcomputers,

STATICS OF RIGID BODIES

The analysis of a system of rigid bodies at rest is based on the assumption that the condition
of equilibrium holds for any part of the system. Therefore, algebraic equations involving unknown
forces of interaction can be deduced by isolating suitable parts as ‘‘free bodies’” and applying New-
ton’s laws. Enough independent equations can be developed in this manner if, as assumed herein,
the problem is statically determinate.

For hand calculations, the selection and sequencing of freebody diagrams (and associated equa-
tions) seek to minimize simultaneous equation solving. Assuming planar forces, the horizontal and
vertical components of the resultant of known forces on the freebody at hand are denoted as X and
Y, respectively. An uncoupled equation may then be obtained by summing forces along a direction,
«ao, which is orthogonal to all except one unknown force, P. If so, this force is

o xsinozo-YcosC)(o 1T

sin (atO - 0p)
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Another type of uncoupled equation is obtained by summing moments about a point (x’,
y’) through which the lines of action of all but one of the unknown forces pass. That force is given
by

M+ Xy - Yx'
(2)

p= __
(yp — V) cos @p — (x; — X'} sin &p

where M is the couple component of the resultant of known forces, 0% is the orientation of P, and

(Xp. Yp) are coordinates of its point of applications.
The components of the resultant are themselves computed in the following manner. If Fi isa

typical known force at (xj, yj) and has orientation, oc;,

X = Z Fj cos &j
i

Y = Z Fjsinaj
i

(3)

M= Z Fj (x j sin &) - vj sin &)
i

Equations (1) to (3) are highly suited for coding on programmable calculators (Reyes, 1978).
Using spreadsheet software, the solution of typical problems in engineering statics such as that
shown in Figure 1 can be developed as illustrated in Plate 1. The pedagogical value of using a micro-
computer and the well known ‘‘what-if’’ capabilities of spreadsheets is the relative ease with which
certain key data could be considered as parameters and varied at will. For example, the relation of
geometry with the forces of interaction between components of a system can thereby be studied

free of tedious calculations.

Figure 1. Rigid Body Statics
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Plate 1

Illustrative Problem 1
STATICS OF RIGID BODIES

Given Data (Parameters):

r= 05 w= 16 h= 3theta= 30
Derived Data:

a= 06 b= 08

Forces:

Label x y Orient cos sin Value Include Sum-x Sum-y Sum-M

w1 0.5 0.5 -120 -05 —0.86602 100 1 -50 -—86.6025 -—18.3012
w2 1.1 1.3 -120 -05 - 0.86602 100 1 -50 -86.6025 —30.2627
Fa 0.5 0 90 0 1 NA 0 0 0 0
Fb 1] 05 0 1 0 NA 0 0 0 0
Fc 08 09 53.13010 06 0.8 NA 0 0 0 0
Fd 1.6 1.3 0 1 0 NA 0 0 0 0

—-100 —173.205—48.5640
Data for Force Calculation (1-force; 2-moment):

Alph0 = 0 1 0
Alphp = 0 o 1
xp = 1.6 —14.9519
yp = 1.3
x = 05
y = 05
Meth = 2
Result — — = = = = = = — = = — = — — —-14.9519
PLANAR TRUSSES

The above procedure can also be applied to the practical problem of analyzing statically de-
terminate and non-complex planar trusses. Equations (1) and (2) in this case are equivalent to the
method of joints and the method of sections, respectively (Norris et al., 1976). However, with a
spreadsheet software capable of matrix arithmetic, it is more convenient to proceed as follows.

The set of joint equilibrium equations can be written in matrix form as

ZR+p=0 (4)
where R is the set of bar forces and p the joint forces (given loads and reactions). Rules for gene-
rating the elements of Z are easily worked out. For example, in any row of Z representing the equi-
librium of horizontal force components at some joint, the mt" term is either + cos (6m ) or — cos (Om ).
where Om is the orientation of bar, m, depending on whether the start or the end of the bar is con-
nected to the joint. But if bar m is not connected to the joint, the term vanishes.

If the elements of p are sorted into a subvector, Pe consisting of known forces and a subvec
tor, ps, of reactions, Equation (4) can be recast in the form.

ZF o] R ~Pr
Zs i Ps (0] (5)

and solved for the unknowns.

A positive value in any component of R signifies tension in the bar. Plate 1 illustrates the
analysis of the truss shown in Figure 2. Note that the reactions are represented as fictitious links
for convenience. The table of joint coordinates along with the table of bar incidences are used t©
calculate the bar orientations which, in turn, are utilized for the generation of the elements of Z-

92



6 (5) S ~ f
7
(4) 9) (6) s
(10) 100 .
16 o PRI
(3)/\ an /\(7) 3
. ; S g 4,_
(1 ” Y @
f 4 4 +
Figure 2. Planar Truss Analysis
W
w
; | /
MO /] i —t + ;
c b “
/
Vo Xp1
Xp2 ¥
L ©
Q
124 200
7
M, A & V()| M(x)
7/
e
/]
VO
|

Figure 3. Beam Statics
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Again, data for problems of this type are readily treated as parameters for learning purposes as well
as in actual practice.

STATICS OF BEAMS

Shear (V) and bending moment(M)in a beam supported at its ends (Figure 3) are determined
by statics if two releases are provided. For example, the common simply supported case has a pin

at each end, while cantilevered case has a pin and a guide at one end. More generally, a guide at
X=xv, say, provides the statical condition.

\Y (xv) =0 (6)
while a pin at x = x,, provides
M(x\) =0 (7)

Loads can usually be represented analytically with the help of distribution functions for pur-
poses of representing loads throughout the beam span, L; i.e., for 0 < x < L. For example, a concen-
trated transverse force (W) at some point (x = c) on the beam axis can be written

p (x) =W 5 (x-c) (8)

where § is the delta function. Similarly, a uniform transverse load (w) applied in some segment
(a < x < b) can be represented as

p (x) = [u (x-a) - u (x-b) ] w (x) (9)

where u is the unit step function.

At x=0, the resultant transverse force on a segment (0, x) of a beam may be denoted as the
following function of x

9v=(j)" p (&) dot . (10)

and the resultant couple as

X
Qm =J a.p (o) do ,

(1)
0 \

To express these functions in terms of ordinary integrals, note that if f (x) is any continuous
function and F (x) its integral, then

X
g fla) § (a—c) da
=u(x—c) f(c) (12)
and

JX

5 fla)[ula—a) —u(a-b)] da

=u(x—a)[F(x)—F(a)] -
ulx=b)[F(x)=F(b)]. (13)
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Using Equations (12) and (13), $2,, and§2), can be spelled out for most loading types in
forms convenient for computer coding. For example, for a series of downward concentrated loads,

W1,..,Wn,
n
Qyix)= T —ul(x—xyx)Wg (14)
k=1
n
Qmx)= T —xulx=x" )Wy . (15)

Evaluation of these functions is easily coded using conditional branching or if-statements based on
the definition of the unit step function.

Letting V, and M, be the initial values (at x = 0) of the internal force functions, the equili-
brium conditions now lead to

V(x)=Vg -8, (x) (16)
and
M(x)=Mg—x Vo— M (x)+x Qy (x). (17)
Recalling Equations (6) and (7), these equations provide the statical or release conditions to
determine Vg and M. For a guide release at x = X,,, the condition is
0=Vo — QV (xv) (18)
while a pin at x=x,, implies
0=M0_XMV0—QM(X|\,|)+XQV (xm)e (19
For example, with pins at x,; and Xy 2-
X1 Va1~ Pumy ~ Xm2 Vw2 +Sym2
Yo - P X (20)
Xm1~ Xm2
Xp1 Xm2 @Qymz = Lymr) * *m2 Sumr ~ Xm Spm2
Mo = (21)
° X
Xm2 = *mi
inati i i leads to
(where QVMl = Qv (Xpm1) etc.). The combination of a guide at Xy and pin at X, le
2
Vo= 9,y (22)
= - (23)
Mo=Qym = Xy Cyym — Lyy)

. . H ra-

Plate 3 illustrates the general formulation of the analysis of a beam supporting three CO"C?:; ?n

ted loads. Magnitudes of the loads, beam span, and types and locations of releases can :e :larl tl'
this layout. Then, for any specified x, the shear and bending moment are calculated. The layoutis

easily modified to calculate these functions at a set of nodes along the beam axis.
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Plate 3

lilustrative Problem 3
END SUPPORTED BEAM

Span= 9
Concentrated Loads (positive downward):

w: 100 200 100
x: 3 45 6

Two Releases (1—guide, 2—pin):

Type: 2 2
Loc: 0 9
Calculation of Vo and Mo:
Sums Rel-2,2 Rel1-1,2 Rel-2,1
Release 1 0 0 0 0 200 0 0
0 0 0 0 0 0 0
Release2  -100 -200 -100 -400
-300 -900 -600 -1800
Vo= -200
Mo = 0
Shear and Bending Moment at x = 4V — - -100
M- — 700
-100 0 0 -100
-300 0 0 -300

CONCLUSION

More systematic approaches to elementary problems in engineering statics have been shown
to lead to solutions which are precise, general, and well suited for programmed or coded implemen-
tation particularly on microi:omputers. Such implementations are evidently desirable for practical
Computations. They also facilitate instructive parametric studies and are therefore completely in
line with Hamming's (1962) highly apt motto — that the purpose of computing is insight and not
numbers,
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