“The BLER depends largely on the mean block
length and is not very sensitive to the type of
distribution involved.””
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ABSTRACT

The block error rate (BLER) is a basic parameter of data communication channels which is usually
computed on the assumption of independent and identically distributed bit errors and fixed block sizes.
This paper presents a method of computing block error rates when the block sizes are allowed to vary ac-
cording to a known probability distribution. It is shown that under some simple conditions the block
error rate is relatively insensitive to the actual distribution or to the variance of the block length, and that
it depends largely on the average block length. Some analytic and numerical computations are presented

to illustrate the method.

INTRODUCTION

The block error rate is a basic parameter that influences the utilization and time delay of
data communication channels utilizing an ARQ procedure, In analytic studics, it is usually com-
puted on the assumption of independent and identically distributed bit errors and fixed block
sizes. This paper presents a method of computing block error rates when the block sizes are
allowed to vary according to a known probability distribution. It is shown, under some simple
conditions which are realized in most real s.ituations, that the block error rate is relatively in-
sensitive to the actual distribution of block sizes, and that it depends largely on the average block
length. Thus, the assumption of fixed block sizes is basically sound and reasonable in practice.
Some analytic bounds and numerical calculations are presented to explore the limits of this
assumption.

These results are useful in building analytic models of data communication channels where
an expression for the block error rate in terms of more basic quantities such as bit error rate and
block length is needed. Although the assumption of fixed block size is common, in practice the
block size may be allowed to vary quite a bit. One study on computers with time-sharing terminals
showed that a geometric distribution can be used to model the number of characters transmitted
in one burst [2]. In other applications, transmissions from heterogeneous sources may be time
interleaved (multiplexed) resulting in variable block sizes.
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STATEMENT OF THE PROBLEM

The bit error rate (BER), symbolized by Pg, and the block error rate (BLER), symbolized
by Pg, are the probabilities of encountering errors in one bit, and in one block of contiguous bits,
respectively. In this paper, it is assumed that error bits are independent of one another, and can
affect all bit positions with the same probability (i.e., errors are independent and identically dis-
tributed). With this assumption, the error rates for a block of n bits are related by the equation

[4].
Pe = 1—(1-Pg)" . (1)

Usually Pg is much less than unity and the product nPg is much smaller than one. For exam-
ple, Pg is on the order of 10"~ or smaller, while nPg is less than 0.1. Then an easily computed
approximation to the BLER is [4].

The error in this approximation is O(nzPB2 ).

In this paper, the block length N is allowed to take a known probability distribution P(n)
where

P(n) = Pr{N=n]| n=1,2,3,...

The notation Pr(-] is used for probabilities. The distribution may have a finite or infinite number
of atoms.

The problem discussed in this paper is the computation of BLER when the block length N
has distribution P(n) and the BER is specified.

In practice, the average block length N is used in (1) or (2) giving the approximations
Pe = 1— (1=Py)N (3)
or

P = NPy (4)

The closeness of these approximations to the exact value (1) will also be examined in this paper.

NOTATION

The following symbols are used throughout the paper. Other symbols are defined as needed.

Pg = bit error rate (BER)

Qg = 1-Pg

Pe = block error rate (BLER)

N = random variable representing block length (bits); N 1
E(n) = probability distributionof N;n=1,23,...
N = mean block length (bits)

ONZ = variance of N

Pr(*] = probability ot the event in brackets
Pr|+/*] = conditional probability

E[*] = expectation

Gls) = generating function of P(n)

36



ANALYSIS

An expression for BLER is simply obtained by using conditional probabilities. Let §2 sym-
bolize the event that a block contains errors. Then

Pe

Pr($2]
E| Pr[2/N] .

Since errors are independent and identically distributed
Pr[2/N] = 1-QgN
Therefore
Pe = 1-E[QgN] . (5)

The generating function G(s) of a distribution on the non-negative integers is defined as
[1],[3.p. 11-12].
Gls) E[sN]
oo

Y s"P(n).
n=0 (6)

This is related to the moment generating function E[exp (tN)] by an exponential transformation
of the variable. Although the moment generating function is more common, the formulation G(s)
is more convenient for our purpose and will be used here. Tables of generating functions may be
found in |3, p. 16]. Some examples are shown in Table 1 of this paper.

Using the generating function, the previous expression (5) for BLER becomes
Pe = 1-G(Qg) . (7)

Equation (7) is the basic formula used in this paper to calculate and investigate the BLER.

Since QBN is a convex (upward) function of N, Jensen’s Inequality [3, p. 249] may be ap-
plied to (5). Then a binomial expansion and approximation may be used on (3). There results an
order relationship among the BLER and its approximations

Pe £ 1-0QgN £ WPy (8)

Hence both approximations are on the conservative side. Of course, (3) is always valid, whereas (4)
is meaningless if NPB exceeds unity. It is interesting to note that the BLER for the case of variable
length blocks is less than the BLER for fixed length blocks of N bits. How much less this is will
be examined next in this section.

Taking a Taylor's Series expansion of (7) about s = 1 and using the fact that G(1) = 1 gives

oo
Pe = Y-k 1Glk)(1)pgk

k=1 Kl (9)

where G“‘)(l) is the k-th derivative evaluated ats = 1.
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The derivatives of the generating function are easy to calculate in terms of the moments of
{1, p. 265]. By direct differentiation of (6)

G'"1) = E[N] = N (10a)
G'21(1) = E[N?] - E[N]

- 0N2 fN2 - N (10b)
G = E[N®] - 3E[N?] + 2E(N] (10c)
G'¥)(1) = E[N(N=1)... (N=k+1)] (10d)

Substituting Equations (10) in (9) and neglecting third and higher order terms yields

P

e~ NPy — (E[N?] — N)p?

2
2 .52 _ e 2
2

The error in the approximation may be bounded since all of the derivatives in Equations (10) are
positive, so that (9) is an alternating series. The result is

— N Z 2) _ myp 2
\PF NPBl_(E[N] N)Pg (12a)

or

E[N?)

N

Z.

Py (12b)

1
2

The right hand side of Equations (12) may be used to estimate the accuracy of the approxi-
mation NPg. Since Pg itself and NPg should be very small, the right hand side of (12) is dominat-
ed by (oNz/N)PB. Hence this approximation is useful if this last expression is small and also
NPg is small.

Next, the approximation (3) is expanded by using the Binomial Theorem into

~—a N - Jp — NN 2 . NN R ;3
1-Qg™N = NPy — N(N-1)P,2 + NIN-1)(N-2)P 3 — . ..
2 6
Subtracting this from (9) gives, up to the second order term

Pe — (1-0,N) ~ = ¢ 2p.2 (3)

2
A rough estimate of the relative error in the approximation is

Pe—1-05M | pF-n—oB”)l
N —
1-Qq NPg
o °P
L 1°N'B (14)



Hence this approximation is useful under the same condition as the previous one, namely, that
(oNz/lTl)PI3 is small.

Equation (13) provides an interesting comparison of the BLER for variable length blocks
and for fixed length blocks of N bits. It was noted in (8) that variable length blocks with mean
length N, regardless of distribution, have smaller BLER than fixed length blocks of N bits. It may
be seen in (13) that the difference in BLER is proportional to the variance of N. Hence, the great-
er the variability of block lengths, thesmaller the BLER is. This conclusion is tempered by the fact
that as oN2 increases, the higher order moments also increase so that the terms which were neglect-
ed in (13) become significant. The numerical examples presented in the next section, however,
support this observation.

This phenomenon can be explained in the following way. If the mean length N is fixed, the
only way to increase the variance is to have very long blocks with small probabilities and very short
blocks with large probabilities. Then the overall BLER is dominated by those of the small blocks.
As the variance increases, the influence of the small blocks increases, and therefore the BLER de-
creases. Such behavior may be‘seen clearly in the two-point test distribution presented in the next

few sections.
EXAMPLES

The following examples serve to illustrate the analytic results of the previous section. The
distributions used are the following:

(a)  The uniform distribution on the integers L, L + 1, .. ., U designated Unif (L, U).

(b)  The “binomial” distribution on the integers 1, 2, . . . , U designated Bin (U, p). The
conventional binomial distribution starts from 0. Since the minimum block length is 1 bit, the dis-
tribution is translated by 1.

(c)  The ‘geometric’ distribution on the positive integers, designated Geom(p). This is the
conventional geometric distribution translated to begin from N=1,

(d) A two-point test distribution whose mean and variance can be arbitrarily chosen to
match those of the first three distributions. This models a system with only two block sizes.

The uniform and binomial distributions both have a maximum block length, while the geo-
metric theoretically permits unlimited block lengths. The geornetric distribution can be used to
model the number of characters transmitted in time-sharing terminal computers |2].

Some properties of these distributions are given in Table 1. In the next few sections expres-
sions for BLER will be presented.
UNIFORM DISTRIBUTION

From (7) and Table 1, the BLER with a Unif (L, U) distribution of block lengths is

PF = -l___QBL(] _QBU—L+1)
PB(U-—L+1)

(15)

From the inequality
| U-L+1
(U-L+1)Pg BN 1-Q4 *
it follows that
L
1 - Q- £ Pe .
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Combined with (8), this implies that
_ L o=
|PF—-NPB | < |1-Q — NP |

= lLPa_(_Lf_ﬂ)PB‘

| 2
< -,
2 (16)
Pe— NP | (U-1) < 1 (17)
— U+L
NPg

Hence the relative error should not exceed 100 percent if Py is even moderately small.

“BINOMIAL” DISTRIBUTION

For the Bin (U, pD) distribution of block lengths, a little algebraic manipulation of (7) with
*he expression for G from Table 1 gives

Pe = 1-(1—-p,P)Y " Tq, . (18)
Recall that
(1=x)™ £ 11— mx + m(m=1)x2 .
2

Letting x = Py PB and m =U-1in (18) gives

Pe = 1-[1~(U-1)pyPy + (U-1)(U-2)p 2P 2]Q,
2

_ _ _ _ 2p 2
= Pgl1+(U-TpyQg] — U-1)(U-2)p 2P 2Q,
2

Combining this inequality with (8) and using the Triangle Inequality gives a bound on the error of
the approximation

|PF-NP8, éPB [1+(U-1)pDQB|— (UpD+qD)

+ (U-1)1(U-2)p?P;7Q,
2

= (U-T)pyPg? + (U-1)(U-2)p,2P,?
2

£ (U-1)pyP,% + (U-1)(U-2)p P2
2
= U(U—1)pDPB2
2 (19)
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P. — NP, _;_J (U-1)p, Py
NPg (U-1)p, + 1

~ UP
= _8 (20)

2

Since UP g is usually less than 1, the relative error is less than 50 percent,

“GEOMETRIC” DISTRIBUTICON

For the Geom (pp) distribution the resulting expression for BLER is

Pe = o (21)
Pp * 9pPp
Then
P P
P. — NP, = 8 - -8
Po *apPg Py
2
= 08B (22)
Polpp + apPg)
_ P2
Pe — NP, = 8
DD(p_D + Pg)
9%
p- PB/pD
= NPy
P. — NPy Z
NPy

Since NPB should be less than unity, the relative error should not exceed 100 percent. In this case
(22) provides the hest expression for the error in the approximation NPg.

NUMERICAL CALCULATIONS

Exact and approximate block error rates are presented in Table 2 for the three distributions
discussed above. The parameters were chosen so that the mean block length N = 50.5 for all of
them. However, the variances of the distributions differ widely.

In addition, four cases of the two-point test distribution are included. The mean block
lengths of these are also N = 50.5. In the first three test cases, the variances are matched as close-
ly as possible to the variances of the binomial, uniform and geometric distributions, respectively.
The last test case has a variance much larger than any of the others.
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Thus, this set of distributions permits a comparison of BLER among different distributions
{(both bounded and unbounded), among distributions with different variances, and among the
same family of distributions with different variances. The last rows in Table 2 are the approxima-
tions based on mean block Iength, for comparison with the actual values of BLER.

The following observations may be made:

(1) The BLER is not very sensitive to the type of distribution, especially if the BLER is
small. Even when the BER is not small (e.g., 10'2 and up), the BLER does not vary much if the va-
riance is not too large. This observation is consistent with (13) which says that the BLER stays
within approximately 0N2P82/2 of (1-OBN) regardless of the distribution.

(2) The BLER is also not very sensitive to the variance of the distribution. It is only when
the BER is large (e.g., 0.1) and the variance is very large that the BLER's begin to be markedly dif-
ferent.

(3) The BLER depends mostly on the mean block length, with type of distribution or va-
riance providing only a small perturbation.

(4) The approximations (3) and (4) are very good for small BER. Even for large BER, the
approximations, particularly (3), are reasonable if the variance is not too large (e.g., in these exam-
ples, when oy ?/N <1). This is predicted by (11)-(14).

(5) As noted before, the BLER goes down as the variance increases. This pattern is evident
even if the distributions are of different types (e.g., the binomial, uniform and geometric). It is
most apparent in the case of the test distribution where, as the variance goes up, Pr[N=1] ap-
proches unity. A reason for this phenomenon was already suggested in an earlier section.

CONCLUSION

The effect of arandomly varying block size on the block error rate has been studied. An ana-
lytic expression for BLER which involves the generating function of the distribution of block
lengths was derived. It was shown analytically and through numerical examples that both 1-08N
and NPB are reasonable approximations when either the BER or the variance of the distribution
of block lengths is not large. The BLER thus depends largely on the mean block length and is not
very sensitive to the type of distribution involved. Thus the assumption of fixed block size may be
regarded as reliable and reasonable in practice.
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Table 1

Properties of Discrete Distributions

NP,

NAME DISTRIBUTION P(n) MEAN VARIANCE G (s)
unifiLU) | (U-L+aD el .., U Ly (U-Len?=1 | shi=s9tr)
2 12 (1=s)(U=L+1)
Bir(U,p) U-1) p" lqY-n Up+q {(U=1)pq siqtps)V !
n-1
q=1-p
n=1,...,U
Geom(p) pa"~ ' n=12, 1/p a/p? ps/(1-qs)
q=1-p
Two point | P(1)=p N (N-1)%p spts!NPlidg
P(N—p)=q q
q
q=1-p
Table 2
Comparison of BLER for N = 50.5
DISTRIBUTION BIT ERROR RATE
105 1073 10-2 107!
Bin(100,0.5) 5.04874E-4 4.92583€E-2 3.97274E-1 9.94391E-1
var=24.75
Unif(1,100) 5.04795E-4 4.88735E~2 3.72372E-1 9.10002E~1
var=833.25 .
Goom(2/101) 5.04750E-4 4.81182E-2 3.37793E-1 8.48739E-1
var--2,499.8
Two point 5.04874E-4 4.92581E-2 3.97134E-1 9.86408E—1
pD:.O‘l
var.=24.75
Two point 5.04834E-4  488771E—2  3.70011E-1  7.74355E-2
pD=.25 .
var=816.75
Two point 5.04750E-4  48080BE—2  3.20676E—1  5.45488E-1
Po =505
var=2,499.8
Two point 503774E-4  400189E-2  1.08316E-1  1.80000E-1
Pp=9
var=22,052.
Fixed length 5.04875E-4 4.92701E-2 3.98027E-1 9.95111E-1
N
1-Q,
Approximation 5.05000E-4 5.05000E-2 5.05000E—1 W —————
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