“The method uses the concept of direct
linkage constraints and motion parameters
based on displacements.”’
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by
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ABSTRACT

A convenicnt method for the analysis of planar four-bar mechanisms is achicved by
applying the concept of direct linkage constraints and motion parameters based on the displace-
ments of the mechanism. Vectors are used extensively to make the derivation simpler and to
make resulting analysis equations more compact. The new method also eliminates the need to
determine intermediate motion parameters. Thus, only the motion parameters ot interest are
obtained directly and explicitly. Higher order motion parameters are also derived trom the basic
linkage constraints. The formulation of the method is si: »wn and applied to the analysis of a
crank-rocker and a slidercrank mechanism.

INTRODUCTION

The planar four-bar has been extensively studied in the past and also continues to
be scrutinized up to the present. The apparent simplicity of the planar four-bar conceals
its potential applications and also the complexity of analyzing the mechanism. Planat
mechanisms have been analyzed using graphical metheds requiring the use of drawing
instruments and also by the so-called analytical methods like algebraic methods, complex
number methods and also vector methods. Analysis is carried out through the develop-
ment of kinematic relations by analytical means and computations based on these rela-
tions. The reader is referred to references (1), (2) and (3) for details of the graphical
and analytical methods.

In this paper, a novel mcthod for analyzing four-bars will be presented. The
method uses vectors exclusively together with the common scalar (dot) and vector (cross)

product operations. Only an introductory background in vectors is required for its under-
standing,

This new approach is the result of a generalized pair constraint approach that was
developed for spatial mechanisms as presented in reference (4). 1t is interesting to note
that the method was originally applied for three-dimensional mechanisms before appli-
cation to planar mechanisms.
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Figure 1. The Crank-Rocker with its Vector and Scalar Representations
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Figure 2. The Slider-Crank with its Vector and Scalar Representations

Figure 3.

The Crank-Rocker with its Motion Parameters Based on a Reference Axis
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THE PLANAR FOUR-BAR MECHANISM

Figurc 1 shows a crank-rocker while Figure 2 shows the slider-crank. In the same
figures arc also shown the vectors and scalars that represent the mechanism and its
motion parameters. In the usual or classical methods of analysis of these four-bars, the
mechanisms are located on a coordinate system and their positions are “absolutely™
referred to this coordinate system. Figure 3 shows these angles. 0, 05, ¢, ®j. ¥, and ¥j
as measured from the horizontal axis. In the case of the crank-rocker shown in Figures 1
‘and 3, the motion parameters of interest are 0 and ¢. The angle ¥ is an example now of
an intermediate motion parameter.

THE VECTOR-LINKAGE CONSTRAINT METHOD

The new method of kinematic analysis — displacement, velocity. and acceleration -
will now be shown for the four-bar crank-rocker. The reader can compare the new method
with those in references (1), (2) and (3) and appreciate the new concept and the differen-
ces. Figure 1 shows the vectors A, B, C, and D describing a unique four-bar in its
initial position. This initial position is simply the position of the four-bar at which the
vectors A, B, C, and D are defined. As the first departure from the usual methods.
the motion parameters considered are displacement angles referred from the initia! posi-
tion and not from one of the axes of the reference coordinate system. These angles,
0; and @;j, arc shown in Figure 4. The same figure also shows the displaced vectors
Aj, B, Cj, and D describing the “displaced four-bar.” It should be noted at this point
that l%)r analysis, all the vectors and input motion parameters (i.e., A, B, C, D, 0;, Oj'
6j, etc.) are given and the objective is to find the output motion parameter—in this
case ¢j, ¢j. qﬁ, etc. The vector loop closure equation of. the displaced four-bar can now
be written as:

Aj + Bj = D + (1)

Bj =D+ ( - A @

The expressions for the displaced vectors arc now derived from the rotation of
vector A about an axis perpendicular to the plane by 0; shown in Figure 5. The vec-
tor A.‘j is chosen to be expressed as a function of the rotational displacement 0;. Todo
this, it will be written as the sum of its components in the A direction and in a dircc-

tion perpendicular to A which isin the (k x A) direction where k is the unit vector
perpendicular to the plane. Thus, -

A; = Acoslj + (k x A)sind;

(3)
Similarly, the vector Qj is the vector C rotated by ¢j.
G = _C_cosd)j +(k x (_J)sin(bj (4)
Substituting equations (3) and (4) in (2) will give us
y
B;j =D + Ccosp;j + (k x C)singj — Acoslj — (k x A)sinoj (5)

Note here that the sign convention of the angles follow the right hand rule. Since
our n.ttercst.ls onlx in the output xttotlpn parameter ¢j, we need not derive B: asa
function of its motion parameter which is yj. We are now ready to look into the ﬁ!nkagc
constraint.  This concept of linkage constraint is the recognition of the geometric cons-

traints imposed by the connecting joints or pairs of a link. In this particular case, the
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Figure 4. The Crank-Rocker with its jth (displaced) Position
Referred from the Initial Position

(k x A)slnﬁj

Figure 5. Rotation of Vector A by §;

Figure 6. The Two Possible Solutions to ¥j
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constraint of the two revolute ends of the coupler link is that its length is fixed. This
coupler link is represented by B or Bj atitsjth position and it is a vector of constant
length. This constraint can be represented in an equation — the linkage constraint equa-
tion. For the coupler, this is

B*B= |B|? (6)

and at any other position B;,

B-B=BF=B-B %)

Thus, for the crank-rocker (or its other forms like the double crank and the double
rocker), we get the linkage constraint equation as:

BB = [D+Ceosp; + (k x C)sing; — Acosf; — (k x _@)sinﬂj] .
[D + Ceosgj + (k x O)singj _ Acoslj — (k x A)sin0;) (8)

Carrying out the dot product operation and taking note of identitics and vanishing
terms, equation (8) is simplified to

cos¢;[(C * D) - (A * O)cosd; — C * (k x A)sing;] +
singj[(k x C) * D — (k x ©) * Acosd; — (C- A)sinﬂj] +
(C-C+D-"D+A-A-B"B)2—(D*A)oslj—D (k x A)sin0;] =0  (9)

Using the trigonometric identitics

C()Sﬁ = L~‘t£l n 2@.2.

I + tan2(B/2) (10)
sinB = 2tan(3/2)
T (1

We will finally get the quadratic solution to ®j from equation (9) as:

. _h + 2 2 2
B I TS

c—a (12)

where a = (C*D)- (A" C)eosd; — € * (k x Asind;
b = (kx Q)" D= (X O) " Acost - (C * A)sin), (13)
c =

(9'9+12'9+£s'é—Q'B)/Z—(Q-é)cosaj
=D (k x A)sing;

The solution to the displacement problem is quadratic implying two possible solu-
tions. For a given four-bar, the solution is in fact double valued as shown also by the
other analytical methods. These two solutions are called “branches” and one can recog-
nize from Figure 6 that although there are really two possible solutions, only one set
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(or branch) can be accepted as the true solution. Whenever imaginary solutions are ob-
tained, it simply means that the mechanism cannot satisty the input angle ;. That is,
the input crank cannot move to the position Aj.

The higher order motion relations are also conveniently obtained by taking the
time derivative of the constraint equation, that is,

dat(; + B) =0 (14)

The time derivative of (Bj . B;) for n =1 or greater is always zero because the
crank length does not change with time.

For the velocity input-output relation,

d/dt(B; * Bj) = (Bj * By) =0 (15)

Ej is the first time derivative of Bj where the variables of differentiation are
0j and"@; so that

B = d/du[D + Coosg; + (k x C)singj — Acosd; — (k x A)sing;]  (16)

|_';j = [«rgsin(l)j(,;)j +(k x _(__T)cos</)j(,f.)j] - [-~Asin()j(')j +(k x A)0080,~0;J (17)
or

B = G'd; - A0 (18)
where:

¢ = ~GCsing; + (k x C)cosp;

Aj = —Asin0; + (k x A)cosd; (19)

Note that Qj' and _Aj' are the vectors Cj and Aj rotated 90 degrees counterclock-
wise, respectively.

Substituting equation (17) into equation (15) will give us

e e e
0=DB; - B =(Go; — Aj0)) * B (20)
or
. A’ B
.= —=] =] e l

For the acceleration relation, we take the second time derivative of (_Bj . Bj) and
set it to zero. Thus,

d?/dt*(B; * By) =B * Bj + Bj - B; =0 (22)



The second time derivative of Bj is derived as

U
By = -G¢;" + G'Oj + A" — Af0; (23)

Substituting equation (23) into equation (22) will give us

Lo =By B -  BRE (8 B + (Gt B
(G By)

(24)
Although the expressions for the input-output relations look lengthy, they can be
conveniently programmed since they are explicit.

It should be noted that before any higher order motion parameter can be deter-
mined, all the other lower order parameters must be known. Thus, if an acceleration
parameter is to be solved for, the displacement and velocity must already be determined.

APPLICATION TO THE SLIDER-CRANK

Figure 7 shows the initial and displaced position of a slider-crank together with the
vectors and scalars that describe the mechanism and the motion.

These are:
A - the vector representation of the crank
B - the vector representation of the coupler
c - aunit vector defining the direction and sense of the slider
D —  avector locating th'e initial position of the slider center
S - the linear displacement of the slider. Positive if in the same sensc

as C and ncgative otherwise

For this slider-crank, the motion parameter of intere

' ' - : ] stis Sj and its derivatives as
a function of the input motion 0 j and its derivatives.

As in the crank-rocker, we write the loop closure equation of the displaced mechan-
ism as

Aj+ Bj =D+ 5C (25)

(26)

The expression for Aj is the same as equation (3) and substituting it again into the
linkage constraint of the coupler which is B -

expression

or Bj = D + 5iC — Aj

B = B = B - B, wecangetthe
B*B= [D + S]g - /_\_COS@j - (]'_( X A.)sm@l]
[+ §C — Acostj— (k x A)sing;] 27
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Figure 7. The Initial and Displaced Positions of the Slider-Crank

The linkage-constraint is similar to the crank-rocker but it does not mean that this
is the only linkage-constraint that can be used. Other mechanisms will, in general, have
different forms of linkage-constraints for any particular link.

Performing the operation in equation (27) will give
S +2C (@~ A)S; + [(AA) - (BB) + @ D) - 24, D] =0 (28)

which is quadratic in S;, therefore

Sj =(=b + v/ b? — 40))2 (29)

where: b=2C-(D- A
c=(A A - B+@ D -24"D 30)

The velocity and acceleration of the block were derived as follows:

Sj = (A * BIAC - B;) (31
. —B:* B; — (A; * Bigi2 + (A’ B,
. = ) =) ) =) o b
S = )0j j 2jMj (32)
(C - By
NUMERICAL EXAMPLE

Consider the four-bar mechanism denoted by the following vectors:

A=2i+3)
B=06i+2j
C=2i+5j
D=6i
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We want to obtain the input-output relations for increments of 0; = 20° with 0; = 1.
Part of the problem also is to determine the range of motion of the mechanism.

The following dot and cross products are first evaluated as:

(A-a)= (2)(2) +(3)3) =13
(B - B) = (6)(6) +(2X2) =40
(C-0 = @)+()5) =29
(D + D)= (6)(6) +(0)(0) = 30
(A-C) = X+ ()5) =19
(A * D)= (2)6) +(3)(0) =12 (33)

(kxA)=—-ayitaxj=-3i+2]j
k xC)= —-cy_j_+cyj=--5_i_+2__j_
C-kxA)=(2)=3)+()2) =4
D - (kx A)=(6)(=3) +(0)2) = -18
Ar(kxQO=Q2)N-5)+B)2)=—4
D - (k x C) = (6)(=5) + (0)(2) =—30

Substituting equation (33) into equation (13), we obtain

a = 12 — ]9C050J - 4Sin0j
.b = .30 + 40050j - IQSIDOJ (34)
c = 19 — 12(:050] + 1851“01

We can now compute the values of @; at the various rotations of 0; by substi-
tuting equation (34) into equation (12). These values are shown in Table i. Note that
the output link may assume two positions defined by d’ja and ¢jh~

Equation (21) is now used to calculate the angular velocity of the output link.
The results of ¢ are also shown in Table 1 for the different input angles 0;.

Since BJ = 0, equation (24) becomes

—B;* Bj — (4 * B)9;® + (G * B¢y’

¢ = !
: (G * By 35)

Using the obtained valies of ¢j and QSj, we can now obtain ¢J using equation
(35). These are all shown in Table 1.

From the results for @5, and ¢, we can recognize that the “correct” or actual
solutions are ¢y, ¢, and  ¢;,. We can deduce this from the fact that at 6 = 360,
the solution is ¢jb = 0 which is to be expected. Also, for the initial increment of
20°, the smaller ¢jb is the more realistic value.
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Table 1. Results of Numerical Example

0; a S P b Ba By

20 143.12 12.02 -024  0.65 -0.47 -0.17
40 139.77 25.34 -0.10 0.68 -0.33 -0.02
60 138.75 3878 0.00 066 -0.29 0.10
80 139,79 5154 010 061 -0.31 0.20
100 143.00 6292 022 052 -0.36 0.31
120 148.69 72.15  0.35 0.40 -0.38 0.37
140 157.02 78.81 0.8 027 -0.34 0.37
160 167.68 8291 058 0.14 -024 033
180 180.01 180.01 0.65 0.65 -0.14 0.14
200 -166.73 84,47 0.68 -0.06 -0.03 0.30
o 220 -153.26 82.05 0.66 -0.18 0.11 0.40
240 —140.58 76.76 059 -0.36 034 0.67
260 —130.44 66.62 039 -0.69 0.90 129
280 -127.15 47.23 -0.15 -1.30 246  2.09
300 -141.19 15.81 —-1.32 -1.63 330 -1.41
320 -173.08 -6.81 —-155 -0.52 -1.69 -3.31
340 162.75 —-8.37 -0.88 025 -1.64 -1.31l
360 149.87 0.00 -0.46 054 -0.84 -0.48
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