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ABSTRACT

In this paper two numerical methods of treating soil incompressibility are dis‘:"usscd,
namely: (1) solution by ‘mixed’ formulation and (2) solution by penalty formulation. The
numerical methods presented herein are finite clement-based and assume that in the no-flow
(undrained) condition, the deformation and pore pressure behavior of a saturated soil medium
can be analyzed either by considering a two-phase soil-water relationship or by a single-phase
continuum formulation,

INTRODUCTION

When a saturated soil mass deforms at a constant water content (or void ratio), the
accompanying volume change is nil and the soil mass is considered to be incompressible.
Soil incompressibilities occur in the undrained condition where no flow of pore fluid is
involved.

In this paper two methods of numerically treating soil incompressibilities in the
finite element framework arediscussed, namely: (1) solution by ‘mixed’ formulation in
which the displacement and pore pressure degrees of freedom are coupled by a virtual
work or variational equation, and (2) solution by penalty formulation in which the in-
compressibility constraint is incorporated by lumping the pulk stiffness of water with
that of the soil skeleton. These two methods correspond, respectively, to conditions in
which the behavior of the saturated soil medium is characterized using a two-phase
soil-water description and a single-phase soil-water continuum formulation.

Inherent in both methods is a numerical problem called mesh locking, a problem
in which the volumetric stiffness of the material tends to dominate the numerical solu-
tion. In the ‘mixed’ method, the problem of mesh locking is avoided by a judicious
choice of good finite elements which have been shown to exhibit compatible interpola-
tions of displacement and pore pressure fields. In the penalty method, the same problem
is treated using the selective reduced integration approach on the strain-displacement
matrix B as proposed by Hughes [6, 7].

SOLUTION BY ‘MIXED’ FORMULATION

A two-phase water-soil structure formulation involves explicit segregation of ef-
fective stresses and pore pressures in a fully saturated soil mass. By employing the virtual
work or variational principle, a matrix equation coupling the unknown nodal displace-
ments and nodal pore pressures can be obtained.
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Review of Previous Work

A finite element formulation for a general threc-dimensional consolidation problem
using the variational concepts was presented by Borja [2,3]. An incremental matrix
equation during the period of transient pore pressure dissipation was derived, coupling
the unknown ncdal displacement increments A,Ej, and nodal pore pressure increments

Ap, viz
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where 0 < B < 1 is the time-intcgration parameter, At is the time step such that ¢, , =
th + At, py are the known nodal pore pressures at (current) time instant ty, and the
global matrices K, G, GT , M, and {AF, AH } are the average tangent stiffness mat-
rix, coupling matrices, flux matnx and force vectors, respectively, whose explicit defini-
tions will be given subsequently.

The above matrix equation (1) has been shown to work in one- and two-dimen-
sional plane strain and axi-symmetric (torsionless) applications on elastostatic and elasto-
plastic strain-hardcning materials [3].

The Condition of Incompressibility

The undrained condition may be analyzed using (1) by assuming that the satura-
ted soil medium is loaded “instantaneously,” or quickly enough to prevent drainage. The
displacements can, therefore, be considered as volume change-frec and the resulting

strains become purely distortional.

Numerically, such a condition can be achieved [5] by setting At equal to
zero in (1) to give
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The global matrices K G, GT M, AF, and AH are then obtained from the
assembly of the following fmltc elcmcnt contributions:

1. element tangent stiffness
l:c = IQC ET‘,C\:E, i) 3)

2.  clement coupling matrices
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3. element force vectors

AF® = T, NT-AhdT
h
_ (!ic B AdJ _ QC.ARI’) (6)
AH® = ITc NT-as aT  +(GOT-Ad, (7
S

where B is the strain-displacement matrix (section on Selective Reduced Integration on

~

page 61); C isthe effective stress-based material stress-strain matrix; b is the volumet-
~ e ”~\
ric strain-displacement vector (i.c., }3; = {1,1,1,0,0,0}* Ea); Nand N are collections

of displacement and pore pressure shape functions, respectively; Af is the incremental
body force vector; Ah is the incremental prescribed traction vector; Ad,isthe vector of
prescribed displacements; Ap, is the vector of incremental prescribed nodal pore pres-
sures; As is the incremental prescribed velocity flux, "fle1 is the element boundary along
which traction h is prescribed; T¢ is the element boundary along which flux s is
prescribed; and Q€ is the element domain. For a succinct description of the develop-
ment of (2), consult Borja [3] and Small, et. al. [8].

By expressing equation (2) in incremental form, it also becomes applicable in the
analysis of plasticity-related boundary-value problems by a quasi-static approach. The
resulting system of simultancous equations can then be solved by any acceptably effi-
cient numerical technique, say by Crout climination [9].

Choice of Finite Elements

Without loss of generality, only ( ‘mixed’ ) quadrilateral elements will be consi-
dered herein as candidate finite elements. Triangular elements can‘be obtained from their
quadrilateral counterparts as two or more quadrilateral clement nodes degenerate to a
single point. These quadrilaterals will be further classified according to whether or not
the pore pressure field is continuously interpolated on the global level. These candidate

finite clements will henceforth be called continuous pressure and discontinuous pressure
clements, respectively.

1.  Continuous pressure elements. Three quadrilateral elen
continuous pore pressure interpolation are shown in Figure 1.
each element node describe the nodal numberin
For convenience and to avoid the proliferation
will be used as pore pressure nodes.

lents exhibiting a
1. The numbers shown in
g scheme for data processing purposes.
of nodes, the same displacement nodes

Element 1 interpolates the displacement and pore pressure fields bilinearly. Ele-
ment 2 employs the same bilinear pore pressure interpolation, but uses an cight.-node
serendipity interpolation of displacements. Element 3 is similar to element 2 except that
the displacement interpolation is a nine-node (biquadratic) Lagrangian i ’

In general, the same interpolation for both displacement and pore pressure (€.8.
clement 1) should not be used in undrained cases or if step loadings are to be used [é]?
A dire consequence of such a combination is the so<called mesh locking, a numerical
problem that arises when the incompressibility constraints are too many, A heuristic
approach called constraint counts was proposed by Hughes [7] to establ}sh the ability
of an element to perform well in incompressible and nearly incompressible cases.
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Elements 2 and 3 employ a displacement interpolation which is one level higher
than the pore pressure interpolation. Compatibility consideration suggests that both
pore pressure and stress (or strain) will have the same level of interpolation, which prob-
ably explains why elements 2 and 3 perform better than element 1.

Apparently, clement 3 (biquadratic Lagrangian on displacements) causes the size
of the matrix problem to increase by n d (= number of spatial dimensions), the number
of additional displacement components,ﬁor cach element considered. However, the addi-
tional displacement degrees of freedom corresponding to the central node for this ele-
ment can be climinated on the element level prior to global assembly (i.e., static conden-
sation by Gaussian climination). Possible advantages of element 3 over element 2 are
the convenience in isoparametrically generating nodal data/floating point information
during the input phase and that the convergence characteristics of this element have been

previously established [7].

In practice, a continuous pore pressure intcrpolation makes it possible to incor-
porate pore pressure-related boundary conditions such as prescribed pressures Pr and
nodal flux rates s in the matrix equation because the displacement and pore pressure
clement boundaries can be made to coincide. Continuous pressure elements also provide
a smooth numerical transition from an undrained analysis to that of a transient pore
pressure diffusion (consolidation) because the boundary conditions in the consolidation
phase can be matched by the pressures on the same boundaries at the end of the un-
drained phase.

2. Discontinuous pressure elements. Undrained problems do not usually require
explicit boundary conditions on pore pressures, nor does the variational formulation
leading to matrix equation (2) include pore pressure gradients [3]. Thus the pore pres-
sure shape functions may be discontinuous across clement boundaries. This relaxation
in continuity is computationally advantageous because the pore pressure degrees of free-
dom can be eliminated (and later recovered) on the celement level prior to global assem-
bly, allowing the global equations to be structured without these unknown pressures
(again, by static condensation).

Figure 2 shows two typical discontinuous pressure elements. Element 4 contains
a central pore pressure node representing a constant pore pressure interpolation within
the element domain. Element 5 is a three-pore pressure-node element whose cqnver-
gence characteristics have been previously tested [7] .

It can be scen that by relaxing the continuity of pore pressures, a wider range of
interpolations becomes available for pressures than for displacements, offering more
possible combinations of displacement and pore pressure (‘mixed’ ) elements to choose
from. As in continuous pressure elements, however, not all possible combinations of dis-
placement and pore pressure interpolations work because of the mesh locking effects.

Remarks.

In practice, the global coefficient matrix is assembled to contain only the upper
triangular elements, on account of symmetry, that arc enveloped by the “profile” or
“skyline.” The elements of this matrix can be stored in a vector while keeping track of
the addresses of the diagonal elements. During the factorization process, the zero ele-
ments along the diagonal become nonzero if the displacement and pore pressure nodes
arc properly numbered [S]. If node numbering is not properly ordered, it is possible
that a zero diagonal element will be encountered during the factorization process, necessi-
tating a node renumbering. For this reason, a simultancous equation solver with pivoting
is desirable.
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Equation (2) shows that the displacement and pore pressure degrees of freedom
arc cxplicitly segregated, causing the matrix of cocfficients to have a large bandwidth.
These degrees of freedom, however, may be interspersed (i.c., arrange all unknowns
for each node next to each other) making the coefficient matrix more closely banded.

SOLUTION BY PENALTY FORMULATION

Since no flow of pore fluid is involved in undrained problems, numerical analysis
‘can also be carried out using a single-phase soil-water continuum formulation. Let the
bulk stiffness of water be A, the stress-strain matrix C for the soil mass is given by
~

L O

= E + C\V (8)

~

where C is the effective stress-based stress-strain matrix (see section on the Condition
of Incompressibility on page 57) and

N 1 0 1 1 1 .

Cy = : ~ o~ | = 1 1 1 .

~V of ,~ (Q)
Y 111

The resulting matrix equation is obtained from (2) by suppressing the pore pressure
degree of freedom, viz:

K- Ad = AF (10)

where E is the tangent stiffness matrix obtained by assembling the finite element con-
tributions (cf. equation (3)) :

Ke = ch T.C.BdQ

(1)

~

and AF is the global force vector obtained from the contributions AF® given by (6).

This approach is equivalent to introducing a volumetrically stiff elastic spring re-
presented by a large but finite A, thus forcing the soil mass to become nearly incompres-
sible. The actual bulk stiffness A, is not relevant; this parameter is artificially selected to
be large enough so that incompressibility errors are small, yet not too large to causc
numerical problems. Hughes [6] suggested that, with computer floating-point words

of length 6064 bits, the ratio My/usoi  (where gy = shear modulus of the soil skele-
ton) may be ceffectively taken in the range

107 < Al < 107, (12)

soil

Slight compressibilities do not make the problem of mesh-locking go away. A nu-
merical approach to this problem is by adopting a reduced numerical integration rule,
a concept probably based on the presumption that errors in numerical integration com-
pensate appropriately for the overestimation of structural stiffness due to finite element
discretization [1].
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A simple approach of uniform reduced integration, however, is a dangerous scheme
which could reduce the rank of the stiffness matrix and cause it to become singular. An
alternative approach is to use a selective reduced integration procedure, specifically the
B-method proposed by Hughes [6], which effectively sifts out the volumetrically stiff
part of the stiffness matrix, and thus alleviates locking.

Selective Reduced Integration

Figure 3 shows three possible ‘‘no pressure” quadrilateral elements. Element 6
is a four-node quadrilateral bilinearly interpolating the displacement field. Element 7
is an cight-node serendipity, while element 8 is a nine-node (biquadratic) Lagrangian.

Figure 4 shows the normal and reduced orders of Gauss numerical integration
for the isoparametric (two-dimensional) elements of Figure 3. A similar presentation
may be made for isoparametric bricks in three-dimensions.

In three-dimensional problems, the strain-displacement 81 is given by

B, 0 0
0 B, 0
oON
J}ﬂ - 0 0 B, , B; = a_ . (13)
B B, 0 Ox;
0 By B,

Employing the selective reduced mtegratlon technique, matrix B is decomposed
into a volumetric part BV° and a deviatoric part B dev . where

(B, By By ]
B, B, B,
1
vol - Bl BZ B3
b 3 1o o o a9
0 0 o0
| 0 0o 0 J
and
dev _
Y =B, - 1{”:' (15)
The volumletnc part B is replaced by an ‘improved’ volumetric contribution
denoted by B, ie.,
B, B, B,
B, B, B
—vol 21 By By
B = B, B, B
0 o 0
0 o 0
where the l-ii’s arc defined by the expression
i
_ int
Bi()) = X NQ(E)BQ an
~ 2=1
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in which £ are the element natural coordinates, it;;, is the number of integration
points in the reduced rule, and the Ng's are special sets of shape functions associated
with the locations 3,2 of Gauss integration points in the reduced rule, i.c., Nk(é Q) -

6y (8 = Kronecker delta) for 1 <k, I < 1, -

Selective integration is obtained by taking

Big = Bytp (18)
Figure 4 summarizes this scheme for various quadrilateral elements considered. This pro-

cedure may be applied to any arbitrary anisotropic and/or nonlinear situation, and to
axisymmetric or rectilinear configurations [6].

Interpretation of results

Upon evaluation of Ag from (10), the volumetric strain 65 for the eth element
can be interpolated within the clement domain £° from the formula
e - T .
ey = bl +Ade (19)
where Ad® s the vector Ad localized on the clement level and b is the volumetric
strain-displacement vector of Section on the Condition of Incompressibility. The strain

given by (19) is a measure of the element’s degree of compressibility, and may be driven
down to a value close to zero by choosing a large but finite A,,.

The pore pressure generated is given by

P=Ay e (20)
while the effective stresses are interpolated from the expression

o = CoBALC . ' @1

Theoretically, the above pore pressure should approach its exact value in the per-
fectly incompressible condition as Ay = oo and ¢ = 0,

Remarks.

The method presented above has the Lagrange multiplier method as its basis, in
which the penalty parameter Ay is the Lagrange multiplicr. The same method is dis-
cussed in [7] for a one-phase material by defining p as the hydrostatic stress (=o;;/3).

SUMMARY AND CONCLUSIONS

Two finite element-based numerical methods for analyzing boundary-value problems
in a saturated soil medium incorporating the incompressibility condition were presented
in this paper. Possible practical uses of these methods are in the analysis of an undrained
type of problem where the flow of pore fluid is suppressed or in problems where the rate
of loading is much faster than the rate at which the generated excess pore pressure is dissi-
pated.

The numerical methods presented herein were based on the assumption that in the
no-flow condition, the pore pressure/deformation behavior of a saturated soil medium
can be analyzed either by considering a single-phase soil-water continuum or by a two-
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phase formulation involving explicit segregation of excess pore pressure and displace-
ment degrees of freedom coupled by a virtual work or variational equation. The numerical
problem of mesh locking was treated by a judicious choice of finite elements that work
and/or employing a non-standard numerical method, so-called selective reduced integra-

tion on the strain-displacement matrix B [6].

V/hile the methods presented in this paper deal solely with problems involving in-
compressibility, provisions can be made, particularly on the ‘mixed” method, to accom-
modate a diffusion type of problem (consolidation) over and beyond the undrained
phase should the need to numerically simulate an undrained-consolidation sequence of

loading arises. °
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ELEMENT

NORMAL RULE

REDUCED RULE

2x2 QUADRATURE
Mt = 4
({”n)f. = (+a,-ia)1 0 (+‘-\,‘a)2

(—D,'h’.l)’]_ , (-a,-a).
a=1/v/3

1-PT. QUADRATURE
Minp = 1
(E»ﬁ-)-g - (0.0)1

Hl = 1

3x3 QUADRATURE

Nipt = 9

€,m, = (+b,+b)1 , (+b, 0)2

N In ? (+b,-b)3 , ( 0,+b),
Py l~—£s1p (0, s, (0,-b)¢
, . s (~b,+b)7 , (-b, 0)s
- L (-b,-b)y , b = /3/5

2x2 QUADRATURE
5m1= 4

(€., = (+a4a)y , (+a,-a);
(-a,+a); , (-a,-a),
where a = 1/V3

N, = c(atf) (a+n)
N, = c(a+£) (a-n)
ﬁ3 = c(a-E)(atn) * €
N, = c(a-£)(a-n)

3

%

Figure 4. Comparison Between Normal Quadrature Rule and
Selective Reduced Integration Rule
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