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ABSTRACT

This paper shall look into the possible effects of deliberate unsteady state processing brought about by
introducing sinusoidal fluctuations to stable plants. This practice is commonly referred to as PULSED
operations. Effects of input disturbances such as sinusoidal variations in feed rate and/or feed composi-
tion are reflected on the time average value of the system output. It will be shown that the time average

performance from periodic reactor operation is sometimes superior to that obtained from steady state
processing.

The following cases are considered. (1) second order, irreversible reaction in an isothermal CSTR,
2A—> B and (2) results of work done by other authors on complex reactions using parallel reactions,
2A ~>B and A —>C, and consecutive reactions nA —>B —>C.

INTRODUCTION

Most chemical processes are designed to operate at steady-state conditions. Some of the re-
actor inputs vary with time, but the steady-state design is based on the time average value of these
fluctuating quantities. Physically, these input disturbances are removed or damped by installing
surge tanks or control systems, so that the controlled plant is forced to have a relatively constant
output close to the optimum steady state value. The aim of this paper is to show that the time ave-
rage value of the outputs from periodic reactor operation due to ,fo}ced oscillations results, in
some cases, in a time average performance superior to steady-state design.

The case of introducing sinusoidal inputs to stable plants, commonly referred to as PULSED
operations, is the simplest to handle mathematically. For a more general treatment of periodic
processes, the reader is referred to work done by Horn and Lin (3). As a first case, a second order,
irreversible reaction in an isothermal CSTR is considered. To estimate the potential advantages of
this type of processing a perturbation analysis is used to approximate the periodic output of the
process. Then, results of work done by Dorawala and Douglas (4) and Horn (3) are discussed for
complex reaction mechanism.

Case I. Second order, irreversible reaction, 2A —>B.

* Assistant Professor, Department of Chemical Engineering, U.P. College of Engineering, Diliman, Quezon
City.
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Steady State Design

The conventional approach used in the design of a chemical reactor is first to determine the
optimum steady-state design. For case |, the reaction rate is given by the expression

r=KA? (1)

We would like to produce G Ibmoles/hr of product B using a CSTR having a cost CV(P/ft3-hr),
which includes all the operating costs and capital costs on a depreciated basis. The feed mixture
is assumed to have an average composition Afs (Ibmoles/fta), and the cost of the feed stream may
be taken as Cf (P/Ibmole A). If it is assumed that the cost required to separate A and B in the pro-
duct stream is negligible and that A cannot be recycled, the calculation for optimum reactor de-
sign is as follows:

The total cost C, is given by the equation
Cr =C Vg * Cia Ay (2)

where Vg is the reactor volume (ft) and q is the feed rate (ft3/hr). A steady state material
balance on the reactor shows that

q (A —A) = KV A? (3)

and the production rate may be written as
G =qg(A,_-A)
_s_ (4)

If we let

Ay (5)

then the above relationships provide sufficient information to determine the optimum conversion
which satisfies 0Ct

ox
The optimum conversion can be solved and the resulting equation is of the form:
2. S (6)
X< = >— (1=x)
KC; A
s

Thus, the optimum steady-state design procedure is straightforward.
Sinusoidal Variations in Feed Composition
(a) System Dynamics Negligible (low-frequency sinusoidal fluctuations)

Consider the case where the reactant material composition varies with time according to the
equation

A, = A (1+asinwt) (7)
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Provided that the feed rate remains constant, (i.e, only the feed composition varies), the average

cost of reactants is not affected. . o
To develop an expression for the time dependence of the fraction of unconverted material in

the reactor effluent, the case where the frequency fluctuations in feed composition is very low will
be considered. For this case, system dynamics is negligible; hence, the accumulation term in the
material balance can be neglected. The mass balance equation is given by equation (3)

qlA; — A) - KV AZ = 0

By manipulation of the material balance equation and dividing through by Afs:

2

Af 3 A a KVRAfs A -0 (8)
fs Afs q Afs

A

Letx = ——
A!s
A KV_A
X, = —t and v= —Rfs
Afs q

Equation (8) can be rewritten as:
X=X — Vx? = 0

Solving for x by the quadratic formula:

1
X=—"-2—~V— [1—(1+4fo)”2] (9)

If the operation were to be at steady state, A¢ = A and X¢ = 1.0. Therefore,

%= [1—(1+4V)”2} (10)

where Xq is the steady state conversion.
Going back to equation (9) and expanding in a Taylor’s series about X¢=1,

2
(xf— 1)+l 0°x

X=x_ +
s 0 X, Zaxf

(Xf—1)2 +. ..

Carrying out the differentiation, we get

x=x + (1447 V2 (asin wot) — v (1 + 4v)=3/2 (asinwt)? + .
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The average value of x corresponding to
1

T
Yav T JO xdt where T corresponds to one period is
found to be

Xpy = X = -;- a®V (1 +4v)=3/2 (1)
This final equation shows the time average effluent composition of reactant to be lower than the
steady state value,therefore better conversion. This behavior is due to the presence of the non-
linear reaction rate term, that is, more is gained when the feed composition is high than that which
is lost when it is low. Therefore, the periodic process gives a higher time average conversion or that
the same production rate can be achieved with a lower flow rate, thereby decreasing the raw mate-
rial cost. This result is more explicit if we consider average production rate as follows:

_q T
G = 57 Jo (A, — A) dt

Dividing by Agg and using the definition for x:

q Afs 1 T
Gav = 5 [1 - :r- 0 xdt

LA -;- a2V (1 +4v)=3/2 (12)

We observe from equation (12) that the production rate is higher than that predicted by the opti-
mum steady state design, eqn. (4): '
qgA
GBVs = 2

fs

{(1—x)

As in the case of the steady state design, we can use equation (12) back into the cost equation
(ean. (2)) to arrive at optimum conditions.

The approach used above should indicate the proper type of behavior of the systems under
consideration unless it is possible to have resonance effects in the system.,

(b) Dynamics of Nonlinear Reactor (high frequency sinusoidal fluctuations)

To determine the effect of high frequency fluctuations on the process it is necessary to in-
clude the accumulation term in the material balance equation.

dA _ 2
VR E = Q(Af—A)—KVRA
V_ow KV_ A
gt R A _ R s
Let 7 = — , Wy = . X= P VE — 13
Vi ° q A q (13)

By using eqn. (13), we can reduce the material balance equation to the form

f .
f"_"_+x+Vx2=xf = —— = 1+asinw,T (14)

dr Afs
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The preceding nonlinear equation for the frequency response is a nonhomogeneous Ricatti
equation. The frequency response of this nonlinear system will be approximated by considering a
lincarized system of equations and an approximate solution will be developed using perturbation

technigues.
The solution is presented as follows:

Letx=xs+y s O(=2sz
Substitute equation (15) into equation (14):

d(x, +v)
dr

= xp— (%, +y) =V (x +y)?

- ool 2 2
— = (1+asm<..)of)—xs—y—V(xs +2xsy+y )

Note that for steady state conditions: 1 — X, — fo =0
Then, equation (16) can be manipulated to the form

STV+ (1+a)y=asinw,7—uV y2

(15)

(16)

(17)

We have inserted an artificial paraineter u before the nonlinear term to keep track of the order of

magnitude of various correction terms,

The perturbation solution is now developed by assuming a solution of the form

y=y, tuy, tuly, bl
Substituting this back into equation (17), we obtain

d(yo +uy, +u2y2+...)
dr

=asinw,7—uV(y + uy, + u2y2 +...)?

Equating terms having like coefficients of power of u:

(a) dy, ,
;j—T- +t Yo tQY, T asinw,T

(b) dy1

(c) dy,
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The pseudo-steady state solution of equation (a) is obtained by taking the particular solution

y, = Asinw T+ B cosw,T.

Py

By using the expression for ypo in equation (a) and comparing coefficients, we find that
B = —Aw/ /(1 +a)
and A = a(l+a)/(w?+(1+a)?)

Hence,

a

y Sy, = ——— {(1+a)sinwr—w cos W_T {19)
° P GZr(1+a)? cot

Now that we have the expression for y,, we can solve for y;1 by substituting y, back into equation
(b):
a? 2

1
— + (1+a)y, =—V (1+a)sin w,T— wgcosw, T
dr (w2 + (1 +a)?)? ° ° °

2
Y {(w2 + ?1 +a)?)? } {“ redntgr - 201+ a (wosin wgoT)
o

2 2
(cosw,7) +wg cos w°r§ (20)
The following trigonometric identities were used:
2sin w7 COSW,T =sin (2w,7)
sinzwor = 1— cos? wW,T
1 cos2w,T
cos? WeT = 7 + —
Manipulation of equation (20) and using the above trigonometric identities,
cﬁl+(1+a‘)y = —a’V { w? +(1+a)?
dr ! [w?+(1+0)?]? 2
[w2-(1 +o)?) cos (2w,7) — (1 +a)w, sin (2""07)}
2
The particular solution of the above equation is then taken to be:
in (2w, 1)
Yp, = A+Bcos (2w, 7) + Csin (2w, (21)
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Substitute back equation (21) into the expression for y; and comparing coefficients as before, we
find that:

A = - a’Vv
201 +a) [w? + (1 +a)?]
B _ 2y 5w? - (1+a)? N
(w2 + (1 +«)?)? 2 D oawf+ (1+v?
2
c - a’ Voo, 201 + «)? — 2
w2 +01+)?)? 42 + (1 +)?
Therefore,
- a’v alv
Yoy T V1T 2 - 2 22
2(1+a) [wi+(1+a)| [ws +(1+a)?)
(1 +a) [5w? — (1+a)?) aZ Vo,
5 cos(2wo1') +
2[4w2 + (1 +a)?) [w2+ (1 + )22
2(1+a)? —o?
sin (2w, 7)

4w2+ (1+a)?

Although it is possible to evaluate the second order correction function from the above equations,
we will assume that the two terms are adequate for our purpose. Therefore, the complete solution
withu =1 is:

a

[w2+ (1+a)?] (1 + o) sin (w, 7) = w, €os (w,7)

_ a’V . a’V
2(1+a) [w2+(1+00)?] w2 +(1+a)2)?
(1+a)[(1+a)2—-5w§l 2(1+a)2—w§
> > cos (2w, 1) + w, sin (2w, 7)
2 [40? + (1 +@)?] 402+ (1 +a)?

Hence, the frequency response of the nonlinear system can be written, approximately, as the
linear frequency response, plus a d-c component, plus higher harmonics. The time average value of

the output is therefore:

82\/ (22)
200+ ) [(1+a)? +w? ]

X = X -
av

where o has previously been defined as 2sz.
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Result from the steady-state calculation has

1 1/2}
e —— 41— (1+4V
Xs 2V { ( )

From x, equation, (1+a)=(1+ 4V)"/2

Finally, going back to equation (22):

2
Xy, = Xo— aV (23)
2 (1+4v)"2 [(1+4V) +w?)

Observe from equation (23) that low-forcing frequencies (w, = 0), this equation becomes identi-
cal to the case where the system dynamics are negligible (see equation {11). At very high frequen-
cies, the change in the average operating level approaches zero or that x,, = .. This is in complete
accord with our intuition, for we expect that low frequency signals will not be damped as they
pass through a first-order dynamic system but that high-frequency inputs will be almost complete-

ly damped.
Results of work done by Douglas and Rippin (1) on the effects of amplitude and frequency

variations in the system are shown in Fig. 1 and 2. The values of the parameters used in this study
are given in Table 1.

Sinusoidal Variations in Feed Rate
a) System Dynamics Negligible (low frequency fluctuations)
If we now allow the feed flow rate to vary sinusoidally as given by the equation

q=q +bsinwt, (24)

the material balance equation is then written as follows:
(g + bsinawt) (A, — A) = KVAZ = 0
Using a similar procedure as before, we find that

bsi . 2 . 1/2
) 4 Dsinwt { Q N bsmwt> . av (1 N bsmwt)} (25)
* qs ! qs qs

-2V

To get the deviation from steady-state operation, we have defined
y = X=X (15)

We then get the difference between equation (25) and equation (10).

(x, — x! = i bsinwt _ {(1 + bsunwt)2+4v
2v as as

. 1/2
(1 " bSlnwt )} _ (1 + 4v) 1/2}
as
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Taking the time average difference

T .
1 1 bsinwt 2 | .
(x, = Xy = = 3y if,f; {“ e
S

o 12
(1 + 25Nt )] dt+(1+4v)V2

qg
X = x_ + M)1/2 . __:L_ _1_ ] T (1 . bSiﬂwt)Q
av ) 2v v T J, “a,

+ay (14 Binwt) 12
qs

The time average x will always be greater than X resulting in lower conversion.
(b) Effect of System Dynamics (high frequency fluctuations)

To evaluate the effect of higher frequency perturbation on the system, we take into account
system dynamics. The equations used as follows:

dA
—= A — A) - A2
at ql( f ) — KV

where q = g4 + bsinwt

A simulation of this type of process was undertaken by Douglas and Rippin (1) on an analog com-
puter. Figure 3 shows the effects of amplitude on the system while Figure 4 shows the effects of
frequency. The parameters used are given in Table 1. We note from these figures that the average
conversion decreases due to the sinusoidal variations in feed rate.

SIMULTANEOUS FEED COMPOSITION AND FLOW RATE VARIATIONS

What happens when we simultaneously introduce sinusoidal variations in fecd composition
and flow rate? From various results, we might expect that the reduced performance caused by
flow oscillations would just partially cancel out the improvements obtained with composition

fluctuations.
For this case, we shall use both feed-composition and flow rate disturbances

A, = A, (1+ asinwt)

f fs(
q =qg [1+bsin (w't+0))

where @ is the phase angle between the composition and flow fluctuations. This case has been con-
sidered in previous work done by Douglas (2). His results are presented here.

Let x = A/Afs , Q= qufs/G . V=KVg A's/qS
w, = Vg wlgg , w, =V wlg, T=q.t/Vg

78



Case 1. Effects of System Dynamics Negligible

For very low frequency disturbances,

A q
a1 o savL g2
9s Afs a

Expanding this equation in a Taylor's series about the steady-rate condition gives:
x=x *+a(1+4V)" 2sinw, 7 +b [1+2V - (1+4)"7?)
[2v (1+aV) 2] =1 sinw, 7+ 60) — a2V (1+4V) 32 gin2eo, 1

- b2V (1+4V)32 sin? (w, 7+ 6) +ab 2V (1 +4V) 25 wyTsin (w7 +0) +. ..

Taking the average fraction of material unconverted, we get

1 (144V)73/2 (&2 4 b2 _ 2ap cos 0) (26)

Xav =%~ 2v
where the term ab cos 0 is present only if w; =w,. We observe that maximum improvement in

conversion is obtained when
(i) the amplitudes a and b, are large
(i) w; =w,
(i) 0 =180°
Case 2. Effect of System Dynamics
The system of equations being considered for this case are the following:

dA  _ 2
o = 9(A - A - KV A

R dt
Ap = Ay (1 +asinwt)
X =X ty, 0= 2Vx
q = gg [1+bsin (wt+0)]

Using the above equations, we come up with
dy . .
— +{1+aly=asinw,7+b (1 x)sin(w,7 +0)
+ u'absin W, T sin (w,7+0) — u'bsin (w7 +0) y — p' Vy?

where the arbitrary constant p’ has been introduced in front of the terms which make an analyt

ical solution difficult.
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We proceed with the same perturbation solution as before and end up with an expression for
the average value of x as follows:

m3
= + si + m, C T + +
X5y x,tmysinwT 5 COsw T
m, (1+a) +2m.w m. (1+a)—2m,w
4 5 . 5 4
sin2wr + cos 2w T

(1+a)? +40? (1+a)? + 4w

where W)= wyTw

[a+b(1+x)cos0](1+a)+b(1—x)sind

ml =
(1+a)? +w?
o o(1—x)sin0 (1+a)—[a+b(1—xy)cos0]
2 =
(1+a)? +w?

1
m, =5 [abcoso—bm1 cosO—bm2sin0—m$V—m;2le
m4=l[abc050—bm in0 —b 0 v

: , sin m, cos 0 — m, m, V|

1
mg =§- (- abcos 0 + bin, cos0 — bm, sin0 +m$ V—mg V]

Result from work done by Douglas and Rippin (1) is shown in Figure 5. This plot shows that
if both flow rate and flow composition vary with the same frequency, the outcome depends on the
phase angle between the two signals. This secems to imply that to be able to get better conversion,
we should introduce flow fluctuations such that it amplifies the effect of feed composition
fluctuations rather than cancel it out, a contradiction of what is to be expected. In terms of
physical considerations, however, this is quite reasonable since we decrease the flow rate when the
feed composition is high and increase it when the feed composition is low, and because of the non-
linear reaction rate, we gain more in the first case than we lose in the second.

EXTENSIONS TO COMPLEX REACTIONS

Dorawala and Douglas (4) used the perturbation technique analysis for complex kinetic
mechanisms occurring in a CSTR. Their results for both isothermal and non-isothermal cases are
presented here. The cases considered are given below:

Case 1. Consecutive reactions nA—B—>C

dA _ n

o = 9(A—AI-K VA

dB

G = (BBl VAT - K,VB

d7 ~ n
VG, »p P qCy, (Te=T)— 1 (T-T,) +(=4H,) K, VA

- 1= ;'.;Hz) K va
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Case 2. Parallel reactions 2A ——>B

A—>C
dA _ 2
VST = alA - A -K,VAZ —K,VA
d8 _ 2
V5 = q(B,~B)+K VA

L 2
VC,p S =aC,p (Tp =T)—u (T=T )+ (~AH,) K, VA% + (-AH,) K, VA

For the parallel reaction case, Horn (3) found that the reactor temperature which maximized
the yield of component B was finite only if nEy/E; > 1, where n is the order of the first reaction
(n = 2 in case 2). Horn also showed that there would be some periodic processes which had a time
average yield in excess of the optimum steady-state value, provided that E,/E; <1.

ISOTHERMAL REACTORS

The results for the parallel reaction problem with flow rate variations and system parameters
listed in Table il are given in Figure 6. From the graph, there is a qualitative agreement between
the approximate analytical result and the numerical solution. This is accounted for by the fact
that only the first order correction functions were included in the perturbation analysis. The
linearized dynamic equations for this case have a pair of negative real roots so that the fact that
the improvement goes through a maximum as the driving frequency increases seems surprising to
the authors.

Figure 7 shows the dimensionless concentration of desired product B versus time. Only the
linear frequency response and the constant terms of the analytical solution are plotted. Still, there
scems to be a good agreement between the analytical and numerical results. This implies that the
quadratic nonlinearity and the time variable coefficient do not produce much distortion for these
10 percent amplitude flow rate fluctuations, although the analytical solutions predict that the
distortion increases with the square of the input amplitude,

For the consecutive reaction case, the parameters used are given in Table 11 and the results
given in Figure 8. It is observed that both analytical and numerical solutions predict that the time
average yield of the oscillating system is poorer than the optimum design at low frequencies, but
that at some point the direction of the shift in average operating level changes sign so that an im-
proved performance is obtained. This result demonstrates that any attempt to use the steady-
state equations to evaluate the effect of oscillations on a system can be misleading. The maximum
shift in the time average yield is very small, however, so that the linear frequency response
provides an excellent description of the output oscillations.

NONISOTHERMAL REACTORS

Dorawala and Douglas expected much larger differences between the time average and opti-
mum steady-state yields for this case since the system has an exponential nonlinearity in tempera-
ture and because the linearized system equations can have a pair of complex conjugate roots with
a low damping coefficient, that is, the linearized equations can exhibit resonance. They also expec-
ted to obtain the greatest improvements when the forcing frequency is near the resonant value
since the system amplifies the effects of fluctuating inputs in this region. Results for the parallel
reaction case for several input amplitudes are shown in Figure 9. The approximate analytical solu-
tions are in excellent agreement with numerical solutions, provided that the curves resemble trigo-
nometric functions. However, when there is a very large distortion it becomes necessary to
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¢valuate more correction terms in order to obtain a good agreement. This. is.unfortunate since tl::;
maximum improvement is obtained when the distortion is large. Hence, it is always ncccss.ar\f/. t
use numerical solutions for the equations. The analytical results can only bc‘usud to obtain urs.
estimates of the direction of the shift in the time average performance and to find the system para
meters which have the greatest effect on that shift

CONCLUSION

A perturbation analysis may be used to obtain an approximate analytical solution for thi
frequency response of nonlinear systems. The results show that the average value of. thfr outpu
for systems in periodic operation is different from the steady-state value, although th.ns difference
is small for mild nonlinearities; for highly non-linear systems or those which exhibit resonance,
the deviations may be very significant

The optimum steady-state design does not always correspond to maximum profit. Also, the
results show that the standard control problem of designing a control system to compensate
for input disturbances might not always be the best control strategy.

For systems which do not exhibit resonance, it is possible to estimate the difference between
the steady-state behavior and the time average behavior using only the steady -state equations des:
cribing the system.

In some cases, the time average yield of a complex reaction in a periodically operated reactor
is superior to the optimum steady-state design value. For complex reaction mechanisms, the per-
turbation analysis only provides a useful tool for obtaining first estimates and minimizing the
amount of numerical computation.

The magnitude of improvement due to periods as seen from work done by Douglas and
Rippin is really very small. Also, improvements on more complex mechanisms from work done by
Dorawala and Douglas cannot be generalized for all types of systems.

From all of the above, we conclude that, much work, both theoretical and experimental, has
yet to be done to finally establish the worth of periodic operation.

Table 1. Parameters for Isothermal Reactor

STEADY STATE
V=100, K=1.2, q; =10, A, =10

Taken from J.M. Douglas and D.W.T. Rippin (1)
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Figure 1. Effect of Feed Compasition Perturbation Amplitude

Taken from J.M. Douglas (2).
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Taken from J.M. Douglas (2).
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Table 2. System Parameters for Sinusoidal Inputs

Parallel reactions

Consecutive reactions

Parameters
Reaction 2A — B, A— C 2A—B,A—C 24 — B —C A—B —C
Energy Isothermul Nonisothermal Isothermal Nonisothermal
Fluctuation q q T, e e
A, 0.01 0.01° 0.01 1.0 0.0271
B, 0 0 0 0 0
9 10 10 10 10 10
‘.r 100 100 100 100 100
C,p 1.0 1.0 1.0 1.0 1.0
’;, 1.0 x 10** 1.0 x 10" 1.0 x 10** 1.0 x 10" 3.337 x 10"
Ping 9.49 x 10" 9.49 x 107 9.49 x 10 7.14 x 10° 1721 x 107
éo 28,000 28,000 28,000 29,500 22,800
E‘ 21,000 21,000 21,000 22,100 14,820
- i) 21,000 . 21,000 , o Jen
 BH) 20,000 20,000 1,366
T, T’ 319.1 319.1 365
e 88.5 88.5 327
. 1.2 0.5 1.498
[
0.00314 0.00314 0.333 0.00651
5 00075 0.00575 0.00575 0.489 0.01302
T 333.4 333.4 333.4 400 380

Taken from T.G. Dorawala and J.M. Douglas (4).
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