“ . although the derivation of the equation
assumes a free-ended shaft, it is applicable to
other support configurations."
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ABSTRACT

This program determines by numerical methods the lateral critical speeds of a rotating
shaft of circular cross section and of uniform density. The core of this program uses the meth-
od developed independently by Prohl and Myklestad as adapted by J.W. Lund. There is no
limit to the number of critical speeds that the program can find, the only requirement being
that the shaft in consideration be divided into a sufficient number of sections. The program
can handle either English units or the SI and the operator has a choice of entering some values
in units of weight or units of mass. Another feature of the program is the ability to plot the
mode shapes 6f the rotor at the different critical speeds.

INTRODUCTION :

An important part in the design of rotors is the calculation of its critical speeds.
The critical speed of a rotating shaft is the speed at which the shaft starts to vibrate
violently in a transverse direction. If this condition is allowed to persist, the amplitude
of the vibration will build up to such a magnitude that rupture of the shaft may occur.

Classical mathematical methods for solving for the critical speeds have been formu-
lated for beams of simple gcometry (e.g., a simply supported homogenous beam of uni-
form cross-section). However, these mcthods become very tedious for more complex
geometries and more so if the shaft has redundant supports. Consequently, altcrnate
methods have been developed.

The Holzer method, which was originally devised for torsional vibrations, is a tabu-
lar method for the analysis of multi-mass lumped-parameter systems. In this method,
a trial critical speed must be assumed, and after working across the shaft, a residual
function must be determined. A remainder curve of this function may be plotted against
the assumed speed to locate the speed where the function equals zero. Being a trial and
error method, some of the difficulties of this scheme are in estimating the initial trial
value of the critical speed and in selecting a second trial value if the initial trial value fails
to satisfy the governing equations. Furthermore, the repetitive calculations become
Jaborious when the shaft is divided into four or more stations.

. Department of Mcchanical Engineering, University of the Philippines, Diliman, Quezon City.

30



The Prohl-Myklestad method is similar to the Holzer method. However, this pro-
cedure is more involved than the Holzer method, as the assumed critical speed must
satisfy the four boundary conditions of bending moment, shear, slope, and deflection.
For any assumed speed, the governing equations can be solved to satisfy three of the four
boundary conditions. By plotting the fourth boundary condition against speed, the
critical speed will occur when this remainder equals zero.

Both these methods can be programmed into a digital computer and, to be accu-
rate, should be carried to at least five significant figures.

J.W. Lund, using the Prohl-Myklestad method, developed a procedure which
makes the successive trial values of the critical spced converge to a true value. This is the
method used in the computer program presented in this article.

NOMENCLATURE
X coordinate along the axis of the shaft
y radial shaft displacement in the x-y plane
V] angular shaft displacement in the x-y plane
E Young’s modulus of elasticity
I cross-sectional transverse moment of inertia of the shaft
L length
F force
Y shear force
M bending moment
K support stiffness coefTficient
[A] 2 x 2 matrix of residual bending moments and shear forces
[B] 2 x 2 matrix of the derivatives of the residual bending moments and

shear forces
B determinant of [A], residual determinant
By the determinant of the matrix [A] where the elements in column k

have been replaced by the corresponding elements in column k of
the matrix [B]

‘-

number of critical speeds found

Subscripts:
y y-dircction in the x-y plane
0 slope; rotation in the x-y plane
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n rotor station number

N number of the last rotor station
i, k indices
ANALYSIS

As in the conventional Prohl-Myklestad method, the rotor is represented in the cal-
culations by a series of lumped masses, called stations, which are connected by uniform
shaft sections. Stations arc provided at the two free ends of the rotor, at the bearing
centerlines and at places where heavy components are mounted on the shaft such as
wheels, impellers, or thrust collars. The shaft section between two stations is assumed
to be uniform and its mass is lumped at the ends of the scction at the stations. Since
this method is essentially a finitc element problem, there must be a sufficient number of
stations to represent adequately the highest mode in the frequency range of interest.

Figure 1 schematically shows a divided portion of a rotor. The convention for the
shear forces, bending moments, slopes, and deflections are shown. From mechanics and
beam theory, the different quantities in Figure 1 are found to be:

Fyn - (_Kyn)yn (1)
Men = (_Ken)en (2
o _ 2
Vi T Vptwimpy, 4+ Fyn (3)
M, = M, - Mg, )
Vn Ynt1
Le, 1
4 a A_em-l
' L}
. "o "o ot R
E ) ( m 3 ( (EI) ) C m;1+1 ) C ;;
I I
l Vﬂ l Vn' vn+1 vn+1.
T "on T Mon+1
FY“ Fyn+1
- “ ]
n
n n+1

Figure 1. Sign Convention for Radial Displacement, Angular Displacement, Bending
Moment, and Shear Force

32



where w = shaft angular velocity in rad/sec
Kyn = lateral stiffness coefficient
Kop = rotational stiffness coefficient
Substituting (1) and (2) into (3) and (4), we have:
Vo 5 Vpt (wzmn ~ Kynn (%)
My = M+ Kg8, (6)

For the (nt1)th station,

Vorr= Yy (7)

LV + My (8)

Mn+l=

The corresponding slope and deflection at the (n+1)th station are:

en+l - an’+ aMn, * 9n %

Yn+1 = Cvn‘ * an’ * Lnen+yn (10)
where a = (L/El)n

b = (LYED,/2

¢ = (LYED /6

Equations (5)-(10) are used to calculate the shear, moment, slope and deflection
across the rotor until the last station N is reached. Since the equations derived were
that of a rotor whose two ends were assumed to be free, the boundary conditions are:

M = Vi = 0 (11)
) = , = l
M, Vi 0 (12)
The two other quantities, yy and 8y, remain indeterminate in the calculation and
thus arbitrary values must be assigned to them. With an assumed value of w, a total of

two calculations are performed: In the first calculation, we assign y, = land 6, = 0.
In the second calculation, y, = 0 and 8, = L The results of these calculations are
then put into a matrix
VN VN
[A] = (13)
MN MN
Y1 = Y17 0
Gl = 91 =1

where [A] is the matrix of residuals.
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In matrix form, the boundary conditions of equation (12) is written as:
My’ Y1
= [A] (14)
YN 9
For Myy’ and Vy,' to be cqual to zero, equation (14 Ymust be equal to zero. The

values of w for which this is satisfied and where the solution is not trivial, are those
values which make the determinant of matrix [A] equal to zero. That is,

g = det[A] =0 (15)
For some value w = w,, the corresponding computed determinant is § = ..

] . . . . o
Lund makes use of Taylor’s series expansion to predict succeeding values of w. A
first order expansion yields '

B = By t(w-— wo) (dB/dw), = 0 (16)

To evaluate dB/dw, we first take the derivatives of equations (5) to (10) with res-
pect to the angular velocity w to obtain the following set of equations:

dvn’ = an + (—Kyn + Wzmn)dyn + 2wmnyn (17)
M, =AM+ (Kg )dO_ (18)
Vel = av, (19)
dMppp =AM+ Ldv) : (20)
dynep = dy, + Lde + BdM' + Cdv,’ (21)
8, = dO  + AAM_’ + BdV’ (22)

With the starting values of equations (5)-(10) being independent of the value of
w, the starting values of the derivatives are zero

dy, = d8; = dv, = dM; =0 (23)

Equations (17)-(23) are then evaluated in a similar manner as equations (5)-(10)
to obtain a matrix of the form:

dVN’ dVN’
(B] = (24)
dMN’ dMN’
AN
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Flowchart for Calculating the Lateral Critical Speeds of Flexible Rotors

( START ’

INPUT DATA:
Modulus of Elasticity(E); Mass or Weight density (RHO)

INPUT DATA:
Number of sections (N); Length and diameter per section;
Mass Ky Kg per station

Distribute beam masses to adjacent stations

INPUT :°

No. of critial specds to be found N,

Assign an arbitrary starting value to w

Assign y, = I; 8, =0

Calculate end moment (MN’) and shear (VN ")
using equations (5) to (10)

Calculate dM Tand dVy’
using equations (17) to (23)
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Assigny, =0;8; =1

Calculate end moment (MN') and shear (VN')
using equations (5) to (10)

Calculate dMN' and dVy’
using cquations (17) to (23)

Compute for df/dw using eqn (25)

Compute for next estimate of w using eqn (26)

Check if difference
between previous w

and new w { or=e¢

Assign new
estimate to w

Store value of w

Check if no.

roots needed

Display
critical speeds

END
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dB/dw is then evaluated as

dg/dw = Z By (25)

K=1

B, is the determinant of the matrix [A] whose elements in column k have been
replace(i( by the corresponding elements in column k of matrix [B]. Equation (16) may
now be solved to yield a new estimate of w

W= wy = [BJ(dBldw)] (26)

To prevent the solution from converging toward an already obtained root, Lund mo-
dified equation (26) to

J -1
v = W~ Bo[(dﬁ/dw)o =By g (wgy - wj)] (27
=1

where J = the total number of roots found (or number of critical speeds found).

Starting with some estimated value of w, equation (27) is used repeatedly until the
difference between two successive values becomes sufficiently small or less than a pres-
cribed tolerance value.

It is interesting to note that although the derivation of the equations assumes a free-
ended shaft, it is applicable to other support configurations. The stiffness constants Kyn
and Ky, can account for different shaft configurations. Thus, using only one method of
solution, we can extend it to solve not only pin ended or cantilevered shafts but even

rotors with intermediate supports.

SAMPLE PROBLEMS

Two sample problems will now be presented to illustrate the techniques of critical
speed determination just discussed. The first problem involves an unloaded shaft of uni-
form cross-section and simply supported at the ends. The second problem shows a
stepped shaft with intermediate lcads and supported at the ends.

The method is programmed into an IBM Personal Computer and a complete listing
is presented. The operator can enter the input values either in the English System of units
or in the SI. Table 1 shows the units of the input quantities for both systems.

Table 1. Units of Input Quantities

Quantity Units in English Units in SI
E lb/in2 N/m2
Weight Density lb/in3 N/m3
Mass Density slug/in3 kg/m3
Weight of Disk 1b N
Length in m
Diameter in m
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The program will also prompt for the desired number of critical speeds and will
display all the results in rad/scc, cps, and rpm.

Sample Problem 1.

A circular steel shaft with uniform cross section is simply supported at the ends.
The shaft is four feet long and has a diameter of 1/8 of an inch. Find the fundamental,
second, and third critical speeds.

The shaft is arbitrarily subdivided into 10 sections and 11(n+1) stations as shown
in Figure 2. The corresponding lengths and diameters of cach section are then entered.
The loads on cach station as well as the corresponding displacement and rotational
stiffness constants are also entered. In this problem, the loads and 1otational stiffness
constants are zero. For the displacement stiffness constants, we enter a fairly large value
say 10 x 10 at the supports and zero at the intermediate stations. The results are shown

below:

Critical Speeds:

Mode rad/sec cps rpm
1 27.03 4.30 258.12
2 108.11 17.20 1,032.39
3 243.11 3869 2.321.58

Sample Problelﬁ 2.

Figure 3(a) shows a steel shaft with a 20 Ib gear and subjected to the various inter-
mediate loads. The shaft diameter also varies along the length and we are to determine
the first three critical speeds of the shaft.

1 2 3 4 5 6 7 8 9 10 11
Stations
(1/8" diam.
1 2 3 4 5 6 7 8 9 10
Sections
|
<<= 408" G

Figure 2. Subdivision of the Shaft in Sample Problem 1
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The shaft is divided into nine sections and ten stations as shown in Figure 3(b).
Each section length and diameter are fed into the computer as well as all the informa-
tion required at every station. Note here that the shaft was divided in such a manner
so that each section is of uniform diameter. The results are shown below.

Criticul Speeds:

Mode rad/scec cps pim
| 704.37 112,10 6,726.23
2 3,410.14 542.74 32.504.42
3 6,725.40 1,070.38 64,222.80

These two problems can be solved with relative ease using the method just des-
cribed on a digital computer. The reader should refer to pp. 551-554 of reference (4),
where the Rayleigh Method is used to solve sample problem 2, in order to appreciate the
usefulness of this method as a vital tool in rotor design.

20 1b

Gear
12 1b 5.5 1b

5.5 1b 5.5 1b

AN\ \Q‘

—
N\

8 lIb
g2 diam I A I

— y _3,._!!_ B

I
|
|

— — 2“

A/

10

Y - J U U ———
O mem = e e O e o o —
L

|
I
|
l
I
I
6" 6" " 6"
|
I
[
!
3

N —— = —
N
O ——_— ——
o - — —

Stations

1 2 3 4 5 6 7 8 9

Sections
|

(b)

Figure 3. (a) Shaft of Sample Problem 2. (b) Subdivided Shaft Showing the Different
Sections and Stations
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PROGRAM LISTING

10"

20" Myklestad-Prohl Method

30"

40 ' Use to determine the critical speeds

50 ' of a solid circular shaft of uniform density
60 '

70 CLS: KEY OFF

80 OPTION BASE 1

90 DEFINT I-K, N, O

100 DEFDBL A-H, L, M, P-Z

110 PI = 4: rATN(l#)

120"

130 EPSILON = .000001# : NROOTS = 0#

140"

150 LOCATE 1,25 : PRINT "The Myklestad-Prohl Method"

160 LOCATE 5,25 : PRINT "This program neglects the effects of"
170 LOCATE 6,25 : PRINT "damping and the cross coupling of"
180 LOCATE 7,25 : PRINT "stiffness coefficients."

190 LOCATE 10,25 : PRINT "by: Alexander Paran"

200 LOCATE 11,35 : PRINT "&"

210 LOCATE 12,30 : PRINT "Willie si"

220 LOCATE 15,25 : INPUT "Press <RETURN> to continue: "N
230 CLS

240 LOCATE 7,25 : PRINT "What system of units will you be using?"
250 LOCATE 10,25 : PRINT "[1] English"

260 LOCATE 11,25 : PRINT "[2]) s1"

270 LOCATE 14,25 : INPUT "Enter the no. of your choice: "; RESPI
280 IF FIX(RESPI) < OR FIX(RESP1) > 2 THEN GOTO 270

290 IF FIX(RESP1) =1 THEN G = 386# : GOTO 310

300 IF FIX(RESP1) =2 THEN G = 1#

310 LOCATE 16,10 : INPUT "Will you be using units of [1] Weight or [2]

Mass; RESP2

320 IF FIX(RESP)< 1 OR FIX(RESP2)> 2 GOTO 310

330 IF FIX(RESP2) = 1 THEN AS$ = "Weight" : IF FIX(RESP1) = 2 THEN
= 9.81#

340 IF FIX(RESP2) = 2 THEN A$ =" Mass" : IF FIX(RESP1) = 1 THEN
=1#

350 '

360 CLS

370 INPUT "Modulus of Elasticity ="; E

380 PRINT AS; ' Density ="';: INPUT RHO

390 RHO = RHO/G

400 INPUT "No. of Sections ='"; N

410"

420 DIM A(2,2), B(2,2), CL1(N+1), C12(N+1), C21(N+1), C22(N+1)

430 DIM D(N), EI(N), L(N), LI(N), LEI(N), L2EI2(N), L3EI6(N), M(N+1)

440 DIM V(N+1,2), MO(N+1,2), S(N+1,2), Y(N+1) YI(N+1,2)

450 '

460 CLS : PRINT ™ "

470 FORI1I=1 TO N

480 PRINT “Section"; I
490 PRINT
500 INPUT " Length ='; L(D
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510 INPUT " Diameter = '; D(D)

520 ED = E*PI*D(I)"4#/64 %
530 PRINT " "
540 NEXT I

550 M(1) = RHO*PLXL(1)*D(1)"24/8#

50 FOR I1=2 TO N

570 M(I) = RHO*PI*(L(I-1)*D(I-1)"24# + L(D*D(1)"2:)/8
580 NEXT 1

590 M(N+1) = RHO*PI*L(N)*D(N)"2#/8#

600 CLS : PRINT " "

610 FOR I =1 TO N+l

620 PRINT "Station '; 1

630 PRINT

640 PRINT " s AS; @ INPUT " of Disk = "; DISK
650 PRINT

660 M(1) = M(1) + DISK/G

670 PRINT " Support stiffness: '

650 INPUT "Ky =" C11(D

690 INPUT " Ko ="; C22(D

700 PRINT " "
710 NEXT I

720 '

730 FOR I =1TO N

740 LEKD) = L(D/EKD)

750 L2EI2(1) = L(D~2#/(2#*EKL)

760 L3EL6(D = L(D"3#/(6#*ELI)

770 NEXT I

780 '

790 CLS

800 PRINT "Sec.'"; TAB(10) "Length'; TAB(30) "Dia."; TAB(50) "EI';
TAB(70) '""Mass"

310 PRINT

820 FOR I =1 TO N

830 PRINT TAB(L)

840 PRINT TAB(5) USING "fEdt.dtitft it at##~~~"; L(D);
850 PRINT TAB(25) USING "“#fi. it d#titied="~~"; D(D)y
860 PRINT TAB(45) USING "#ab. btttk trirst~~~~"; EX(I);
870 PRINT TAB(65) USING "#it. itttitit it #~~~~"; M(D)
880 HEXT I

890 PRINT TAB(l) N+1;

900 PRINT TAB(65) USING "l it it fiti~"~""; M(N+1)
910 '

920 PRINT : PRINT
930 INPUT "How many Critical Speeds do you want to determine'; NCRIT
940 IF NCRIT =0 THEN CLS: GOTO 2190

950 W = .1{# 'Initial value assigned to omega (rad/sec)

960 '

970 DIM W(NCRIT)

980 '

990 ' Assign arbitrary values to the slope and the deflection
1000 ' and compute for the matrix of residuals at the last station.
1010 '

1020 Y = 1#: S =0#: GOSUB 2400
1030 a(l,1)=vp : B(1,1) = DVP
1040 a(2,1) = MP: B(2,1) = DMP
1050 '

1060 Y =0#: S =1#: GOSUB 2400
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1070 A(1,2) = vp : B(1,2) = DVP

1080 A(2,2) = MP : B(2,2) = bMP

1090 '

1100 ' Iterate for the natural frequencies
lro !

1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270

1280
1290
1300

1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

1520
1530
1540
1550
1560
1570
1580
1590

DET = A(L,1)*A(2,2) - A(2,1)%A(1,2)
DETL = B(1,1)*A(2,2) - B(2,1)*A(1,2)
DET2 = A(1,1)*B(2,2) - A(2,1)%B(1,2)

DWDET

1
SIGMA = 0
FORI=1TO NROOTS

SIGMA = SIGMA + 1#/(W - wW(1)
NEXT I
SIGHMA = SIGMA + 1i#H/W
)

DETLl + DET2

n

WP = W - DET/(DWDET - DET*SIGMA)
DELTA = ABS{WP - W)/ W)

LOCATE 25,1 : PRINT USING "##.#4#{#" """ W;
PRINT TAB(20) USING “##.####°""""; DELTA; : PRINT TAB(40)
NROOTS

IF DELTA <= EPSILON THEN GOTO 1290 ELSE GOTO 1310

NROOTS = NROOTS +1: W(NOOTS) =W
W = WINROOTS)*1.1# : GOTO 1320 'Assign new estimate to

omega

W=WP
IF NROOTS < NCRIT THEN GOTO 1020

CLS
PRINT "Critical Speeds:" : PRINT
PRINT "Mode'"; TAB(20) "rad/s'"; TAB(40) "cps"; TAB(60) "rpm"
PRINT
FORI=1TO NROOTS
PRINT TAB(1) I;
PRINT TAB(15) USING "“f##. it irssdt~=="" w(D;
PRINT TAB(35) USLNG "##t. #eetidids~""""; w(D/(2#%PD)
PRINT TAB(55) USING “##t. itk a##~"7"""; 604#%W(D)/(2#*PI)

NEXT I

PRINT

1

! Draw the modal shape

1)

INPUT "Press CRETURND to continue: '} J

CLS

LOCATE 1,25 : PRINT "Draw Mode Shape."

LOCATE 4,20 : PRINT '"What are your left-end and right-end
supports?"

LOCATE 6,25 : PRINT "[1]) fixed-fixed"

LOCATE 7,25 : PRINT "(2] pin-fixed"

LOCATE 8,25 : PRINT "[3) free-fixed"

LOCATE 9,25 : PRINT "[4] pin-pin"

LOCATE 11,20 : INPUT "Enter the no. of your choice: '"; RESPI
IF FIX(RESP1) <1 OR FIX(RESP1) > 4 THEN GOTO 1560

J = FIX(RESP1)
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1600 SCREEN 2 : CLS : WINDOW (0,-2)>(1,2) : LOCATE 12,35 : PRINT
""please Wait."
1610 FOR 0 =1 TO NCRIT

1620 W = W(0)

1630 ONJ GOTO 1650, 1700, 1750, 1800

1640

1650 S(1,1) = 0 : $(1,2) = 0# : Y(1,1) =0# : Y(1,2) = O#

1660 K=1:V(,K)=1#: M0(1l,K)=0#: GOSUB 2230

1670 K=2:V(,K)=0#: M0O(L,K)=1#: GOSUB 2230

1680 GOTO 1840

1690 '

1700 Y(1,1) = 0# : Y(1,2) = O# : MO(L,1) =0 : MO(1,2) = O#

1710 K =1:V(l,K)=1#:8(1,K) = 0i : GOSUB 2230

1720 K =2:V(,K)=0#:S(1,K)=1#: GOSUB 2230

1730 GOTOL 13840

1740

1750 v(1,1) = 0# : v(1,2) = 0# : MO(l,1)=0# : MO(1,2) =0

1760 K=1:981,K)=1#: Y(l,K)=0f#: GOSUB 2230

1770 K =2:8(1,K)=0#: Y(I,K) = 1#: GOSUB 2230

1780 GOTO 1340

1790

1800 Y(1,1) = 0# : Y(1,2) = O# : MO(L,1)=0#: MO(1,2) = O

1810 K =1:V(,K)=1#:s(l,K)=0#: GOSUB 2230

1820 K =2:V(l,K)=0#: 8(1,K)=1#: GOSUB 2230

1830 '

1840 FORI=1 TO N+l

1850 YID = Y(L2) - Y(L1P<Y(N+1,2)/Y(N+1,1)

1860 NEXT I

1870

1880 L =0#

1890 FORI=1TO N

1900 L =1L+ L(D

1910 NEXT L

1920 '

1930 FORI=1TO N

1940 LKD = L(D/L

1950 NEXT I

1960

1970 YMAX =0#

1980 FORI=1 TO N+l

1990 IF ABS(YI(D) > ABS(YMAX) THEN YMAX = YID

2000 NEXT I

2010 '

2020 FORI=1TO N+l

2030 YD = Y(I)/YMAX

2040 NEXTI

2050 '

2060 CLS

2070 LOCATE 1,35 : PRINT "Mode "; O

2080 LINE (0,2)-0,-2) : LINE (0,0)(1,0)

2090 L=0¢#

2100 FORI=1TO M

2110 LINE (L, YIOD=L+LII), YI(1+1))

2120 L =L + LIQ)

2130 NEXT I

2140 LOCATE 23,40 : INPUT '"Press <RETURN> to continue: '}
RESPI
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2150
2160
2170
2180
2190
2200
2210
2220
22130
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
25380
2590
2600
2610
2620
2630
2640
2650
2660
2670

LOCATE 24,35 : INPUT "Please wait.";

NEXT 0

1

CLS : SCREEN 0,0,0 : CLS

END Tamserdde End of Program ddoessols

I

! Subroutine to get the deflection at each station

FOR I =1 TO N+l

VP = V(LK) + (W 2#%M(D) - CLLD)*Y(LK)
MP = MO(LK) + C22(1)¢S(1,K)

I¥ 1> N THEN GOTO 2350
V(I+]1,K) = VP

MO(1+1,K) = LO)*VP + MP
S(I+1,K) = L2E12(1)*VP + LEKD*MP + S(LK)

Y(1+1,K) = L3EL6(D)*VP + L2EL2(D)*MP + L(I*S(LK) + Y(LK)

!

NEXT 1
RETURN
1

! lteration Subroutine
)

V=0#:M=0#f:DV=0#:DM=0#:DS=0#:DY =0¢#

FORI=1 TO N+l

VP =V + (W 2#%M(1) - Cl1L(D)*Y
MP = M + C22()*S

bvp

= DV + (W 2#%M(D --CLL)*DY + 2#*WxM(D*Y
DMP = DM

+ C22(1)* DS
IFI> N THEN GOTO 2660

VN = VP
MN = L(I)*VP + MP

= L2EI2(I)*VP + LEWD*MP + S
YN = L3EI6Q)*VP + L2EI2(I)*MP + L(I)*S + Y

DVN = DVP
DMN = L(I)*DVP + DMP

DSN = L2EI2(1)*DVP + LEKL)*DMP + DS

DYN = L3EI6(D*DVP + L2EI2(I)*DMP + L(D*DS + DY

V=VN:M=MN:S=8N:Y =YN
DV = DVN : DM = DMN: DS = DSN : DY = DYN

NEXT L
RETURN
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