“The utility of the system stems from the possibi-
lity of labeling the data unit and treating it as
some common type of mathematical entity.”

An Integrated Data Input/Output Manager
for Microcomputers

by

Salvador F. Reyes, Ph.D.*

INTRODUCTION

When microcomputers are used in data processing of the ‘‘number crunching’’ category (such
as in many scientific and engineering applications) user intervention or interaction may well be li-
mited to the input and output phases of the processing. This suggests that an all-purpose input/
output manager along with utilities (subroutines) that can be linked to the applications program
module could permit specific coding for the applications program to be focused on the computa-
tional aspects and still provide, in the running of the application, a sufficiently friendly environ-
ment for users.

In such a scheme the input/output manager creates a file from keyed in data which then is
read (with the help of the utilities) by the applications module. These same utilities may subse-
quently be used to transform the results generated by the applications module to an output file
which the input/output manager can later convert to the desired displayed or printed form.

FEATURES OF LD.I.O.M.

This note describes a simple implementation which includes a stand-alone integrated input/
output manager (1.D.1.0.M.) and a set of utilities (subroutines in CBASIC source code) which can
be linked to any applications module. The data file organization selected for the implementation is
sequential and ASCI| format in order to facilitate data interchange among independent program
modules written possibly in a variety of high level source codes.

For simplicity, 1.D.1.0.M. is designed to process only numbers which, in the file, are in the
form of ASCII fields delimited by commas and carriage return marks. The basic data unitis the
data member consisting of one or more such fields (i.e., an array). The utility of the system, how-
ever, stems from the possibility of labeling the data unit and treating it as some common type of
mathematical entity. In the current implementation the possible mathematical data types are
scalar, vector, matrix, hypermatrix (partitioned matrix in which the submatrices are of equal size),
and table. Although a table of numerical elements is structurally similar to a matrix the distinction
permits assigning labels 1o the columns of the table. Moreover, for tabular data it is meaningful
to modify the number of rows when editing the member or in the course of processing.

The logical structure of a data member is conveyed by a header which precedes the numeric
array itself. Normally the details concerning the various forms of the header (described in Appen-
dix “A") need not concern the user. I.D.1.0.M. interprets the information contained therein and
presents these in the proper forms in the displays or printouts. Moreover, during the input phase,
the user will be guided by prompters in specifying the desired data structure. It will, therefore, suf-

*Professor of Civil Engineering, U.P. College of Engineering, Diliman, Quezon City, Philippines.

7

fi. to note that the information in the headers is contained in one or more character data fields
{enclosed in quotation marks) with each field being identified as such by a preceding "’P" (for pa-
rameter) field.

It is possible to include arbitrary character data in the headers. Identified as ““C" records,
these are displayed during data input or editing. Thus a data header consists of *“P"" records and
optional *C” records. A sequence of one or more data members (each consisting of a header and
numeric array elements) constitute a data set. If a file is to contain more than one data set each
set shauld be terminated by an “’E’* mark.

1.D.1.0.M. can be used to generate input data files under control of a predefined set of
headers. The file containing such sets of headers may be regarded as a dummy file (or template
file) tailored to the requirements of the applications program at hand. As noted in Appendix
“A’" certain required data parameters can either be fixed in the header or made specific only when
data are about to be keyed in.

The basic facilities provided in 1.D.1.O.M. are therefore the following:
Header generation

Header display or printing

Header editing

(Numeric) data entry

Data display or printing

Data editing

. Data merging)

The first three are for the purpose of developing dummy data files or header files; the re-
maining four are concerned with true data files. On startup 1.D.1.0.M. guides the user in setting up
a file directory. This directory can be updated after every successful (or aborted) execution of any
of the above tasks. Full guidance is given by display when some response is expected from the
user. Suffice it to note that in the management of the files (up to 20 files can be simultaneously
active in the present implementation) the magnetic tape metaphor is adopted. In general all faci-
lities provided by the operating system for handling sequential files can be availed of,

For the data input phase, the facilities for entering or editing the files are aimed at reason-
ably approximating the ease with which these tasks can be carried out on a deck of punched cards.
For display and printing purposes numeric data formats can be specified. Again a degree of flexi-
bility is afforded in that the formats of the number fields are made specific only when the data is
about to be printed or displayed.

N oS WwN =

EXAMPLE

Appendix "“B" lists the source code of a typical applications program which includes the ne-
cessary utilities for reading and writing |.D.1.0.M. files. This simple program computes the vertical
normal stress at a specified set of points in a semi-infinite elastic medium due to a set of vertical
loads. Accordingly the required input consists of a table of LOADS giving the x,y (horizontal
plane) coordinates and magnitude of each of the given loads, and a table of POINTS containing the
X, ¥, Z coordinates of the points where the vertical stresses are needed. As soon as the two tables
are at hand the program calculates the vertical stresses and outputs these along with the point co-
ordinates in a table of RESULTS.

Plate 1 lists a possible dummy data file or header file for the program. In |.D.1.O.M. it is
possible to repetitively use or skip a prepared header in a dummy file during data entry. Hence,
tables of POINTS and RESULTS can be interleaved arbitrarily or stacked in the input file being
created. In a given run the output will thus consist of one or more tables of stress values. The head-
ers for the tables of RESULTS are written with the help of the utilities as are the needed file ini-
tialization statements. Thus, only simple input/output statements are needed in the applications

8

program module itself. Plate 2 lists sample data and Plate 3 the tabulation of results. Both are
printouts produced by 1.D.1.0.M.

CONCLUSION

An integrated input/output manager has been described and illustrated. Apart from the be-
nefit of a uniform environment for data inputs and outputs that such a system affords, security
of specialized applications software can be easily maintained since the input/output phases of
data processing can be done separately from the purely computational phase.

APPENDIX “A”
1.D.1.O.M. Data Headers

A typical header is a sequence of ASCII data records (delimited character data fields each of
which is enclosed by quotation marks (') and preceded by a one-character data record identifier,
(either “C” or *“’P"). If preceded by "’C”, the record is interpreted as a commentary and is dis-
played during data entry or editing of the member in question. Hence, “’C"” records effectively
function as prompters.

P records convey information which defines the type, appropriate labels, and dimensions
of the data. The character subfields within the record are delimited by blanks. The first subfield
is the data type symbol. Valid data type symbols are S (scalar), V (vector), M (matrix), H (hyper
matrix), and T (table). The type symbol will be followed by a member (or header) name or label
{an alphanumeric string of reasonable length). For scalars these two subfields complete the ‘P
record. For vectors, matrices and hypermatrices these will be followed by the proper number
of positive integers representing the array dimensions (number of elements of vectors, number
of rows and number of columns of matrices, number of rows/columns and number of submatrix
rows/columns of hyper-matrices).

For tabular data the prescribed dimensions are the number of columns and the number of
rows (in that order) followed by the column labels. For header files it is possible to indicate that
the required dimensions will be entered from the keyboard when the data elements themselves are
entered. An asterisk {"'«’’) is included in the record in lieu of the dimension to indicate that the
latter will be specified during data entry. The header written to the data file will necessarily con-
tain the actual dimensions of the data member, Following are typical headers for the different
types of data members.

**C", ""Header for a Scalar Data Member”’

P, 'S ASCALAR"

“C”, "' A vector with number of elements to be keyed in"’

"*C", ""just before element values are entered’’

1 SR VAR VAN

“*C", "Matrix — number of rows fixed; number of columns’’

“C"”, 'to be keyed in with the data’’

“P”, "M TYPMATRIX 10 »"

“C", "Hypermatrix’

“P","H HYPER 22 » «”

*C"”,, “Tabular data with three columns labeled ‘FIELDA’, *

“C"”,'"“FIELDB’, ‘FIELDC’, and ‘LONG. FIELD. C'. Note that

“C"”, "two or more ‘P’ records may be used if necessary.’’

“P","T TABLE 3 « FIELDA FIELDB FIELDC"

e

As many ‘P’ records as required may be used for specifying field (column) labels of tabular
data.

PLATE 1
SAMPLE HEADER DATA SET

HEADER No. 1 (Type - TABLE)
VERTICAL LOADS ON A
SEMI-INFINITE ELASTIC MEDIUM
NAME LOADS
Field (Column) NAMES:

X—-COORD Y-COORD LOAD
Number of Rows from the Keyboard
HEADER No. 2 (Type - TABLE)
COORDINATES OF POINTS WHERE
STRESSES ARE TO BE DETERMINED
NAME POINTS
Field (Column) NAMES:

X—COORD Y-COORD Z-COORD
Number of Rows from the Keyboard

PLATE 2
SAMPLE DATA SET

LOADING SET 1

LOADS
X=COORD Y-COORD LOAD
1 9.00 2.00 1000
2 5.00 0.00 1000
3 5.00 5.00 1000
-4 .00 5.00 1000

ggORDINATES OF POINTS DIRECTLY BENEATH ONE FOOTING
INTS

X=COORD Y-COORD Z-COORD
1 0.00 2.00 1.00
2 2.00 0.00 2.00
3 2.00 2.00 3.00
4 ?.00 0.00 4.00
5 0.0a 0.00 5.00

COORDINATES OF POINTS BENEATH CENTE
POINTS R OF TOWER

X-COORD Y-COORD Z-COORD
1 2.50 2.50 1.00
> 2.50 2.50 Z.00
3 2.50 2.50 3.00
4 Z.50 2.50 4.00
5 2.50 2.50 5.00

10

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
DIM

PLATE 3
COMPUTED VERTICAL NORMAL STRESSES

STRESSES DIRECTLY BENEATH A FOOTING

RESULTS
X—-COORD Y=COORD Z-COORD Pz
1 0.00 2.9 1.00 477.8
2 0.00 .0.00 2.00 121.2
3 2.00 a.00 3.00 57.4
4 0.00 .00 4.00 36.4
5 2.00 2.00 5.00 27.1

STRESSES BENEATH CENTER OF TOWER

RESULTS
X—-COORD Y=COORD Z-COORD Pz

1 2.50 2.50 1.00 2.9

z 2.50 2.50 2.00 13.8

3 2.50 2.50 3.00 24.1

4 2.50 2.50 4.00 28.2

5 2.90 2.50 5.00 -~ 27.7

APPENDIX "B"
SAMPLE PROGRAM LISTING

FILENAME : IDIOMEX1. BAS
A simple applications program utilizing IDIOMatic data
Programmed by S. F. Reyes 15 JUNE 1985

Arrays worked on by the utilfties=

Size of FD#(.) must be at least equal to the number of columns
in tabular data members (4 in the present case)

SZ%(.), for member dimensions, has a maximum of 4 elements
(fFor hypermatrices)

LB$C1),S2%(3)FDH(3),CDE(24)

LP$(@)="LOADS" :LE$(1)="POINTS" :NL%Z=2

REM

REM
REM
DEF

REM
REM
DEF

= I.D.1.0.M. UTILITIES =

Pause Function
FN.WAITZ
PRINT "Press <ENTER>"
WHILE NOT CONSTATY:WEND
[7%=CONCHARZ:PRINT CHR$%(B8)3;" "3;CHR$(8):FN.WAIT%Z=0:RETURN

FEMD

prompt for & valid keyboard response
FN. PROMPTERY% (A%$)

11

WHILE -1
WHILE NOT CONSTATZ:WEND
TZ=MATCH(UCASE$(CHR$(CONCHARZ))'Ai.1)
PRINT CHR$(B)3i;" ";CHR®(8)}§
IF T%>®@ THEN FN.PRUMPTER%Z=TZ:PRINT:RETURN ELSE
WEND
FEND
REM
REM YES/NO Response
DEF FN.QUERYZ
. PRINT " ("3US$;"Y"jUTS3"ES / "jUSSi"N"jUT$;"0) 7"
FN.QUERYZ=FN.PROMPTERZ("YN")—-2:RETURN
FEND
REM
REM Comments to QUTFILEZ
DEF FN.COMMENTSY
T1%=0
WHILE TZ<NC%
PRINT CHR%(12)
IF T7Z.0 THEN FOR TT1%=1 TO TZ:PRINT \
CHR$(14)3CDB(TTZ-1) CHRS®(15) :NEXT TT% ELSE
PRINT "TYPE Next Comment Line"
INPUT LINE T$:CDS(T%)=T$
PRINT # QUTFILEZ; "C",T$:T%U=T%+1
WEND : RETURN
FEND
REM
REM Write "E" into file M%Z
DEF FN.WRITEEYZ

FRINT "Wraite E’ MARK to QUTPUT FILE";
IF FN.QUERYZ THEN PRINT # OUTFILEZ; "E* ELSE
FN.WRITEEZ=-1:RETURN
FEND
REM

REM Locate the next record field. Return pointer in 1%, length in J%
REM Read a new record, DD%, from INFILEZ if necessary
REM Return value of —1 and record in DD% it successful,
REM If not successful, return error message is MS$

REM 1If invalid record identifier, return HD%="7"

REM Return ’C’ records in CD$(.), number of ’C’ records in NCZ
REM Work variables: K%

DEF FN.NXTFIELDY :

® otherwise

MSg=""
WHILE -1
1F END # INFILEYZ THEN 13.004
WHILE DD®=""
HD%="":READ # INFILE%j; HD$:HD$=UCASE$(HDS$)
[F LEN(HD%):1 THEN GO TO 13.002
KZ%=MATCH(HD%, "ECPN", 1)
IF K%Z=0 OR h%Z=4 THEN GO TO 13.006
IF K%=1 THEN GO TO 13,005
IF END # INFILEYZ THEN 13.001
READ # INFILE%; DDs ’
IF K%=2 THEN DD$="" ELSE %=1
WEND
Te=" " :K%Z=LEN(DD$)
WHILE 1%4<=KZ%:T$=MID$(DD%, 1%, 1)
IF T$=" " THEN 1%=1%+1 ELSE K%=0
WEND
WHILE T#<»" "3J%Z=MATCH(" ",DD%$,1%)
IF J%=0 THEN J%=LEN(DD®$)+1-1% ELSE J%=J%-1%
FN.NXTFIELDZ%Z=-1:RETURN
WEND:DD$=""
VWEND

13.001 MS$="PREMATURE END of FILE"

13.002 HD®="7"

13.003 FN.NXTFIELD%Z=0:RETURN

13.004 MS$="END of FILE":GO TO 13.003

13.005 MS$="END of DATA SET":GO Tu 13.003

13.006 MSH="INVALID RECORD IDENT[(FIER":GO TO 13.003
FEND

12

RF I

REM Mi-aod and Interpret a Header

REM Value of VNY 1s i1ndex of matching name in LB$(.)

KEM Varitable label in VYN$; type in VT%Z;

REFM Sire parameters in SZ%4(.)

REM S7%i{]%—-1)=0 means size parameter 17 to be input from keyboard
REM DP$(I%-1)="%" is set; otherwise DP$(1/~-1)=""

REM For tabular data, return field names in FD$(.)

REM Return value of -1 if successful; @ if not

REM UWork variables: K%y T7ZyKK7%Z,SYZ, TS, DD$

DEF FN. INTERPRTZ
Kkt Get member type
Dh$="":T%=FN.NXTFIELDZ
1F NOT T% THEN GO TO 13.011 ELSE T$="SVMHT"
KKZ=MATCH(UCASES(MIDS(DD$, IZ,1)),TH,1)
IF KK%Z=0 THEN PRINT "INVALID Variable TYPE" \
:GO TO 13.011 ELSE 1%=I1%Z+J7%

REM Get member name
IF NOT FN.NXTFIELDZ THEN GO TO 13.013
UN$=MIDS(DD%$y L%,y J%)
T%=0:VNZ%Z=0
WHILE TZ%<NL7Z
IF VUN$=LR$(T%Z) THEN VN/=TZ%Z+1:TZ%=NLY% ELSE T%Z=TZ+1

WEND
IF VUN%=@ AND NLZ%Z>@® THEN GO TO 13.014
REM If NL%Z=0 any name is valid
REM Get dimension(s) 1f not a scalar .
VT%=Kh%
WHILE KK%<>1
IF VT%=2 THEN KKZ=1
IF VT%=3 OR VT7%=5 THEN KR¥’=2
IF VTZ%=4 THEN KK%Z=4
FOR NZ=1 TO KR%Z:1%=1%+J%
IF NOT FN.NXTFIELDYZ THEN GO TO 13.013
TZA=VAL(MIDS$(DD%$, IZ,J%)) .
IF TZ<=0 THEN GO TO 13.012 ELSE \
SZ7(NZ-1)=T%Z
NEXT NZ:RR%Z=VTZ
REM 1f tabular, get field labels
WHILE KK%=5
FOR KK%Z=0 TO. SZZ(D)-1:1%=]1%+J%
IF NOT FN.NXTFIELDYZ THEN GO TO 13.213
FDE(KKZ)=MIDS(DD%, 1%, J%)
NEXT KKZtIKKZ=W)
WENDtKiNZ= 1
WEND:FN. INTERPRTY%=~1¢RETURN
13.9011 FN.INTERPRTZ=0:RETURN
13.012 HMS$="INVALID DIMENSION":GO TO 13.011
13.9013 1F HD%="?7" THEN GO TO 13.011 ELSE \
MS%="INCOMPLETE HEADER":GO TO 13.0@11
13.014 MS$="INVALID HEADER NAME":GO TO 13.011

FEND
REM

REM Check name for invalid characters in VT$
DEF FN.VALIDNAMYZ
IF MATCH(" ",VT$,1)>8 OR MATCH(",",VT$,1)>8 OR \
MATCH(CHR$(34),VT%$,1)>@ THEN FN.VALIDNAMZ=0 \
ELSE FN.VALIDNAM%Z=-1
RETURN

_ FEND
REM
REM Extend (or write to QUTFILEZ and reinitialize) template data
REM Return value of @ if nothing written; -1 otherwise
DEF FM.WR1TEDD%Z
FN.WRITEDDZZ=0

T%= LEN(HD$)+LEN(T$)
IF T#x72 THEN FN.WRITEDD%Z=-1:PRINT # OUTFILEZ§ "P" \

tPRINT # OUTFILEZ§ HD$ \
tHD%="":T%=0 ELSE
HD$=HD$+T%
RETURN
FEND

13

REM
REM Form a data template and wrate 1t to QUIFCE /e
DEF FN.FORMDDY
HDL=MIDS("SVMHT " VT%, 1)+ "+VUN$%
Te="":T%4=FN.WRITEDDZ

T4=VT%
WHILE T%\1 REM Array dimensions
IF VIZ=2 THEN TT%Z=0
IF VT%=3 OR VT%=5 THEN TT%=1
IF VTZ=4 THEN TTZ%Z=3
FOR 1%=0 TOQ TT%L:T%4=SZ%(1%)
IF T%<=0 THEN T$=" #" ELSE T$=" "+STR&(T%)
T%4=FN.WRITEDDZ:NEXT I%4:T%Z=0
WEND

1IF VT%=S THEN FOR 1%4=0 TO SZ%(@)-1:T$=" "+FD$(1%) \ Fld. Labels
:T%=FN.WRITEDDZtNEXT I% ELSE

PRINT # OUTFILE%Z; "P",HD$:FN.FORMDDY=-1:RETURN

FEND

REM
REM Set up INPUT and OUTPUT files
REM Names used: INFILE®$, INFILEZ,OQUTFILE$,QUTFILEZ
DEF FN.SETUPIOQZ
INPUT "INPUT FILE Name? ";INFILES
INPUT “OUTPUT FILE NAME? "j;QUTFILES
INFILEZ=1:0QUTFILE%=2
IF END # INFILEY THEN 13.022
OPEN INFILE$ AS INFILEY
IF END # OUTFILEYZ THEN 13.021
OPEN QUTFILE® AS QUTFILE%
CLOSE OQUTFILEYZ
PRINT CHR$(14)30UTFILE®3CHR®(15) 3" has DATA. OVERWRITE"j
IF NOT FN.QUERYYZ THEN CLOSE INFILE%:FN.SETUPI1(%=0:RETURN ELSE
13.021 CREATE OUTFILE$ AS QUIFILEZ
FN.SETUPIO%Z=-1:RETURN
13.022 PRINT CHR$(14);3VNE;CHR$(15)5" Non—-existent."
FN.SETUPI0%=0:RETURN

FEND
REM
REM ======a============= End of UTILITIES sommsscssSss=sss=s33S
REM .
100 PRINT CHR$(12)
PRINT "soscssssssscoosonseossasossSasase =m="
PRINT “# Calculation of VERTICAL NORMAL STRESSES #"

PRINT "# at a SET of POINTS in an Elastic Half Plane %"
PRINT "# Due to a SET of VERTICAL CONCENTRATED LQADS #*

PRINT "% (The PROUSSINESQ Problem) ° *
PRINT "# S. F. REYES 14 JUNE 85 #"
PRINT “Y====== SESooo=s==sSs==s==s ===
PRINT

PRINT "Program reads a table of "3jCHR$(14);"LOADS";CHR$(15)%
PRINT " and a table " .

PRINT "of "$sCHR$(14)3"POINTS" sCHR$(15)3" from the "3

PRINT "designated Input File."

PRINT "After computing for the desired stresses, " .

PRINT "the table of "jCHR$(14)3"RESULTS";;CHR$(15)i" is written";
PRINT " to the"

PRINT "designated Output File."

PRINT

REM

DEF FN.RSQ(ILOADY, IPOINTZ)=(ABS(POINTS(IPOINTZ,3)-LOADS({ ILOADZ,@))) 2 \
+(ABS(POINTS(IPOINT%, 1)-LOADS(ILOADY,1)))*2

REM Set up input and output files

WHILE NOT FN.SETUPIOZ
PRINT "Try AGAIN";
IF NOT FN.QUERYY THEN STOP

WEND

REM

100.2 REM Data 1input phase

GO%=0:NPOINTSZ=0:NLOADSY=1

WHILE -1 REM Process until ’E’ or error in input file

14

REM Interpret the header
WHILE NOT FN. INTERPRTZ
PRINT MS$
IF HD$="E" THEN PRINT "Data Set END Sensed. CONTINUE®j;
2 TZ=FN.QUERYZ ELSE T%=0
IF NOT TZ THEN STOP ELSE GO TO 100.Z
WEND ’
REM If interpretation successful read data to the proper array
IF END # OUTFILEZ THEN 13.102

T7=VNZ%Z
WHILE T%=1 REM Read load table
IF VT%Z<>S OR SZ%(0)<>3 THEN GO TO 13.1083
NLOADS%=SZ%(1)
DIM LOADS(NLOADS%Z-1,2)
FOR 17%=0 TO NLOADSZ-1
FOR J7%=0 TO 2
READ # INFILEZ; LOADS(I%,J%)
NEXT J%
NEXT 1%4:T%Z=0
WEND
T4A=VNZ
WHILE T%=2 REM Read points table
IF VT%Z<>5 OR SZ%Z(0)<>3 THEN GO TO 13.103
NPOINTSZ=SZ%(1)
DIM POINTS(NPOINTSZ~-1,2),VSTRESS(NPOINTS%Z-1)
FOR 17%=0 TO NPOQINTSZ-1
FOR J%Z=0 TO 2
READ # INFILEZ§ POINTS(1%,J%)
NEXT JZ
NEXT 17:T7%=0
WEND

TZ=NPOINTSZ#NLOADSY
WHILE T%Z>0
REM Write the Output Header

VN$="RESULTS" :S52%Z(@)=3
INPUT “Number of COMMENT LINES for Output?®iNC%
IF NC%Z>® THEN T%Z=FN.COMMENTSZ
SZ7.(0)=4:FD$(3)="Pz"
T%=FN.FORMDD?Z

REM Calculate the stresses at the prescribed points,
PRINT CHR$(12);"Computed VERTICAL STRESSES:"

FOR JJ%=0 TO NPOINTS%Z—1:Z=POINTS(JIJ%,2):1ZZ=2#2:T=0
FOR 11%=0 TO NLOADSZ-1
RR=FN.RSQ(I1%,JJ%)
T=T+0.477464829%L0ADS(11%,2) \
: # Z#2Z / (RR+ZZ)~2.5
NEXT 11%:VSTRESS(JJ%Z)=T:PRINT JJZ+1,T
NEXT JJ%
REM Write results)
FOR 117=0 TO NPOINTSZ-1
PRINT # OUTFILEZiPOINTS(11%,@),POINTS(II%y1)y
POINTS(I1%,2),VSTRESS(II%)
NEXT 11%:T%=0
WEND

WEND
13.102 PRINT "Premature END of FILE":STOP

13.103 PRINT “INVALID DATA":STOP
END

15

	07
	08
	09
	10
	11
	12
	13
	14
	15

