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ABSTRACT

Characterization of molccular orientation was done on polycarbonate samples previous-
ly deformed in plane simple shear. Birefringence and extinction angle values and x-ray data
indicated the presence of molecular orientation. Measurements done on undeformed samples
showed no evidence of orientation indicating that the orientation in the deformed sample is
strain-induced. A theoretical expression giving birefringence as a function of draw ratio was
derived using the pscudo-affine hypothesis. Good agreement was found with the birefringence
data. Comparison with samples deformed in uniaxial tension showed that for the same draw
ratio, samples deformed in simple shear had higher birefringence.

INTRODUCTION

Certain studies (Ward, 1962, 1967 and 1977; Gurnce, 1954) have already shown
that plastic deformation induces molecular oricntation in polymers. Most of these studics
have been conducted on specimens deformed in uniaxial tension (De Rudder and Filisko,
1977; Falkai and Hinrichsen, 1977) or compression (Kramer, 1974). With the develop-
ment of the plane simple shear test (Boni, 1981; G’sell et al., 1982), the characteriza-
tion of shear-induced molecular orientation has become possible, particularly because
simple shear testing has proven to be unaffected by artifacts such as necking or crazing

(Boni, 1981; Gopez, 1983).

For this study, polycarbonate, a transparent amorphous polymer was chosen.
The transparency of this polymer allows the use of refractive index and birefringence
measurements, while its amorphous nature simplifies the analysis because only one
phase is present at temperatures below its melting point.

Polycarbonate specimens deformed in simple shear testing at ambient temperature
were used. The mechanical response of polycarbonate to simple shear testing was already
reported in previous articles (Gopez, 1984 a and b).

The objectives of this study are:

a) to measure and describe strain-induced molecular orientation in polycar-
bonate deformed in simple shear;
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b)  to correlate the data obtained with existing models of molecular orientation;
and,

c)  tocompare the results with those obtained in uniaxial tension.

EXPERIMENTAL PROCEDURE

Material

The polymer used in this study is a commercial grade bisphenol A polycarbonate
(Makrolon). A schematic diagram of the monomer structure is given in Figure 1. Poly-
carbonate has very little tendency to crystallize and has a glass transition temperature
Te = 145°C. It is, therefore, in its glassy state at room temperature (23+1°C) where
most of the straining and measurements were carried out. Polycarbonate is transparent,
with a refractive index of 1.586 (DIN 53491) and a cocfficient of transmission of visible
light equal to 0.85 (DIN 5036). Wide angle x-ray diffraction indicates that the material
used is essentially amorphous (Gopez, 1984a).

The material was received in the form of 9-mm thick extruded plates. Initial bire-
fringence was approximately 51072 indicating that no molecular oricntation was induced
by the hot extrusion process. In the undeformed state, it may be said that the molecular
chains of the material used are randomly oriented.

Techniques and Theoretical Considerations

Sample Preparation

Polycarbonate specimens were first deformed in plane simple shear at room tempe-
rature using the test method developed by Boni (1981, G’sell et al.,, 1982). The sheared
portions were then cut away by sawing and abraded with emery paper (500 and 1200P
Grit) on a metallographic grinder. The cut samples were mounted with low melting point
wax on cylindrical holders for easc in grinding and to insure that flat parallel surfaces
were obtained on samples. Scratches due to the grinding operation were removed by
polishing with diamond paste. These samples were used for optical and x-ray measure-
ments.

Deformation Geometry of Simple Shear

Figure 2 shows a parellelipiped undergoing simple shear. A detailed description of
simple shear deformation is given elsewhere (Gopez, 1984a), so only the important
features will be recalled in this section.

Planes in the solid which are perpendicular to the Ox, axis are translated parallel
to the Ox;, axis. x, xj planes arc referred to as shear planes. The stress is applied
in the direction of Ox,, also called the stress axis. It is quite clear from the diagram
that no deformation takes place in the Ox3 direction. Plane strain conditions prevail in
simple shear. The x, x5 plane, on which deformation takes place will be referred to as
the plane of deformation. Shear stress and shear strain are defined as shown in the
figure.

-~

Figure 3 shows what happens to a circle inscribed on the x; X, plane if it under-
goes simple shear. The unit circle is transformed into an ellipse showing that the prin-
cipal strain axes should correspond to the major and minor axes of the ellipse. The prin-
c1p.|l strain axes thus rotate during straining, with the angle « varying with shear strain

7Y asfollows (Boni, 1981;G’scll et. al., 1982):

o =tan "t (2/7)
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The principal strains may also be defined from the figure by means of the draw ra-
tios (length of an axis of the ellipse/circle radius). The major principal strain is defined
by A, and the other principal strain is A,. In terms of the prevailing shear strain (G'sell

et al., 1982):

R N D))
A = (Y e/ P 4)
Ay = 1 (no deformation)

where x, y, z are axes coinciding with the principal strain axes. Oy and Oz rotate as
straining proceeds while Ox corresponds with Ox;.

The samples were cut such that measurements were carried out on the plane of de-
for mation (X X2).

Optical Characterization .

In the undeforimed state, a transparent polymer does not show any evidence of optical
anisotropy (i.c., birefringence) due largely to the random orientation of its molecular
chains. Molecular orientation in the deformed state is usually indicated by birefringence.

The birefringence An in the plane of deformation (x,X2) of sheared specimens
was measured with a Berek compensator (30 orders) mounted on a transmission optical
polarizing microscope. The orientation of the principal axes of the refractive indices
was also determined with a graduated rotating stage by looking for the extinction posi-
tion. Appendix-A gives more dctails on birefringence and its measurement.

Birefringence values were measured at ambient temperature.

X-ray Diffraction

Transmission x-ray diffraction of the samples was done with a flat film camera. A cop-
per (CuKa) source (A = 1.54A°) was used with a gencrator (Philips) set at 60 kV
and 16 mA. Film-to-specimen distance was fixed at 40 mm and exposure time was 30
minutes. Beam diameter was 0.5mm and a nickel (Ni) filter was used.

Duc to the amorphous nature of the specimens, the diffraction patterns showed
characteristic halos. For isotropic specimens the intensity of the primary halo does
not change along its circumference. Any intensity variation indicates presence of mole-
cular orientation (Kakudo and Kasai, 1972). For patterns from deformed specimens,
these variations were measured with a light meter.

Other data on molecular orientation was obtained by using x-ray diffraction results

to draw pole figures for two specimens. This was done by Messrs. Beautemps and Jarry
at the Rhone-Poulenc Research Center.

RESULTS

Refractive Index Ellipsoid

The refractive index ellipsoid is defined by the principal axes of the refractive indices
(Bruhat, 1959). These are three orthogonal directions which correspond to the extremal
values of the refractive indices in an optically anisotropic material (sce Appendix A for
more details). It can be shown that differences in refractive indices in a body are linked
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to the existence of polarizable units in the material (Mills, 1972; Stein and Wilkes, 1975).
In polymers these units are considered to be covalent bonds in the central molecular
chain or functional molecular groups (such as phenyl radicals). These units are assumed
to have an inherent polarizability p; along the main axis (usually taken parallel to the
main chain axis) and a secondary polarizability p, in any other perpendicular direction.
These units have therefore been described to be anisotropic but transversally isotropic
(Ward, 1967 and 1975). If these units are preferentially oriented in one direction, a bire-
fringent system is produced in which the refractive index n; in the orientation direc-
tion is higher than in the perpendicular direction n,. The refractive index n3 perpen-
dicular to the first two directions will be the same as ny. This system is then defined by
a single birefringence value Any, = ny-n, with Any; = Any, = 0. In this case,
the refractive index ellipsoid will have two equal axes n,. and n3. The experimental
determination of birefringence in a plane containing the principal axis corresponding
ton; will fully characterize the system.

In the case of simple shear the x; x, plane as represented by Figure 2 was chosen
for measurements. Since it contains two principal strain axes, it should contain the major
principal axis of refractive indices. The position of this axis was determined by placing
the specimen between crossed polars and looking for the extinction position. At extinc-
tion the principal axes are parallel to the optical axes of the two polarizers. The stress
axis was taken as the reference axis; and the acute angle retained as the angle of orient-
ation. This parameter indicates the orientation of the major principal refractive index
axis, or the major axis of the projection of ihe ellipsoid on the plane of measurement.

Results are shown by Figure 4 which gives the variation of the extinction angle with
plastic shear strain (7pl ). The extinction angle decreases with increasing plastic strain.

On the same figure, the variation of the angle o, between the principal strain axis
and the stress axis (Ox,), with plastic strain has been drawn. This is given by & =1/2
tan"! (1 2/7) and is represented by the curve in the figure. [t is to be noted that the ex-
tinction angle varies in the same way as the angle a.

Birefringence values obtained with sheared specimens are given in Table 1. White
light was used and an equivalent wavelength of 565mm was used in the computations.
The maximum draw ratio N corresponding to the plastic shear strain has also been
reported in Table 1. Figure 5 shows graphically the variation of birefringence An with
plastic shear strain Y pl. Birefringence does not appear to be a lincar function of plastic
shear strain.

Measured birefringence values for sheared polycarbonate are all positive. This indi-
cates that the refractive index along the molecular alignment direction becomes bigger
than refractive index in the perpendicular direction. Looking at the birefringence expres-
sion (sce section on p. 80 ) will show that for birefringence to be positive, p; > p2.
Hence the inherent polarizability of polycarbonate along the molecular chain axis must
be py, greater than the inherent polarizability p, in a perpendicular direction. This is
confirmed by looking at the structure of a polycarbonate monomer (Figure 1). No bulky
side groups are present and two phenyl groups can be seen on the main chain. Phenyl
groups are very polarizable (Gurnee, 1954; Rudd and Gurnee, 1957; Mills, 1972). At
this point, it can already be said that the major refractive index axis of polycarbonate
(as given by the extinction angles) should correspond to the molecular alignment direc-
tion.

In the case of polystyrene, negative birefringence was observed and this was later
attributed to phenyl side groups attached to the molecular chain (Gurnee, 1954; Kramer,
1974).
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Table 1: Birefringence Values

Sample Plastic Shear Maximum draw Birefringence
Number strain, y pl ratio, A nx10°
175 T 0.2 1.12 176

1.77

1.80

1.83

195 0.44 1.24 2.08
2.09

2.09

212

29 0.62 1.36 3.18
0.64 1.37 3.19

223 0.72 1.42 3.18
3.37

3.39

8 0.75 1.44 3.59
0.76 1.45 3.64

7 0.80 1.48 4.07
3.88

5 0.89 1.54 4,27
0.91 1.55 4.47

24 0.96 1.59 : 4.61
0.97 1.60 458

224 0.97 1.60 452
4.67

5.61

14 1.05 1.65 4.78
4.81

It is to be noted that birefringence increases rapidly with plastic strain. The values
obtained (An = 510°* at N = 1.65 for example) are of the same order of magnitude
as those obtained for polycarbonate deformed in tension at room temperature, An =
4.5 107* for an extension ratio A = 2 (Falkai and Hinrichsen, 1977). At the same
value of draw ratio birefringence values obtained in tension scem to be lower than those
for simple shear.

The birefringence of hot drawn polycarbonate (T > 150°C) is even lower; An =
8 10 at N = 10 (de Rudder and Filisko, 1977) and An = 1 1072 at \ = 2

(Falkai and Hinrichsen, 1977).
X-ray Diffraction

Figurc 6a shows the x-ray diffraction pattern from an undeformed polycarbonate
sample. The amorphous halo has uniform circumferential intensity and this confirms the
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absence of any molecular orientation (Kakudo and Kasai, 1972). A pattern from a de-
formed sample (Figure 6b) shows the sane halo but with varying circuinferential inten-
sity. The angle between the molecular alignment axis and the stress axis (vertical on the
pattern) was determined with the help of a light meter. The pattern was rotated about
an axis corresponding to the primary x-ray beam to measure the variation of the intensity
along the circumference of the halo. A plot of the intensity (arbitrary units) as a func-
tion of the azimuthal angle 0 is shown on Figure 7. The stress axis was taken as ref-
erence, 0§ = 0. The molecular alignment with respect to the stress axis is given by the
point of minimum intensity.

The diffraction patterns obtained for the deformed specimens correspond to that
for a biaxial orientation (Kakudo and Kasai, 1972) or for a fibrous orientation (Guinier,
1956). The azimuthal direction corresponding to the minimum diffracted intensity on
the pattern corresponds with the principal orientation axis of the polymer chains (Ka-
kudo and Kasai, 1972).For the different specimens studied the azimuthal angles are also
plotied on Figure 4. It is to be noted that the extinction angle, the azimuthal angles
corresponding to the polymer chain alignment and the angle o corresponding to the
major principal strain axis all vary in a similar manner.

DISCUSSION

Models of Molecular Orientation

Strain-induced molecular orientation or texture in polymers has been described
by two theories, the “affine” deformation theory (Kuhn and Grun, 1942; Treloar,
1954 and Gurnee, 1954) and the “pseudo-affine” theory (Kratky, 1933; Ward, 1962,
1967 and 1971).

In the affine deformation theory, (initially proposed for rubbers), the material
is considered to be composed of a jumble of flexible chains. Each of these chains is made
up of freejointed links or segments which are more or less able to move. In this model
molecular orientation is described by taking the orientation of the end-to-end vectors
of all the molecular chains. As the material is deformed, the orientation of the end-to-
end vectors is changed while the links in the molecular chain rearrange themselves
due to stress or entropy factors (Treloar, 1954; Ward, 1967 and 1975). This model
requircs a statistical description of the flexible chain configuration. Based on this an
expression for birefringence as a function of strain has been obtained (Kuhn and Grun,
1942).

2r (n%+2)?

On = N (p,-p2) (N*-1/N)
45 n
where n = average refractive index (or refractive index in the isotropic
state)
N = number of chains per unit volume
pyandp, =  primary (along the principal axis) and secondary (perpendicular
direction) polarizability of a segment
A= draw ratio (or extension ratio)
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Since there are many possible configurations for the scgments in a given molecular
chain, the average orientation of these segments will be much lower than the orientation
of the end-to-end vectors of the chains, particularly for strains between 100 percent and
200 percent (Gupta and Ward, 1967 and 1968; Ward, 1975). As such birefringence in-
creases slowly with strain (sce Figure 8). .

In the pseudo-affine theory, on the other hand, all of the segments (chain units)
are considered to change their orientation as a function of the induced strain. Each of
these segments also possesses different polarizabilities along the chain axis and in per-
pendicular directions (Ward, 1967, 1971 and 1975). This model ignores any change in
the length of the segments during deformation.

In the pscudo-affine theory the chain segments change their orientation with the
strain while in the affine theory, the end-to-end chain vectors change their orientation.
The pseudo-affine theory thus predicts a more rapid development of the birefringence
with the strain. It gives a birefringence vs draw ratio curve which is concave downward
and which passes above the same curve as predicted by the affine theory (Figure 8).

The affine theory has been found to describe very well the development of mole-
cular orientation in rubbers (Kuhn and Grun, 1942; Treloar, 1954; Ward, 1977) and in
rubbery amorphous polymers (at temperatures above the glass transition temperature,
Tg) (Perrena et al., 1980; Ward, 1967 and 1977; Foot and Ward, 1975; De Vrics, 1982)
but it has been found inadequate for glassy amorphous polymers (Ward, 1975 and 1977).
In the case of semi-crystalline polymers, analysis of orientation is more complicated due
to the presence of two phases (amorphous and crystalline) and due to the difficulty
in determining the birefringence contribution from each of these phases (Wilkes, 1971;
Samuels, 1974; Stein and Wilkes, 1975).

Studies on glassy amorphous polymers have shown that the pseudo-affine theory
can be used to describe the molecular orientation due to plastic strain (Foot and Ward,
1975; Perrena et al., 1980). Ward (1975 and 1977) has shown that at low temperatures
(below Tg) experimental data are in agrecment with the pseudo-affine theory, while at
high temperatures, the affine theory agrees better with the data. These studies were done
mostly on amorphous polycthylene terephthalate (PET). For semi<rystalline polyments,
the pscudo-affine theory scems to be a good first approximation for strain-induced mole-
cular orientation (Ward, 1975 and 1977; Stein and Wilkes, 1975).

A Theoretical Calculation of the Birefringence due to Simple Shear

Using the pseudo-alfine theory, an expression of the birefringence as a function
of shear strain will now be derived. The details are given in Appendix B, and only the
principal developments of the solution will be given in this section.

The following hypotheses were used:

(1) the material is composed of chain segments which change their orientation during
straining such that the axes of symmetry of the segments undergo the same changes
in orientation as lines (or vectors) drawn on the solid being deformed (the pscudo-
affine hypothesis).

(2) there is no change in volume during deformation.
(3) there is no change in the length of segments during deformation.

(4) the segments are transversally isotropic, with a polarizability p; along their axis
and a polarizability p; inany direction perpendicular to the axis.
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Shear deformation may be represented by a vector p' (x',y',z') changing its or-
ientation due to the macrosopic strain in system of axes corresponding to the principal
strain axes. In this system, Oxyz, z is the axis of maximum elongation while y isthe
axis of maximum compression. This system of axes rotates during straining due to the
large physical strains involved. Since there is plane strain, the draw ratio A, along a
direction perpendicular to the deformation plane is equal to 1 (no normal strain along x).

The maximum draw ratio is A, =A =1/2(y + 1/ 7® + 4) and the draw ratio
along the other axis is Ay = 1/A = 1/2 (~Y+V7 +4)

with Y being the shear strain. In the detormcd state the vector p(x v,z
is moved to another orientation represented by p(x ,yhz). The primed coordinates
x',y',z" give the position of the vector before deformation while the x, y, z coordinates

give the position after deformation (Figure 9).

The change in the orientation of vector p may be given as a function of the
angles ¢' and 0', which are respectively, the angle between the x y' projection of the
vector and the Ox' axis and the angle between the vector and the Oz’ axis.

These relationships are given by:

tan ¢ = (—‘)\_) tan ¢/

V1 +A 2 an?¢
V1 +tan*¢

and tan @ = tan 0'-1—

where A = A,

and the angles ¢ and 0 (without primes) are the angles after deformation has taken
place.

The apparent polarizabilities along the given axes may now be obtained (after Ward,
1962).

p) cos?¢sin20 + p,(sin®p+ cos?¢cos?0)

Px <
Py = Py sin®¢sin®0 + p,(cos’p + sin®Psin®6)
p, = p; cos® 0 + p, sin26

where p; and p, are polarizabilities of the segment and 6 and ¢ are the previously
defined angles.

By the Lorentz-Lorenz equation (Stein and Wilkes, 1975) these apparent polarizabi-
lities may be related tc the refractive indices in the same directions.

-2__. .
n ] = B (in MKSA units)

n;2+2 3

(whereci =x, yorz).
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The birefringence (n; —n;) is given by:

6n - Pj— DB
—— On = A
@ +2) 3

by using the following approximations:

ni + nj = 2n
n; — nj = n
(n? +2) (nj? +2) = (n* +2)?

These expressions are valid for a single polarizable element. For N eclements, bire-
fringence may be written as:

N n2+2)?
An= — L (Pi -p))
18 n

where N is the number of polarizable elements, n is the refractive index in the isotropic

state, and (p;~p i) is the average difference in polarizability in the i and j directions
for the populatlon of segments. .

In the yz planc the birefringence corresponding to the values measured in this
study should be given by

N (n?+2)2
Anzy = (Pz”'Py)
18 n

where the average (p,—p, ) is taken for N chain segments in the deformed state.

Using the previously derived expressions for p, and Py

(p,--py) = (P1—P2) [1-sin?0 —sin20 sin? @)

where sin20 and sin20 sin*¢ are functions of the average values of the angles 0 and
¢ and consequently of the shear strain.

Orientation birefringence due to simple shear is therefore written as:

2+2 2
An,, = —l—rg— @_H_)_ (py—p,) [1 —sin®0—sin®6sin2 ¢

with the average quantities given by expressions in Appendix B.

It is to be noted that in the case of uniaxial tension the term[1-sin%0 -sin?0 sin?¢]
reduces to [l - 3/2 smz()] Hermans (1946) orientation function, because the angle

¢=¢ and sm2¢ = 1/2(Kuhn and Grun, 1942; Ward, 1962).
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Analytical solutions for sin?0 and sin?0 sin?¢ turned out to be difficult to ob-
tain so numerical solutions were used instead. Figure 10 gives the variation of the orien-
tation factor as a function of the draw ratio. Orientation birefringence varies propor-
tionately with the orientation factor.

An = C [1-sin?0 — sin%@sin?¢]

where
N (n2+2)2
C = — —— (p;—p»
T - (P1—p2)

and only N varies in the expression for C.

Comparison with Uniaxial Tension

For comparison, birefringence values due to uniaxial tension were obtained. A cy-
lindrical specimen was strained to necking at ambient temperature and a nominal strain
rate £ = 1073 s'. By measuring the diameter of the specimen at different points
in the necked area, the local strain was obtained from the expression € = 2In (Do/D)
and the draw ratio N = exp €. The results are also shown in Figure 11. A valuc of
C = 0.131 likewise gives a theoretical An—A curve in good agreement with experi-
mental data. This gives the same values of C for both tension and simple shear and ap-
pears to lend additional support to the pseudo-affine theory. The parameter C is also
referred to asAn . (Ward, 1962).

Other Indications of Melecular Orientation

Diffraction patterns of deformed specimens have halos of low intensity in two
diametrally opposed areas (see Figure 6). This variation in intensity is due to the mole-
cular alignment (Kakudo and Kasai, 1972) in a direction perpendicular to the direction
of maximum diffraction. The diffracted intensity is increased in a direction perpendicular
to the fiber (or molecular chain) alignment. At large strains, this type of orientation
approaches a fibrous orientation (Guinier, 1956; Kakudo and Kasai, 1972; Samuels,
1974). From Figure 4, the direction of molecular alignment as determined by X-ray
diffraction coincides well with the major refractive index axis and the major principal
strain axis.

More data on molecular orientation were obtained by constructing pole figures*
(Guinier, 1956, Kakudo and Kasai, 1972) for two values of plastic strain. For these
measurements, cylindrical samples (diameter = 2mm) were machined carefully from
calibrated parts of sheared specimens. Figure 12 gives the pole figures for plastic shear
strains. Ypl = 0.32 and 1.0 . The x; x, plane perpendicular to the plane of the pole
figures is the plane on which birefringence measurements and flat chamber x-ray dif-
fraction were carried out. These pole figures confirm the existence of a direction of
molecular alignment. The symmetry of the texture with respect to the plane of meas-
urement (x; X;) is also shown by the figures.

Effects of Temperature on Molecular Orientation

Data indicate the validity of the pseudo-affine theory for glassy polycarbonate.
To see if the affine theory is valid at high temperature (T > Tg), specimens were de-

* We acknow ledge the assistance of Messrs. Beautemps and Jarry of the “Centre de Recherche
des Carricres (St. Fons)™ of Rhone Poulencin the tracing of these pole figures.
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Figure 1: Schematic diagram of the structure of a polycarbonate monomer.
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Figure 2: Deformation geometry of planc simple shear.
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Figure 3: Deformation geometry on the plane of deformation in simple shear.
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Figure 4:
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Figure 6: X-ray diffraction patterns.
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Figure 10: Orientation factor vs draw ratio for plane simple shear and uniaxial tension.
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Figure 12: Pole figures of sheared polycarbonate.
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formed in uniaxial tension at 150°C (Tg = 145°) and birefringence values obtained
for different draw ratios. Results are also shown on Figure 11. Birefringence values at
150°C are less than half the values at 23°C. The An — A curve is however, still con-
cave downward. Validity of the affine thcory should have been affirmed by a curve
which is concave upward. It is possible that the temperature at which straining was
done (150°C) was still too low to allow the molecular segments enough free volume to
conform to the affine theory. Experiments at higher temperatures could not be done
because polycarbonate undergoes thermal decomposition at around 155°C. It can still
be said however, that deformation at high temperature induces less molecular orientation.

CONCLUSIONS

Birefringence data and x-ray diffraction results indicate that simple shear defor-
mation induces molecular orientation in glassy polycarbonate. Measurements on unde-
formed specimens indicate the absence of any orientation in the undeformed state.
Bircfringence is very weak (5107°) and x-ray diffraction gives a pattern with a charac-
teristic halo of uniform intensity. Molecular orientation observed in sheared specimens
is thus due entirely to plastic deformation.

The direction of molecular alignment was deduced from x-ray data, while the op-
tical extinction angle indicates the position of the major principal axis of refractive
indices (Figure 4).

The principal axis of refractive indices rotates towards the shear stress axis as strain
increases. The major axis of the refractive index ellipsoid also seems to coincide with
the principal strain axis of the Eulerian strain tensor for simple shear.

The positive birefringence values indicate that the polarizability of a polycarbonate
monomer along its chain axis must be higher than in any other perpendicular direction.

Pole figures furthernconfirm the presence of molecular orientation.

The data obtained fits the An— A curve obtained by using the pseudo-affine
theory. This fit was obtained by adjusting a parameter in the birefringence expression.
The same value of this parameter was obtained for both simple shear and uniaxial tension.
An attempt was made to sce if the A n— X\ data at high temperature correlated with
the affine theory. The data showed a An — A\ curve which is concave downward.
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APPENDIX A. BIREFRINGENCE DETERMINATION

Birefringence

The mecasurement of optical anisotropy is an often-used procedure for the charac-
terization of molecular orientation in polymers, and is particularly useful for transparent
amorphous polymers. Optical anisotropy is essentially due to the differences in the in-
herent polarizabilities of the material. Since polarizability is a tensorial quantity, the
resulting optical propertics may vary according to the direction in which they are meas-
ured. Polarizability p relates an clectric dipole ™ to the local clectric ficld E by the
expression (Gaudaire, 1969; Mills, 1972).

mj = pjEj Lj = 1,2,3

For a polymer chain segment (consisting of a covalent bond), the interaction between
clectrons in the bond with the clectric field would be more intense if the field oscillated
parallel to the bond axis than if the oscillations were in a plane perpendicular to the bond
axis (Figure Al). This interaction reduces the velocity of incident light by a quantity
defined by the corresponding refractive index, n (Stein and Wilkes, 1975). Polarizability
and refractive index are related by means of the Lorenz-Lorentz eéquation (Mills, 1972,
Stein and Wilkes, 1975).

n?-1 P
n2+2 3

(in MKSA units)

In the case of a polymer with molecular orientation, the molecular chains are
aligned in parallel directions and this results in a difference in the refractive index values
on the plane of orientation. This difference in refractive indices An = n, —ny is
called birefringence. In this expression, n; is an extremal value of the refractive index
(usually in a direction parallel to the molecular orientation) and n, is the refractive
index in a direction perpendigular to n; in the plane of measurement (Bruhat, 1959;
Stein and Wilkes, 1975). Taking n; as the refractive index along the direction of mole-
cular alignment and n, as the index in a perpendicular direction, a third refractive
index n3; may be defined in a direction perpendicular to the first two. These three
external refractive index values may then be used to define a refractive index ellipsoid:

x2 )"2 Z2 |
— + = +— =
O R

This ellipsoid may be drawn in a set of reference axes X, y,z such that Ox, Oy and Oz
are parallel to directions 1, 2 and 3, respectively (Bruhat, 1959). The Ox, Oy and Oz

92



c

\ ~~ DISPLACED ELECTRONS

y

Figure Al: Interaction of a Covalent Bond (C-C) with an Electromagnetic Wave (after
Stein and Wilkes, 1975).

L X

Figure A2: Ellipsoid of Refractive Indices.
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axes are called the principal axes of refractive indices (Figure A2). In most cases, the
polarizable units (c.g. covalent bonds in a molecular chain) are considered to be trans-
versally isotropic (Ward, 1962 and 1967). This is equivalent to saying that ny =n, and
the system is fully defined with a single birefringence value Any, = ny — n, with
Any3= Any, and Any3 = 0. In this case a proper choice of the plane of measure-
ment will enable an experimental determination of the birefringence value which defines
the system. The plane of measurement must be chosen such that it contains the projec-
tion of the biggest ellipse of the refractive index ellipsoid (the xy or xz plane in Figure
A2). Depending on the values of ny and n,, the birefringence may be positive (ny >
n,) or negative (n; < ny). Birefringence is positive it the polarizability along the
molecular chain segments in a polymer is greater than that in perpendicular directions.
It is negative in the reverse case. The latter has been observed in cases where the side
groups on the molecular chains are very polarizable groups (polystyrene for example).

In simple shear the x; x, plane (sec Figure 3) is the plane on which deformation
takes place and conscquently the plane on which molecular orientation should be most
evident. This plane was chosen for mecasurements. The An value on this plane should
fully characterize the refractive index ellipsoid of the material.

Measurement of Birefringence
The schematic diagram on Figure A3 shows the compensation method of bire-
fringence determination, a method uscd in this study of sheared polycarbonate. This

method is based on the fact that polarized light going through a birefringent sample
suffers an optical delay & given by (Stein and Wilkes, 1975):

§ = < An
: A
where e = specimen thickness
A= wavelength of polarized light
An = birefringence

When a birefringent specimen is placed between crossed polars the intensity of transmit-
ted light varies with the specimen position with respect to the optical axes of the polar-
izers. If the principal refractive index axes of the specimen are parallel to the optical
axes of the polarizers, no light is transmitted. This is called the extinction position, and
there are four such positions. These are found by turning the specimen about an axis
corresponding to the light beam (Ox on Figure A3). At 45° to these extinction angles,

the intensity of transmitted light is maximum. This is called the diagonal position or the
position of maximum illumination.

The optical delay is measured in a diagonal position by using a material of known
birefringence which is equal to and opposite the birefringence of the specimen. This is
called compensation. It is achicved when the transmitted light is extinguished by proper
adjustment of the compensator. The wavelength in the calculations is fixed by the light
used. If white light is used, an equivalent wavelength N, = 565 nm is used for the
calculations (VISHAY Micromeasures). 4

A typical procedure consists in first determining the position of the principal
refractive index axes by looking for an extinction position. A diagonal position is then

94



found (by turning 45° with respect to the extinction position) and the compensztor is
used to measure the amount of optical delay.

In our study, a 30-order Berek compensator was used. This is essentially a quartz
piece whose thickness is varied by rotation of the piece about an axis perpendicular to

the light beam.

There are other methods of birefringence determination: by transmission (Stein
and Wilkes, 1975), the Babinet compensation technique (Bruhat, 1959; Wilkes, 1971).
and a refractometer method (Samuels, 1974.)

Polarizer
light
source E/I “
y specimen rotated
/ about x axis
X
‘\
> Compensator
/ 0
bA

E,
analyzer

Figure A3. Schematic Diagram of Compensation Method

APPENDIX B. CALCULATION OF ORIENTATION BIREFRINGENCE
DUE TO SIMPLE SHEAR

General Comments

We have adopted the pscudo-affine hypothesis (Kratky, 1933;Ward, 1962 and
1967) which secems to better account for molecular orientation in glassy polymers. The
affine theory (Kuhn and Grun, 1942; Gurnee, 1954, Treloar, 1954), which was initially
proposed for rubber does not seem to describe orientation in polymers unless these are
at temperatures above the glass transition temperature (Tg). At thesc temperatures,
the polymers are said to be in the “rubbery” state (Ward, 1977).

The pseudo-affine hypothesis states that cach element on the molecular chain of
an_initially isotropic polymer develops a dipole moment due to the action of incident
light and is oriented under the effect of the applied macroscopic strain (Ward, 1967,
1971 and 1975).
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Calculations to define the relationships between the strain due to simple shear and
the resulting birefringence were done and a comparison was drawn with the case of
uniaxial tension.

Geometry of Simple Shear Deformation

Figure Bl shows the geometry of deformation in simple shear, with x; x, being
the plane of deformation and Ox, being the shear stress direction. A set of reference
axes X, y,z which turns with the principal strain axes are used in the derivation. The
deformation is planar (plane strain) and the draw ratio A, in the x direction is unity
(no deformation in this direction). Denoting the draw ratios along Oy and Oz by 7\y and
N\, respectively, conservation of volume gives:

1

Figure B1: Deformation Geometry of Plane Simple Shear

' Since Qz is the major pr.incipal strain.axis, )‘z is the bigger draw ratio and will
be simply designated as A . This, together with the previous expression yields:

)\Z=7\ Ay: l/)\
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Consider now a molecular chain element in a set of reference axes x, y,z. For
simplicity, the element will be chosen such that all its components are positive. Under
the action of simple shear this vector F(x’,y',z') will rotate to a new position
P (x,y,2z) (Figure 9). It will be assumed that no change takes place in the magnitude
of the vector (if this vector represents a covalent bond in a molecular chain, this is not
unreasonable). The transformation equations relating the position in the deformed state
to the initial position arc now written as:

z= ANz
= (1/\)y'
x=x

The following trigonometric relationships may also be defined:
tang' = y'/x and tang = y/x = (1/A)tand’

—
where ¢ is the angle between the projection of vector p’ on the x'y’ plane and the
Ox’ axisand ¢ is a similar angle for vector P.

‘ ﬁ . -—
For the angle 0 between vector p  and the 0z axis and the angle 6 between p and
Oz, the following relationships may be written:

tan 0 = (x'/z') V1 +tan? ¢'
tan 0 = (x'/A2')\/ 1 +tan? ¢
tan 0 = tan@' (1/A) /1 +X 2 tan? ¢’
VAR tan? ¢’
z1 7z
L
AN
N
N
N, N
AN
AN
\\
P
|
N 2,
0 | P
. |
8 |
I
I -
! Yy
: 7
P /7
¢=¢ I 7
7
| A
/ ’
X X

Figure B2: Change in the Orientation of a Vector in Body in Uniaxial Tension
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ORIENTATION FACTOR

O 1 1 L 1 1 ]
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DRAW RATIO X

Figure B3: Orientation Factor vs Draw Ratio for Plane Simple Shear and Uniaxial
Tension

Optical Description

The material is assumed to be composed of polarizable units which are transversally
isotropic. These units may be covalent bonds on the polymer molecular chain and may
acquire a dipolar moment T, along a given direction (such as the chain axis) and
another moment ', in a direction perpendicular to the first one.

Electrical polarizability is given by the expression (Gaudaire, 1969):

P1 =ﬁ?l/£ O—El and P2 =-ﬁ1‘2/£0§2

where p, and p, are the polarizabilities along m; and 1112 and El and E2 are
the corresponding components of the local electric field and ™, and m, are the polar
moments due to the external electric field. These moments are perpendicular to each
other with direction 1 very often parallel to the molecular chain axis.

The apparent polarizabilities along the reference axes x, y, z (in Figure 9) are now
obtained by a double projection:

a)  of the field E along direction of polarization 1 (the chain axis) or direction 2
(perpendicular to the chain axis),

b)  and of the resulting dipolar moments m along the reference axis.
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The following expressions are obtained (Ward, 1962):

py cos?psin?0 + py(sin®¢ + cos? ¢eos?0)

Px =
py = pysin®¢cos 20 + p,(cos? +sin?¢cos?0)
P, = M cos20 + P2 sin2@

The expressions originally obtained by Ward (1962) differ slightly from those given
above due to a permutation of axes.

These polarizabilitics may now be linked to the corresponding refractive indices
by the Lorentz-Lorenz equation.

niz_l

P .
= L (in MKSA units)
n 2 +2 3

where p; s the polarizability of polarizablé unit along the i'" direction and nj is the
refractive index in the same direction.

The birefringence ("i_"j) with i being perpendicular to the j direction is then
given by:
2 2
ni —_ l _ nj — ] - pl — p]
n2+2 n2 +2 3

since birefringence values are very often small (from 10™*  to 1072 ), the following ap-
proximations may be used.:

n+n =2n° )
(n? +2) (nf +2) = (n? +2)?

These together with the birefringence expressions gives:

6n A (pi-p;)
(n? + 2)? n= 3
where An = n; — n; is the birefringéncc. For N polarizable elements the above

expression becomes:

6n (Pi—Pj)
wrr AN T
and rearranging:
_ N (n?2+2)?2
An = N )
18 n

In this expression, n is the refractive index of the material in the isotropic (unde-
formed) state while (pj — pj) is average difference in polarizabilities for all the N ele-
ments.
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The birefringence An on the yz plane must therefore be given by:

L N (n?+2)?
Ly 18 n

(pz_py)

with (pz — py) being taken for N clements in the deformed state. The expressions for
the apparent po]aruabllmcs are now used:

p,=p1—(p1— p2)5i112
Py=(p; — p2) sin?¢sin? 0 + p,

We therefore obtain:

p,—DPy= (P1—p2)(1-sin®0 — sin*¢ sin*0)

To obtain the relationship between birefringence and strain (through the draw
ratios) the average values in the expression for (pz — pyi must first be obtained.

Average Values

For a given function f(0,¢ ) the average value in three-dimensional space is given

2w m Y )
fo [ fo f0,¢) sing"do ] d¢
{OZH [foﬂ sind’dg’ ]dd)'

The average values if sin20 and sin®0 sin?¢ must be obtained. Due to the pcnodl-
c1ty of these funcuons only the following intervals will be considered: 0 < ¢ <-T and
< ¢ < —. The resulting expressions are: 2

2

by:

f ( sin?0(0’ @) sin0’do d(,‘b

<.
=
[¥)
<
]

1 -

]
o 1

o] N
YRS

sin0(0",¢") sinp(¢') sin0'do’dg’
sin0 sir|2¢)

la

TP

where sin?0 (0 @) and sin® ¢ (¢')indicate that these  expressions must be given as
functions of 0’ and ¢’ defined in the reference system x' ,¥', 2" in which the calculations
arc being donc.
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The analytical solution to the above expressions has turned out to be difficult to
obtain. Numerical solutions have therefore been obtained. The following are the trans-

formed expressions for programming:

0l U
N ¢ N
z z
.2 1 g . ! m Tr
sin®0(0;,0;) sind; | *5 * =
olzol (i)' =¢; [ANgS ¢ 1 1 2 2
sin?0 = i :
T
2
0' '
- N ¢ N
or sinzO=;—T z ’ ) Z sin%g, (0!,¢') sin;
0§=01 | ¢i=9j
where 1 1
sin0(0°,0') = i =
g ! N (1+tan?g")
tan 24! + 1
tan0’ Q + t3;2¢ >
The other expression becomes:
!
"N T 9N
sin20sin’p = T ¥ S sin?0,(0},¢)) sin?¢; (¢") sind]

! _pq! ! _ !
0;=0) L ¢t
where sin20(0',¢') is the same expression as before,
and sin?¢ (¢) = — )\21
lu|12¢'

+ 1

Birefringence in Uniaxial Tension

The derivation for this casc using the pscudo-affine theory has already been done
by Ward (1962) and is being given here for comparison. The geometric conventions pro-
posed by Kuhn and Grun (1942) are used here and only the principal equations will be
given.

Figure B2 shows a vector representing a molecular (,ham clement changing its
orientation duc to tensile deformation. The vector [7 (x y z) represents the unde-
formcd state and its position after deformation is given by P (x,%,2). In thiscasc the
X' y Z and X, Y,2 axes are practically identical. The magnitude ﬁls also assumed to
be unaffected by the strain and the constant volume hypothesis applies.

The tensile stress axis coincides with the Oz  axis and the draw ratio along this
axis is denoted by X. The draw ratios along the Ox’ and Oy’ axes are equal (tran-
verse structural isotropy) and {rom constant volume, we obtain, A'=N,/ = 1/ 4/ A

The angle made by the vector with the Oz’ axis varies according to (Kuhn and
Grun, 1942; Treloar, 1954, Ward, 1962):
tan0 = X 3/2 tano’
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where 0’ is the angle before deformation and 0 the angle after deformation.

The angle between the projection of the vector on the x'y' planc and the Ox' axis
does not change since Ay = Ay, This is the essential difference in the deformation
geometries of simple shear and uniaxial tension.

By the same reasoning as that for the case of simple shear:

An o (1 — sin?0 — sin? 0 sin® ¢)

but sin?0 = 1/2 since ¢’ does not vary with strain and the above expression is re-
duced to (Hermans, 1946; Ward, 1962):

An o (1 — 3/2 sin?0)
The full expression is:

An = Ang . (1 - 3/2 sin? 0)

where (1-3/2 sin? ) is often called Hermans orientation factor after Hermans (1946)
who first derived this expression. This expression may also be found as:

An = Anp o (1/2) (3 cos?0 - 1)

Since sin%0 is no longer a function of ¢’ (as was the case for simple shear) this
average may be calculated both analytically and numerically.

The numerical solution is:

]
sin?0 =’1\3§ I sin?0,(0) sind)]
0i=0|
with  sin20(0") = !
. + 1
X3tan%g’

The analytical solution (Ward, 1962) is:

K

with K = )\-3/2

sin%0 =
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The birefringence expression becomes:

An = Anp,y 3 1 _ Keos!'K 1
2 | 1-K? (1-K?)3/% 3

Results

The general expression for birefringence is:

_ N (n*+2)*(p,—p,) [1-sin®0—sin?0sin®¢)

A
f 18 n -

This may be rewritten as:

An = C [1-sin®0 — sin%0 sin®¢]

N (ﬂ2+2)2 (pl_pZ) = A"max
I8 n

where C

The term in the brackets is referred to as the orientation factor. For uniaxial ten-
sion it reduces to Hermans orientation factor.

The numerical solutions were obtained by integration of the expressions with an
Apple II microcomputer. Thirty-three increments in 6 and ¢ were used. The results
are given in Figure B3 which shows a plot of the orientation factor vs. draw ratio for
both uniaxial tension and simple shear. Both curves show an increase in orientation
(and consequently of An) with increasing draw ratio. The curves are also concave down-
ward as predicted by the pseudo-affine theory and it appears that for the same draw
ratios molecular oricntation due to simple shcar is stronger.
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